Therapeutic Interventions for aging
Soto-Gamez, Abel; Demaria, Marco

Published in:
Drug Discovery Today

DOI:
10.1016/j.drudis.2017.01.004

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2017

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Download date: 11-02-2021
Teaser Targeting senescent cells offers a new strategy to interfere with morbidities associated with age, and the potential of preventing or delaying aging of multiple tissues.

Therapeutic interventions for aging: the case of cellular senescence

Abel Soto-Gamez and Marco Demaria

University of Groningen, European Institute for the Biology of Aging (ERIBA), University Medical Center Groningen (UMCG), Groningen, The Netherlands

Organismal aging is a multifactorial process characterized by the onset of degenerative conditions and cancer. One of the key drivers of aging is cellular senescence, a state of irreversible growth arrest induced by many pro-tumorigenic stresses. Senescent cells accumulate late in life and at sites of age-related pathologies, where they contribute to disease onset and progression through complex cell and non-cell autonomous effects. Here, we summarize the mechanisms by which cellular senescence can promote aging, and we offer an extensive description of current potential pharmacological interventions for senescent cells, highlighting limitations and suggesting alternatives.

Introduction

Cellular senescence is a stress response characterized by the induction of a permanent cell cycle arrest. Senescence represents an important barrier to tumorigenesis by limiting the growth of potentially oncogenic cells, reviewed in [1]. To date, there is no single universal marker that can differentiate senescent cells from quiescent, terminally differentiated and other nonproliferating cells. Instead, multiple markers are combined to identify senescent cells including: (i) upregulation of p16INK4a, a protein that prevents cell cycle progression from the G1 to S phases by inhibiting cyclin-dependent kinase (CDK)4 and CDK6 [2]; (ii) activation of the lysosomal enzyme senescence-associated β-galactosidase (SA-β-gal) [3]; (iii) formation of specialized domains of facultative heterochromatin that contribute to silencing of proliferation-promoting genes in senescent cells, known as senescence-associated heterochromatin foci (SAHF) [4]; and (iv) persistent signaling of the DNA damage response (DDR), as shown by the presence of p53-binding protein 1 (53BP1) and γH2AX foci [5]. Most studies rely on these markers, although other predictive markers of senescence such as a flattened morphology, absence of the proliferation marker Ki67, enlarged nuclear size, loss of nuclear high mobility group box 1 (HMGB1) and decreased expression of lamin B1 are also often described [6].

Senescence-associated growth arrest (SAGA) is accompanied by an overactive secretory phenotype known as the senescence-associated secretory phenotype (SASP) [7]. The SASP consists of numerous cytokines, growth factors, proteases and extracellular matrix components that,
depending on the physiological context, can be either beneficial or deleterious. During early stages, SASP components promote the migration and infiltration of effector immune cells through the secretion of cytokines and facilitate tissue repair and remodeling by release of growth factors and proteases [8]; however, in later stages, persistent senescent cells negatively impact the surrounding microenvironment by impairing tissue homeostasis through complex cell and non-cell autonomous effects, reviewed in [9].

In a cell-autonomous manner, selected SASP components such as interleukin (IL)-6 and IL-8 can reinforce SAGA through autocrine pathways [10,11]. However, the same secreted components can act in paracrine signaling to neighboring cells, propagating the senescent phenotype and thus potentially hampering the regenerative capacity of surrounding tissue [12]. Similarly, in a non-cell-autonomous manner, SASP cytokines promote infiltration of immune cells, yet persistent signaling can result in disruptive chronic inflammation [13], a hallmark of aging and major contributor to age-related dysfunctions [13–18]. Indeed, senescent cells accumulate late in life and at sites of age-related pathologies [19–21], and genetic interventions enabling the effective clearance of senescent cells in genetically engineered animal models is sufficient to delay a number of age-related phenotypes [22–25].

