Isolation of an NDM-5-producing ST16 *Klebsiella pneumoniae* from a Dutch patient without travel history abroad, August 2015

E Bathoorn 1, JW Rossen 1, M Lokate 1, AW Friedrich 1, AM Hammerum 2
1. Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
2. Department of Microbiology and Infection Control, Statens Serum Institut, Copenhagen, Denmark

Correspondence: Erik Bathoorn (d.bathoorn@umcg.nl)

Citation style for this article:

Article submitted on 02 October 2015 / accepted on 14 October 2015 / published on 15 October 2015

A New Delhi Metallo-beta-lactamase-5 (NDM-5)-producing ST16 *Klebsiella pneumoniae* strain was isolated from a Dutch patient in a long-term care facility without recent travel history abroad. Core genome multilocus sequence typing (cgMLST) revealed that the Dutch isolate was clonally related to isolates detected in four patients in Denmark in 2014. Public health experts and clinicians need to be informed; repetitive screening may be needed in patients without known risk factors for carbapenemases-producing *Enterobacteriaceae* who have undergone antibiotic treatment.

Here we report a New Delhi Metallo-beta-lactamase-5 (NDM-5)-carrying ST16 *Klebsiella pneumoniae*, isolated from a hospitalised patient in the Netherlands, with no recent history of travel abroad. Analysis by core genome multilocus sequence typing (cgMLST) based on the core genome sequence of the isolate, showed that it is clonally related to four recently reported isolates cultured from four patients in two hospitals in Denmark, in 2014 [1].

Background
NDM is a carbapenemase that has been detected for the first time in a Swedish patient returning from New Delhi in 2008 [2]. In the first years thereafter, introduction of NDM-producing isolates in European hospitals was associated with returning travellers from India and Pakistan [3]. NDM-producing *Enterobacteriaceae* are rapidly dispersing over the world, and cases without any epidemiological links to the Indian subcontinent have been reported [4]. Reports on detection of NDM in environmental samples and in the food chain are worrisome, in particular since this might implicate spread of these resistance genes in the community [5,6]. In northern and western Europe, however, identification of patients with NDM-producing *Enterobacteriaceae* is still rare [7].

Currently, nine types of NDMs have been detected, of which NDM-1 is the most prevalent type [8]. NDM-5 has been isolated for the first time in the United Kingdom in 2011 from a patient returning from India [9]. Cases of NDM-5-carrying *Enterobacteriaceae* are sporadic. Some unrelated cases have been described, for instance three cases in Algeria and a case in Spain, with no recent history of travel abroad [10,11]. The identification of unrelated cases colonised with the same of NDM-5-producing *K. pneumoniae* ST16 clone in two countries with low prevalence, may be cause for concern.

Case description
A Dutch patient in their 50s suffering from spinal cord injury had been admitted for rehabilitation in a long-term care facility in a northern region of the Netherlands. Upon admission in August 2015 (day 0), swab cultures taken from throat and rectum were negative for carbapenem-resistant Gram-negatives. The patient was treated upon admission with ceftriaxone 2 gr once per day for seven days, for an infection.

On day 10, an NDM-5-producing *K. pneumoniae* was cultured from a rectal swab taken as part of routine screening. Antibiogram based on automated susceptibility testing (VITEK2, bioMerieux, Marcy l’Etoile, France) and E-tests (AB Biodisk, Mannheim, Germany) showed increased minimum inhibitory concentrations (MICs) to meropenem and imipenem, and susceptibility to gentamicin, fosfomycin, and colistin (Table).

Whole genome sequencing, de novo assembly, and assessment of multilocus sequence typing (MLST), cgMLST, and resistome were performed as described previously [12,13]. The strain harboured beta-lactam
We report the sporadic detection of an NDM-5-producing *K. pneumoniae* from a Dutch patient with no risk factors for acquisition. The origin of the strain is unknown. Similar cases have been presented in Denmark with clonally related isolates. There were no known direct epidemiological links between the Danish patients and our case: the Danish positive cases did not travel to the Netherlands, and in our long-term care facility, no epidemiological links between the Danish patients and our case: the Dutch patient in a long-term care facility, August 2015.

