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ABSTRACT
Background: Previous studies have reported low circulating con-
centrations of pyridoxal-5-phospate (PLP) in renal transplant re-
cipients (RTRs). It is unknown whether this is because of low
intake or altered handling, and it is also unknown whether vari-
ation in circulating concentrations of PLP influences long-term
outcome.

Objective: We compared vitamin B-6 intake and circulating PLP
concentrations of RTRs with those of healthy controls and investi-
gated long-term clinical implications of vitamin B-6 deficiency in
stable outpatient RTRs.

Design: In a longitudinal cohort of 687 stable RTRs (57% male;
mean6 SD age: 536 13 y) with a median (IQR) follow-up of 5.3 y
(4.8–6.1 y) and 357 healthy controls (47% male; age 54 6 11 y),
baseline vitamin B-6 was measured as plasma PLP by high-
performance liquid chromatography (HPLC). Vitamin B-6 defi-
ciency was defined as PLP ,20 nmol/L, and insufficiency as PLP
20–30 nmol/L. Dietary intake was assessed by validated food-
frequency questionnaires.

Results: At inclusion [5.3 y (1.8–12.1 y) after transplantation], the
mean vitamin B-6 intakes in RTRs and healthy controls were
1.77 6 0.49 and 1.85 6 0.56 mg/d, respectively (P = 0.23). In these
groups, the median plasma PLP concentrations were 29 nmol/L
(17–50 nmol/L) and 41 nmol/L (29–60 nmol/L), respectively
(P , 0.001). Accordingly, deficiency was present in 30% of RTRs
compared with 11% of healthy controls. PLP concentrations were
inversely associated with glucose homeostasis variables and inflam-
mation variables (all P , 0.01). During follow-up, 149 (21%) RTRs
died and 82 (12%) developed graft failure. In RTRs, vitamin B-6
deficiency was associated with considerably higher mortality risk
(HR 2.14; 95% CI: 1.48, 3.08) than a sufficient vitamin B-6 status,
independent of potential confounders. No associations were ob-
served for graft failure (P = 0.18).

Conclusions: Vitamin B-6 deficiency is common in RTRs and does
not seem to be a consequence of inadequate intake. In addition, this
deficient state is clinically relevant and independently associated
with an increased risk of mortality in RTRs. The cohort on which
the study was based [TransplantLines Food and Nutrition Biobank
and Cohort Study (TxL-FN)] was registered at clinicaltrials.gov as
NCT02811835. Am J Clin Nutr 2017;105:1344–50.

Keywords: vitamin B-6 deficiency, pyridoxal 5#-phosphate,
kidney transplantation, diabetes mellitus, inflammation, long-term
mortality, long-term graft failure

INTRODUCTION

The preferred treatment of most patients with end-stage renal
disease is renal transplantation (Rtx)9, offering improved prog-
nosis and quality of life at lower costs than dialysis treatment (1,
2). Although short-term prognosis after transplantation has im-
proved over the past decades, long-term success has been dis-
appointing, because stable renal transplant recipients (RTRs)
remain at increased risk of mortality, predominantly cardiovas-
cular, compared with the general population (3).

In the search for modifiable factors to improve RTR long-term
prognosis, vitamin B-6 might be an interesting target, because
previous reports have repeatedly shown that the principal form of
vitamin B-6, pyridoxal-5#-phosphate (PLP), is lower in RTRs
than in healthy controls (4, 5).

Unfortunately, however, it is not known whether the prevalent
vitamin B-6–deficient state in RTRs is caused by inadequate
vitamin B-6 intake or altered handling and whether vitamin B-6
deficiency has clinical consequences in this susceptible population.
Hence, we aimed to compare circulating PLP concentrations and
vitamin B-6 intake in RTRs with those in healthy controls and to
investigate the long-term clinical implications of vitamin B-6
deficiency in stable outpatient RTRs.

1 Supported by Top Institute Food and Nutrition (grant CH-003),

FrieslandCampina, and DSM Nutritional Products.
2 Supplemental Figure 1 is available from the “Online Supporting Mate-

rial” link in the online posting of the article and from the same link in the

online table of contents at http://ajcn.nutrition.org.
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9 Abbreviations used: FFQ, food-frequency questionnaire; hs-CRP, high-

sensitivity C-reactive protein; PLP, pyridoxal-5#-phosphate; RTR, renal

transplant recipient; Rtx, renal transplantation.
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METHODS

Study population

This prospective cohort study was based on a previously
described, well-characterized set of 707 RTRs (6, 7). For the
participant flowchart, see Supplemental Figure 1. Briefly, this
cohort included RTRs (aged $18 y) who visited the outpatient
clinic of the University Medical Center Groningen, Groningen,
Netherlands, between November 2008 and June 2011 and who
had a graft that had been functioning for $1 y with no history
of alcohol and/or drug addiction. We excluded subjects with
missing biomaterial (i.e., 11 cases) and subjects using vitamin
B-6 supplementation (i.e., 9 cases) from the statistical analyses,
which resulted in 687 subjects eligible for analyses. As a control
group reflecting the general population, we included 357 healthy
kidney donors, none of which had to be excluded because of
missing biomaterial or use of vitamin B-6 supplementation. The
study protocol was approved by the University Medical Center
Groningen institutional review board (METc 2008/186) and
adhered to the Declarations of Helsinki and Istanbul.