Accordingly, a prolonged healthspan is obtained by pharmacological interventions using a novel class of drugs termed senolytics, used to selectively ablate senescent cells [26]. Senolytic interventions not only demonstrated the feasibility of extending healthspan but also evidenced the alleviation of a wide range of pre-existent age-related symptoms including: improved cardiovascular function, reduced osteoporosis and frailty [26]; enhanced adipogenesis, reduced lipotoxicity and increased insulin sensitivity [27]; improved established vascular phenotypes associated with aging and chronic hypercholesterolemia [28]; as well as radioprotection and rejuvenation of aged-tissue stem cells [29]. In this review, we will summarize the mechanisms by which cellular senescence can promote aging, followed by an extensive description of current potential pharmacological interventions for suppressing the SASP or selectively eliminating senescent cells (Fig. 1).

Interfering with the paracrine signaling of senescent cells

Pathways involved in SASP regulation

The senescence response can be promoted by a variety of stressors, such as activation of oncogenes, telomere shortening, genotoxic and oxidative stress. Various signaling pathways are activated in a stress-type-dependent fashion, yet they appear ultimately to converge with nuclear factor (NF)-κB signaling [30]. Similarly, specific SASP components vary largely on a cell-type-dependent manner, but key components are NF-κB-dependent proinflammatory proteins. Indeed, the canonical SASP cytokines IL-6 and IL-8 appear to be the most conserved and robustly expressed cytokines of the SASP [16,17]. Cytokines have multiple autocrine and paracrine effects that are considered pleiotropic. They positively regulate a variety of cellular functions, including immune responses, growth arrest and/or differentiation [31]. By contrast, in human malignancies they can stimulate cell migration, growth, invasion, angiogenesis and eventually promote metastasis, reviewed in [32]. Such observations partly explain the paradoxical roles for cellular senescence as a tumor suppressor and a tumor promoter.

The robust expression of IL-6 and IL-8 not only contributes to the induction of the SASP but also helps its maintenance, by activating a self-amplifying secretory program. Indeed, an autocrine positive feedback loop is initiated by the activation of transcription factors NF-κB and the CCAAT/enhancer binding protein beta (C/EBPβ), which transactivate numerous genes, including the coordinated expression of IL-6 and IL-8 as well as their respective receptors IL-6R/GP80 and IL-8RB/CXCR2 [10,11,33].

Several pathways have been identified as regulators of the SASP by influencing NF-κB at various levels. These include mammalian target of rapamycin (mTOR) [34,35], mitogen-activated protein kinase (MAPK) signaling [36], the phosphoinositide 3 kinase (PI3K) pathway [37] and GATA4/p62-mediated autophagy [38]. The mTOR complex is a key modulator of aging and age-related disease in various species [39]. The exact mechanisms by which mTOR regulates aging are unclear, but novel studies suggest a role in cellular senescence and the SASP. Indeed, the mTOR complex was shown to specifically promote the translation of the proinflammatory cytokine IL-1α [34], which is thought to be an early regulator of the SASP that subsequently engages the IL-6/IL-8 pathways. Indeed, coupling of IL-1α to its receptor (IL-1R) via juxtacrine signaling enables a positive feedback loop that stimulates their own expression through activation of IL-1 receptor-associated kinase (IRAκ1), an upstream regulator of NF-κB activity, and the transcription factor C/EBPβ [40]. Moreover, mTOR is also thought to interact with MAPK by increasing translation of the MK2 kinase (also known as MAPKAPK2), which acts by preventing the degradation of numerous SASP factor transcripts by ZFP36L1 [35]. In turn, MAPKAPK2 is itself a downstream target of p38MAPK, demonstrating that SASP can depend on the activation of additional signaling pathways [41].

Different components of insulin growth factor (IGF) signaling, such as the IGF-binding proteins IGFBP3 [42], IGFBP4 and IGFBP7 [36,43] are part of the SASP and act through autocrine/paracrine pathways to inhibit IGF signaling. Tissue plasminogen (t-PA) and PAI-1 are also observed in the secretome of senescent cells following different genotoxic stresses [37,44]. The SASP factor transforming growth factor beta (TGF-β) can reinforce senescence via paracrine and autocrine mechanisms. In a paracrine fashion, it can induce bystander senescence in neighboring cells by generating reactive oxygen species (ROS) and DNA damage, triggering chronic DDR signaling [45]. In an autocrine fashion, TGF-β signaling ensures a stable cell cycle arrest through the establishment of a positive feedback loop leading to p15INK4b induction, even after loss of p16INK4A [46].