The tree is based on 634 columns, pairwise ignoring missing values. Number of allelic mismatches is presented.

The tree is based on 634 columns, pairwise ignoring missing values. Number of allelic mismatches is presented.

The tree is based on 634 columns, pairwise ignoring missing values. Number of allelic mismatches is presented.

The tree is based on 634 columns, pairwise ignoring missing values. Number of allelic mismatches is presented.

The tree is based on 634 columns, pairwise ignoring missing values. Number of allelic mismatches is presented.

The tree is based on 634 columns, pairwise ignoring missing values. Number of allelic mismatches is presented.

The tree is based on 634 columns, pairwise ignoring missing values. Number of allelic mismatches is presented.

The tree is based on 634 columns, pairwise ignoring missing values. Number of allelic mismatches is presented.

The tree is based on 634 columns, pairwise ignoring missing values. Number of allelic mismatches is presented.

The tree is based on 634 columns, pairwise ignoring missing values. Number of allelic mismatches is presented.

The tree is based on 634 columns, pairwise ignoring missing values. Number of allelic mismatches is presented.

The tree is based on 634 columns, pairwise ignoring missing values. Number of allelic mismatches is presented.

The tree is based on 634 columns, pairwise ignoring missing values. Number of allelic mismatches is presented.

The tree is based on 634 columns, pairwise ignoring missing values. Number of allelic mismatches is presented.

The tree is based on 634 columns, pairwise ignoring missing values. Number of allelic mismatches is presented.

The tree is based on 634 columns, pairwise ignoring missing values. Number of allelic mismatches is presented.

The tree is based on 634 columns, pairwise ignoring missing values. Number of allelic mismatches is presented.

The tree is based on 634 columns, pairwise ignoring missing values. Number of allelic mismatches is presented.

The tree is based on 634 columns, pairwise ignoring missing values. Number of allelic mismatches is presented.

The tree is based on 634 columns, pairwise ignoring missing values. Number of allelic mismatches is presented.

The tree is based on 634 columns, pairwise ignoring missing values. Number of allelic mismatches is presented.

The tree is based on 634 columns, pairwise ignoring missing values. Number of allelic mismatches is presented.

The tree is based on 634 columns, pairwise ignoring missing values. Number of allelic mismatches is presented.

The tree is based on 634 columns, pairwise ignoring missing values. Number of allelic mismatches is presented.

The tree is based on 634 columns, pairwise ignoring missing values. Number of allelic mismatches is presented.

The tree is based on 634 columns, pairwise ignoring missing values. Number of allelic mismatches is presented.

The tree is based on 634 columns, pairwise ignoring missing values. Number of allelic mismatches is presented.

The tree is based on 634 columns, pairwise ignoring missing values. Number of allelic mismatches is presented.

The tree is based on 634 columns, pairwise ignoring missing values. Number of allelic mismatches is presented.

The tree is based on 634 columns, pairwise ignoring missing values. Number of allelic mismatches is presented.

The tree is based on 634 columns, pairwise ignoring missing values. Number of allelic mismatches is presented.

The tree is based on 634 columns, pairwise ignoring missing values. Number of allelic mismatches is presented.

The tree is based on 634 columns, pairwise ignoring missing values. Number of allelic mismatches is presented.

The tree is based on 634 columns, pairwise ignoring missing values. Number of allelic mismatches is presented.

The tree is based on 634 columns, pairwise ignoring missing values. Number of allelic mismatches is presented.

The tree is based on 634 columns, pairwise ignoring missing values. Number of allelic mismatches is presented.

The tree is based on 634 columns, pairwise ignoring missing values. Number of allelic mismatches is presented.

The tree is based on 634 columns, pairwise ignoring missing values. Number of allelic mismatches is presented.

The tree is based on 634 columns, pairwise ignoring missing values. Number of allelic mismatches is presented.