NF-κB-based strategies to interfere with the SASP

Given the deleterious effects of some SASP components, therapeutic strategies for targeting the SASP without disturbing the growth arrest are currently being investigated (Fig. 2). Senescent cells are thought to contribute to tissue dysfunction largely through chronic inflammation. Pharmaceutical strategies using known anti-inflammatory drugs have therefore been approached as effective SASP modulators.

Glucocorticoids are a group of steroid hormones secreted from the adrenal cortex when the body senses stress [47], and include cortisol and corticosterone. Both hormones have strong anti-inflammatory activities and are consequently used in the treatment
Therapeutic interventions against aging relating to cellular senescence. Various drugs interfere with the secretory phenotype of senescent cells, suggesting their clinical use for the suppression of deleterious effects associated to the senescence-associated secretory phenotype (SASP). Alternative drugs, senolytics, block pro-survival pathways active in senescent cells leading to apoptosis. Another potential approach to target senescent cells is by enhancing natural clearance by means of immunotherapy through the use of immune modulators or by increasing the number of immune effector cells. Finally, therapeutic interventions for the bypass of senescence and artificial reactivation of proliferation could possibly enhance regenerative capacity in age-related dysfunctions.

of various conditions, including asthma, allergies, autoimmune diseases and certain cancers [48]. Importantly, one of their mechanisms of action is through repression of proinflammatory cytokines [49]. Their effect on the SASP was therefore studied, demonstrating decreased secretion of selected SASP components including IL-6 [50]. The suppressive effect on the SASP was found to be largely caused by the ability of glucocorticoids to down-regulate NF-kB transcriptional activity, suggesting the FDA-approved drugs might partly exert their beneficial effects by suppressing SASP-induced inflammation. Unfortunately, side-effects and drug resistance are associated with long-term therapeutic doses of glucocorticoids, compromising their clinical applications in age-related degeneration, and possibly requiring dosage re-evaluation if intended for aging interventions.

Other commercially approved drugs have been similarly evaluated for their use as SASP regulators. Metformin (1,1-dimethylbiguanide) is a commercially available antidiabetic drug with additional effects in lowering risks of microvascular and myocardial infarction [51], cancer occurrence and general mortality, reviewed in [52]. One of the metformin modes of action involves preventing the translocation of NF-kB to the nucleus, effectively disabling activation of the NF-kB pathway [53]. An inhibitory effect of metformin on the SASP was therefore demonstrated by Moiseeva et al. who showed reduction in growth of prostate cancer cells otherwise fueled by SASP cytokines in the absence of metformin [54]. Similarly, prolonged tumor remission was observed in mouse xenograft cancer models upon treatment with metformin in combination with chemotherapy agents [55,56]. Lastly, as a general antiaging agent, Martin-Montalvo et al. demonstrated that metformin reduces oxidative stress and inflammation, extending lifespan and healthspan in mice [57]. The evidence provided by these studies has paved the way for ongoing clinical studies to examine the effects of metformin on human aging and longevity (NCT02432287).

Comparably, natural compounds, like the phenol resveratrol [58] or the flavonoids apigenin, wogonin and kaempferol, have also been shown to dampen the SASP, probably through their effects and drug resistance are associated with long-term therapeutic doses of glucocorticoids, compromising their clinical applications in age-related degeneration, and possibly requiring dosage re-evaluation if intended for aging interventions.

A potential pharmacological alternative to dampen the SASP resides in modulating the upstream regulators of NF-kB activity. Indeed, using anti-IL-1α neutralizing antibodies or recombinant IL-1R antagonists, Orjalo and colleagues effectively disrupted the autocrine IL-1α–NF-kB positive feedback loop, markedly reducing the secretion of the canonical SASP cytokines IL-6 and IL-8 [40]. In the same way, because mTOR regulates the expression of membrane-bound IL-1α in senescent cells, selective mTOR inhibitors like rapamycin can also interfere with the IL-1α–NF-kB loop controlling much of the SASP [34]. Because rapamycin prevents the permanent loss of proliferative potential in arrested cells, without inducing proliferation [62], it can act by allowing cells to stop cell cycle progression in the face of a stressor, yet effectively suppressing SASP components that would otherwise hold arrested cells in...
an irreversible SAGA, or potentially propagate the senescence phenotype. Rapamycin and several analogs (known as rapalogs) selectively inhibit the mTOR complex 1 (mTORC1). By contrast, ‘non-rapalog’ dual mTORC1/C2 inhibitors act in a broader spectrum, simultaneously targeting mTORC1 and mTORC2 complexes [63]. Alternatives to rapamycin with superior pharmacological properties have therefore been suggested as antiaging therapeutics [64,65].

The interaction of mTOR with the MAPK pathway, and DDR-independent SASP regulation through MAPK signaling, has prompted members of the phosphorylation cascade to be considered as alternative pharmaceutical targets. The p38MAPK inhibitor SB203580 and the more-specific next-generation inhibitors UR-13756 and BIRB 796 all markedly suppressed SASP expression in senescent cells [41,66]. Comparably, the p38 downstream MK2 kinase (MAPKAPK) inhibitors PF-3644022 and MK2.III were also effective in dampening the SASP. Among these, BIRB 796 has already reached Phase III clinical trials, suggesting its possible use to suppress the SASP in vivo [66].

NF-κB-independent strategies to interfere with the SASP

The Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway is a major regulator of cytokine production. In senescent cells, JAK/STAT signaling is thought to sustain the IL-6 autocrine positive feedback loop that helps reinforce senescence; binding of IL-6 to its receptor is thought to signal via JAK/STAT to activate the transcription factor C/EBPβ [67], which then drives expression of IL-6 and IL-8 [10]. Many SASP factors such as IL-6, MCP-1, vascular endothelial growth factor (VEGF) and type I/II interferons are also activators of the pathway [68]. Thus, reprogramming of the SASP using JAK inhibitors has been investigated in cancer and age-related dysfunctions [69]. In oncology, enhanced chemotherapy efficacy was demonstrated using a JAK2 inhibitor [70], whereas positive effects in various age-related symptoms including reduced systemic inflammation, enhanced physical capacity, metabolic function, preserved fat tissue homeostasis, improved muscle stem cell function, muscle regeneration and hair growth promotion have been described for inhibitors like ruxolitinib (JAK1/2) [27] and tofacitinib (JAK1/3), reviewed in [69].
An additional approach for NF-κB-independent SASP disruption appears to be through inhibition of protein prenylation, a post-translational modification required by key SASP components [71]. Statins are a group of cholesterol-lowering drugs that act by inhibiting the first and rate-limiting enzyme of the mevalonate pathway (HMG-CoA, HMGCR), thereby reducing cholesterol formation, as well as formation of isoprenoid intermediates essential for protein prenylation. The inhibitory effects of statins in protein prenylation could thus be exploited in dampening the SASP, and perhaps partly explaining the anti-inflammatory effects observed in selected statins [72,73]. Simvastatin treatment reduces the expression of proinflammatory cytokines such as IL-6, IL-8 and monocyte chemoattractant protein (MCP)-1 in vitro and in vivo [74,75] and can effectively suppress the effects of the SASP in fueling cancer proliferation [76]. Interestingly, known prenylated proteins include several protein kinases, signal transduction switches of the Ras superfamily and the nuclear lamina protein lamin A, which is implicated in the pathogenesis of Hutchinson–Gilford progeria syndrome. The use of prenyltransferase inhibitors is therefore actively investigated in progeria, cancer and aging [71].