The tree is based on 634 columns, pairwise ignoring missing values. Number of allelic mismatches is presented.

The tree is based on 634 columns, pairwise ignoring missing values. Number of allelic mismatches is presented.

The tree is based on 634 columns, pairwise ignoring missing values. Number of allelic mismatches is presented.

The tree is based on 634 columns, pairwise ignoring missing values. Number of allelic mismatches is presented.

The tree is based on 634 columns, pairwise ignoring missing values. Number of allelic mismatches is presented.

The tree is based on 634 columns, pairwise ignoring missing values. Number of allelic mismatches is presented.

The tree is based on 634 columns, pairwise ignoring missing values. Number of allelic mismatches is presented.

The tree is based on 634 columns, pairwise ignoring missing values. Number of allelic mismatches is presented.

The tree is based on 634 columns, pairwise ignoring missing values. Number of allelic mismatches is presented.

The tree is based on 634 columns, pairwise ignoring missing values. Number of allelic mismatches is presented.

The tree is based on 634 columns, pairwise ignoring missing values. Number of allelic mismatches is presented.

The tree is based on 634 columns, pairwise ignoring missing values. Number of allelic mismatches is presented.

The tree is based on 634 columns, pairwise ignoring missing values. Number of allelic mismatches is presented.

The tree is based on 634 columns, pairwise ignoring missing values. Number of allelic mismatches is presented.

The tree is based on 634 columns, pairwise ignoring missing values. Number of allelic mismatches is presented.

The tree is based on 634 columns, pairwise ignoring missing values. Number of allelic mismatches is presented.

The tree is based on 634 columns, pairwise ignoring missing values. Number of allelic mismatches is presented.

The tree is based on 634 columns, pairwise ignoring missing values. Number of allelic mismatches is presented.

The tree is based on 634 columns, pairwise ignoring missing values. Number of allelic mismatches is presented.

The tree is based on 634 columns, pairwise ignoring missing values. Number of allelic mismatches is presented.

The tree is based on 634 columns, pairwise ignoring missing values. Number of allelic mismatches is presented.

The tree is based on 634 columns, pairwise ignoring missing values. Number of allelic mismatches is presented.

The tree is based on 634 columns, pairwise ignoring missing values. Number of allelic mismatches is presented.
Unknown links or a common source may be the reason for the clonality of this rare isolate.

Another explanation might be that the clonal strains have been acquired from a foodborne source. *Escherichia coli* carrying *bla*_NDM-5, *bla*_TX-1, and *bla*_TEM have been reported as cause of mastitis in cows, suggesting that *bla*_NDM-5-Carrying plasmids might enter the food chain. Moreover, contamination of retail chicken meat with *K. pneumoniae* producing a combination of NDM, CTX-M-15, TEM, and SHV-1 has recently been reported [16]. Typing of *bla*_NDM, plasmid, and MLST of these isolates may reveal a link with a foodborne source.

K. pneumoniae ST16 is a highly prevalent type causing nosocomial infections [17]. It is unsure whether this ST16 clone is newly introduced, or whether this clone was already present in our region, and has now acquired an NDM-5-carrying plasmid. We anticipate a full study, which will assess the relation between the NDM-5-producing isolates and the epidemic CTX-M-15-producing *K. pneumoniae* ST16 isolates in our region, and possible links with the food chain. Since our case was detected by chance and we did not identify any routes of transmission, further cases may be found in the Netherlands or elsewhere. We contacted national reference centers in Europe to find cases retrospectively, and to alert them about potential future cases. Finally, our case suggests that it might be necessary, under specific conditions, to screen for CPE also in patients who do not have a recent history of travel to a CPE-endemic country, and that diagnostics excluding CPE at admission, should be repeated if patients are using antibiotics during hospitalisation.

Conflict of interest

None declared.

Authors’ contributions

EB collected the data and drafted the manuscript, JWR supervised the molecular research and analysis, ML organised infection control measurements and risk assessments, AWF participated in the coordination and concept of the manuscript, AMH coordinated and edited the manuscript.

References