Finally, other alternatives to counteract deleterious effects of the SASP include the use of neutralizing agents to block or sequester selected SASP components, thus hampering their biological action. For instance, IL-6 and IL-8 have important autocrine roles in senescence maintenance, as well as in the induction of tumor-promoting phenotypes; other SASP factors such as VEGF support increased angiogenesis [77], or act as immunosuppressants (TGF-β) [78]. These effects make selected SASP components interesting therapeutic targets. Of note, monoclonal antibodies directed against IL-6 [79], IL-8 [80], VEGF [81] or TGF-β [82] are already in development or approved for the market for the treatment of various malignancies. However, their direct effect on the accumulation of senescent cells in vivo remains to be tested. Similarly, additional SASP factors, such as secreted proteases and matrix-remodeling enzymes, also participate in tissue structure disruption and are key regulators in cancer and inflammation [83]; the administration of synthetic inhibitors to hamper these effects would therefore represent an interesting alternative.

Natural clearance of senescent cells
To prevent deleterious effects stimulated by their persistence, increasing evidence suggests the immunogenic phenotype of senescent cells also consists of the upregulation of surface ligands not normally expressed on healthy tissue. Indeed, natural killer (NK) cells and subsets of T cells trigger cytolytic responses on senescent cells. This phenomenon, termed senescence surveillance [84], has been demonstrated in the liver and appears to be mediated by activation of the NKG2D receptor [85–88].

The NKG2D receptor recognizes ligands on the surface of stressed cells leading to direct cytotoxicity [89–91]. NKG2D ligands are poorly expressed in normal cells, but are frequently upregulated in stressed, precancerous and tumor cells, as well as some infected cells [92]. The mechanisms leading to ligand upregulation are still unknown, but experimental evidence suggests the involvement of the DDR pathway [93]. Furthermore, similar to senescent cells propagating the senescence phenotype via SASP cytokines to neighboring cells [12], cytokine exposure and Toll-like receptor (TLR) stimulation also induces NKG2D ligand transcription [92]. It is therefore hypothesized that NKG2D ligand expression is tightly regulated in healthy adult tissue to prevent self-recognition and autoimmune reactivity. However, in contrast to adult tissue, NKG2D ligand transcripts are expressed in certain embryonic tissues, yet are undetectable post-birth [94,95]. This pattern could coincide with the role of cellular senescence in embryonic development, where developmentally programmed senescence occurs at multiple sites during embryogenesis, contributing to the patterning of mammalian embryos and facilitating tissue remodeling [96,97].

Although senescent cells can be effectively cleared in young organisms, it is possible the decreased production of immune cells during aging (immunosenescence) could reduce an aged organism’s ability of carrying effective senescence surveillance. A decline in immune function with age is consistent with the high numbers of senescent cells observed at old age [13]. Additionally, the accumulation of senescent cells and their SASP factors could form a milieu permissive for the retention of senescent cells, similar to the immunosuppressive microenvironment observed in tumors. Because of this, therapies that boost the immune system by increasing the number of immune cells, or their activity against senescent cells, could help older patients in aiding senescence surveillance.

Although neither a specific nor universal surface marker(s) has been reported for senescent cells, the selective expression of NKG2D ligands in many tumor cell lines and primary tumors has made them emerge as promising targets in oncology. Adoptive therapies involving the transfer of immune cells targeting NKG2D ligands have demonstrated therapeutic potential leading to long-term improved outcomes in cancer patients [98–101]. Nevertheless, adoptive transfer therapies can lead to life-threatening adverse effects, whereas additional downsides also limit their use in the clinic, including unfeasible times and costs dedicated to T cell culture for reaching large enough numbers of cells, the need to enhance T cell memory and effector characteristics to achieve longer persistence and an adequate selection of target antigens [102]. Finally, directly targeting the NKG2D receptor or its ligands is an alternative approach under investigation. Strategies employing monoclonal antibodies or bispecific proteins to simultaneously target NKG2D ligands in target cells and effector immune cells show therapeutic potential in oncology [92], suggesting their use could be explored for the development of senotherapeutics.

Selective elimination of senescent cells
Senescent cells make use of various pro-survival mechanisms to remain viable following DNA damage while simultaneously hampering growth. For instance, much like cancer cells, senescent cells have an active DDR and rely on antiapoptotic pathways to persist in tissues. Such mechanisms include the PI3K pathway, involved in survival regulation [103], the Bcl-2/Bcl-xL pathways which regulate mitochondrial-dependent apoptosis [104] and the blockage of dependence receptors that normally promote apoptosis [105]. These features make senescent cells much more reliant on pro-survival pathways than their nonsenescent counterparts, serving as the rationale behind the development of senolytic drugs, which aim to eliminate senescent cells without affecting quiescent and proliferating cells [26].
A number of senolytic drugs have now been identified (Fig. 3), including quercetin (which inhibits the PI3K pathway), dasatinib (which interferes with dependence receptor EFN B) and ABT263 or navitoclax (which targets the Bcl-2/Bcl-xL proteins) [26,106]. These drugs report a wide range of beneficial effects for senescence-related indications in vitro and in vivo; most notably enhanced cardiovascular function, improved exercise endurance, reduced osteoporosis and frailty [26,106], as well as radioprotection and rejuvenation of the hematopoietic system in mice [29]. Although promising, senolytics described to date are not effective in all senescent cell types, and must instead be tested in each senescent cell type of interest. Dasatinib effectively eliminated senescent human fat cell progenitors, yet was much less effective on senescent human umbilical vein cells (HUVECs). The opposite phenomenon was observed with quercetin, a natural polyphenol that works as a potent antioxidant and metal ion chelator [107]. Indeed, quercetin induced cell death of senescent HUVECs to a greater extent than that of proliferating cells; however, it was much less effective on targeting pre-adipocytes [26]. In the same way, the more recently described Bcl-2/Bcl-xl inhibitor navitoclax was initially suggested as a broad-spectrum senolytic, with lethal effects in HUVECs, IMR90 human lung fibroblasts and murine embryonic fibroblasts (MEFs) [106]. However, navitoclax had no effect on senescent pre-adipocytes, arguably the most abundant type of senescent cells, in humans [108].

Also challenging, despite the apparent cell-type dependency, the targeted antiapoptotic pathways might not be specific enough and can be expressed in off-target cell-types, contributing to unwanted toxicities. For example, transient thrombocytopenia and neutropenia are well-known side-effects reported upon administration of navitoclax [109]. These side-effects could in fact relate to the importance of Bcl-2 in the survival of lymphocytes and platelets in a normal setting, such as preventing the activation of apoptosis that normally follows induction of double-strand breaks during genetic recombination events [110]. A similar response might occur in melanocytes, following the UV-induced DNA damage they must endure to produce melanin. In fact, Bcl-2 has an indispensable role in the survival of melanocyte stem cells [110], and benign and malignant melanocytic nevi often over-express the same antiapoptotic pathway [111,112]. Bcl-2 is expressed in numerous human cancers, and was identified as a drug target over the past decades. In recent years, more-selective Bcl-2 inhibitors are under development, for instance those directed against the specific BH4 domain represent novel strategies for lowering toxicity [113]. Alternatively, metabolic differences between senescent and nonsenescent cells could also be exploited for the development of senolytics. Certainly, similar to cancer cells, senescent cells display a heightened metabolic flux, which includes enhanced uptake of amino acids, higher protein quantity and synthesis rates, and strong skewing of transcripts
neutralizing antibodies against IL-6 or knockdown of IL-6 or its receptor (IL-6R) also result in bypass of senescence [11]. Of interest, Kuilman and colleagues additionally showed the transcription factor C/EBPβ was recruited to the promoters of IL-6 and IL-8 in response to oncogenic stress [11], suggesting C/EBPβ might be an interesting target for overcoming growth arrest.

Retroviral-based functional genetic screens have identified several genes regulating bypass of senescence and immortalization (either by gain or loss of function). These include inactivation of cell-cycle regulatory genes such as p16INK4a, p21Cip1/Waf1, p53, pRB or PPPICA; and overexpression of oncogenic protein/transcription factors such as Klf4, c-Myc, Bmi-1 or viral oncogenes [122]. However, most of these genes are widely altered in human tumors and are most probably implicated in their causality.

More recently, Abad et al. demonstrated in vivo reprogramming of adult cells was capable of restoring their proliferative potential. Reprogramming was achieved through the transitory induction of the four transcription factors Oct4, Sox2, Klf4 and c-Myc in mice, which led to the generation of induced pluripotent stem cells in situ, demonstrating reprogramming can be performed within tissues [123]. These findings are relevant for future applications in regenerative medicine, and partly indicate similar approaches could restore proliferation in senescent cells or in cells that have been arrested by non-cell-autonomous effect.

Potential side-effects of interfering with senescent cells

Cell autonomous

Cellular senescence was initially identified as a permanent growth arrest in cells where multiple replication cycles gradually resulted in telomere attrition. Replicative senescence was therefore proposed as a cell-autonomous tumor-suppressive mechanism disabling cell division in cells that would otherwise result in aberrant chromosomal recombination and genomic instability. Accordingly, the same role is defined in oncogene-induced senescence and therapy-induced senescence, where overcoming growth arrest in cells with widespread DNA damage or oncogenic activation normally results in hyperplastic anomalies. In fact, virtually all human cancers lack functional p53/p21Cip1/Waf1 and/or RB/p16INK4a pathways, in addition to often carrying mutations in genes known to collaborate in vitro to bypass the senescence response [122]. Overcoming SAGA of senescent cells should therefore be approached with caution.

In genetically modified mice enabling the drug-inducible reprogramming of adult cells in situ, reprogramming appeared capable of restoring proliferative potential in multiple tissues. However, the interventions came at an elevated price, resulting in multiple teratomas within multiple organs [123]. Interestingly, such effects were not observed in genetically modified mice enabling drug-inducible suicide of senescent cells [22–24] suggesting elimination of senescent cells is perhaps preferable to the bypass of senescence.

Non-cell autonomous

Contrary to the cell-autonomous role of the SASP, non-cell-autonomous effects via the SASP are much less clear and context dependent. For instance, cellular senescence has a recognized role facilitating wound healing. In genetic models allowing continuous drug-induced removal of senescent cells, delayed wound healing was observed until the drug stimulus was removed, and
partially upon topical treatment with recombinant platelet-derived growth factor (PDGF)-AA [8].

Additionally, senescent cells have an important role in the limitation of fibrosis. For instance, cellular senescence limits fibrosis by halting the proliferation of stellate cells responsible for the production of extracellular matrix deposited in fibrotic scar, and contributes to attract immune cells facilitating wound healing and fibrosis reversion by secreting extracellular-matrix-degrading enzymes and SASP components [87]. Suppression of key SASP components could therefore lead to anomalies in immune cell recruitment during wound healing or even tumor surveillance. For instance, inhibition of NK cells delays fibrosis resolution [87]; whereas a reduction in neutrophil recruitment is observed upon treatment with a CXCR2 antagonist (SB225002) in an experimental colitis model. However, neutrophil influx only appears critically dependent on CXCR2 in the early phases (8 h), but not in the later phases (day 7) [124]. Intermittent interventions for eliminating senescent cells should therefore allow for removal of chronic persistent cells, without interfering with normal immune cell recruitment post-treatment.

Although mice lacking key senescence regulators displayed excessive fibrosis upon liver injury [85], no effects were observed in drug-inducible models, perhaps because the senescence response drove instead to caspase-mediated apoptosis, thus limiting the proliferation of stellate cells [24]. Intriguingly, in some contexts, chronic senescence can contribute to a fibrotic pathology rather than ameliorate it, as observed in idiopathic pulmonary fibrosis (IPF), a progressive and fatal lung disease. In IPF fibroblasts Nox4 mediates senescence and apoptosis. Genetic and pharmacological targeting of Nox4 led to a reversal of persistent fibrosis in aged mice models with a stabilized fibrosis phenotype [125]. The direct effects of senolytic interventions in fibrosis thus remain unclear. In the same way, loss of senescence in developmentally programmed senescence was partially compensated by apoptosis but still resulted in detectable developmental abnormalities [96]. As with most pharmaceuticals, senolytic interventions would therefore be most probably avoided during pregnancy to prevent miscarriage or fetal malformation.

In oncology, strategies to suppress the SASP could in theory interfere with SAGA and even impair tumor surveillance, resulting in higher cancer susceptibility. Fortunately, however, pharmacological interventions reducing the SASP do not appear to fuel tumor progression, and instead show an opposite effect, prompting their use in cancer therapies. In fact, many described senolytics were initially identified as anticancer drugs [26], and clinical trials have been conducted with many of them, including Bcl-2 inhibitors (e.g., dasatinib, navitoclax) [126] and mTOR inhibitors such as rapamycin (sirolimus) and rapalogs including RAD001 (everolimus), CCI-779 (temsirolimus) and AP23573 (deferolimus), to evaluate their anticancer efficacy [127]. Even more so, the combination of mTOR inhibitors with a Bcl-2 antagonist with potential senolytic activity (BDA-366) exhibits exceptional synergistic effects against lung cancer [128], markedly questioning deleterious roles for senolytic interventions in tumor progression.

Concluding remarks and future perspectives: pharmacological interventions in humans

Although regeneration capacity deteriorates with age in mammals, it remains intact in other species such as salamanders. Surprisingly, salamanders show a significant induction of cellular senescence during limb regeneration; however, rapid and effective mechanisms of senescent cell clearance operate in regenerating tissues. Accordingly, the number of senescent cells does not increase upon aging, in contrast to mammals [129]. However, very recently senescent cells have been shown to promote tissue regeneration also in mammals, probably through secretion of specific SASP factors (Serrano Science). Thus, pharmacological or localized assisted immunological clearance of senescent cells might potentially aid regeneration of dysfunctional aged tissues.

The various beneficial effects resulting from the administration of drugs to selectively eliminate senescent cells, or suppress the deleterious aspects of the SASP, encourage their use in the treatment of age-related disabilities and chronic diseases as a group. Unfortunately, many challenges are still to be overcome for a successful drug development program, including increased selectivity and reduction of off-target effects. The optimization of therapeutic dosage in already approved drugs, now repurposed for aging interventions, appears promising in the reduction of unwanted side-effects, as demonstrated for rapamycin using lower intermittent doses [130]. Additionally, the development of appropriate animal models capable of demonstrating the beneficial effects using clinically relative outcomes is imperative [131]. These models would ideally be capable of distinguishing on-target from off-target effects to enable a correct assessment of safety and efficacy at a preclinical level, and ultimately grant their use in human clinical trials. In the near future, it is most likely that interventions against cellular senescence will only be prescribed on a case-by-case basis, for specific age-related dysfunctions, in patients with a favorable risk:benefit tradeoff; as is already the case in oncology where many identified senolytics are currently under investigation. Promisingly, however, human clinical trials are already underway to evaluate pharmaceutical impacts on longevity and human aging as a whole, extending our understanding on the human biology of aging and suggesting antiaging interventions could be closer than expected.

References

22 Tchkonia, T. et al. (2012) IL1- and TGFβ-Nox4 signaling, oxidative stress and DNA damage response are shared features of replicative, onco gene-induced, and drug-induced paracrine ‘bystander senescence’. Aging 4, 932–951
23 Freund, A. et al. (2011) p38MAPK is a novel DNA damage response-independent regulator of the senescence-associated secretory phenotype. EMBO J. 30, 1536–1548
25 Freund, A. et al. (2011) Plasminogen activator inhibitor 1 – insulin-like growth factor binding proteins 4 and 7 released by senescent cells promote premature senescence in mesenchymal stem cells. Cell Death Dis. 4, e911
26 Orjalo, A.V. et al. (2016) Unbiased analysis of senescence associated secretory phenotype (SASP) to identify common components following different genotoxic stresses. Aging 8, 1316–1329
37 Xu, M. et al. (2016) Chronic senolytic treatment alleviates established vasomotor dysfunction in aged or atherosclerotic mice. Aging Cell 15, 973–977
39 Chen, Y. et al. (2011) Control of the senescence-associated secretory phenotype by NFκB promotes senescence and enhances chemosensitivity. Genes Dev. 25, 2125–2136