Data collection and measurements

Information on dietary intake was obtained from a validated
semiquantitative food-frequency questionnaire (FFQ), which was
developed at Wageningen University to assess nutrient intake (8,
9). Because not all participants completed or returned the FFQ,
191 healthy controls and 627 RTRs had data available on dietary
intake derived from the FFQ, whereas all 357 healthy controls
and 687 RTRs had plasma PLP concentrations available. The
FFQ inquired about intake of 177 food items during the last
month, taking seasonal variations into account. For each item, the
frequency was recorded in times per day, week, or month. The
number of servings was expressed in natural units (e.g., slice of
bread or apple) or household measures (e.g., cup or spoon). The
questionnaire was self-administered and filled out at home. All
FFQs were checked for completeness by a trained researcher, and
inconsistent answers were verified with the patients. Validation
of the FFQ in RTRs was assessed as previously reported (10).
Dietary data were converted into daily nutrient intake by using
the Dutch Food Composition Table of 2006 (11). As a cutoff
value for sufficient vitamin B-6 intake, the generally accepted
recommended daily intake of 1.3 mg/d was used (12). The FFQ
did not include information on vitamin supplementation. Use of
vitamin supplementation by healthy controls and RTRs was
recorded separately, together with recording of medication, with
the use of patients’ medical records. The variable use of pro-
liferation inhibitors included azathioprine and mycophenolate
mofetil. Use of drugs that might affect plasma PLP concentration,
including hydralazine (13), penicillin, dopamine, benzodiaze-
pines, antituberculosis drugs, antiepileptic drugs, and theophylline
(14), was recorded in both healthy controls and RTRs.

Participants were asked to collect a 24-h urine sample on the
day before visiting the outpatient clinic. Urine was collected
under oil, and chlorhexidine was added as an antiseptic agent.
Urinary albumin was quantified by using nephelometry (Dade
Behring Diagnostic), and total urinary protein concentration was
determined by means of the Biuret reaction (MEGA AU 510;
Merck Diagnostica). Proteinuria was defined as urinary protein
excretion $0.5 g/24 h.

On completion of the 24-h urine collection, fasting blood
samples were obtained the following morning, and venous blood
samples were analyzed immediately thereafter. Plasma vitamin
B-6 was measured as PLP by means of a validated HPLC method
(Waters Alliance) with fluorescence detection (FP-2020; Jasco
Inc.) (15). Other laboratory measurements, including glucose
homeostasis variables, inflammation variables, lipids, and other
liver enzymes, were performed with automated and validated
spectrophotometric routine methods (Roche Diagnostics). The
glomerular filtration rate was estimated by applying the most
recent Chronic Kidney Disease Epidemiology Collaboration
equation, which included both serum creatinine and cystatin C
(16). Diabetes mellitus was diagnosed according to American
Diabetes Association criteria as fasting plasma glucose con-
centration of $7 mmol/L or use of antidiabetic medication (17).
Vitamin B-6 sufficiency, insufficiency, and deficiency were defined
as plasma PLP .30, 20–30, and ,20 nmol/L, respectively (18).

Clinical endpoints

The primary endpoints of this study were all-cause and car-
diovascular mortality and death-censored transplant failure.
Cardiovascular mortality was defined as death due to cerebro-
vascular disease, ischemic heart disease, heart failure, or sudden
cardiac death according to the International Classification of
Diseases, ninth revision, codes 410–447, and graft failure was
defined as the necessity to return to dialysis or retransplantation.
The continuous surveillance system of the outpatient program
ensures up-to-date information on patient status and cause of
graft failure. The cause of graft failure was obtained from pa-
tient records and was reviewed by a blinded nephrologist.
Endpoints were recorded until the end of May 2013. There was
no loss due to follow-up for the primary endpoints.

Statistical analyses

Data analyses were performed by using SPSS 22.0 for Win-
dows (SPSS Inc.), STATA version 13.1, and GraphPad Prism
version 5.01 for Windows (GraphPad Software).

Data are presented as means 6 SDs for normally distributed
data, as medians (IQRs) for nonnormally distributed data, and as
number (percentage) for nominal data. A 2-sided P , 0.05 was
considered to indicate statistical significance.

Differences between RTRs and healthy controls in vitamin B-6
were tested by using independent-samples t tests and Mann-
Whitney U tests. Univariable linear regression analyses were
used to investigate cross-sectional associations of log-transformed
plasma PLP with baseline variables (P-trend). Determinants of
plasma PLP were identified in a multivariable regression model,
in which exposure variables were included according to baseline
associations and previous literature (19). These exposure variables
included age; sex; BMI (kg/m2); smoking status; alcohol intake;
energy intake; vegetarianism; use of antihypertensives; time spent
on dialysis; time since Rtx; intakes of protein, fruit, and vegeta-
bles; potassium excretion; vitamin B-6 intake; and use of antidi-
abetic drugs, statins, calcineurin inhibitor (either cyclosporine or
tacrolimus), proliferation inhibitors, or prednisolone. Associates
included all other variables that were associated with plasma
PLP at baseline but for which information regarding causality
was missing. These factors were adjusted for the determinants of
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plasma PLP that were identified in the multivariable regression
model.

Several subjects had missing values for $1 baseline variable
[i.e., age, sex, time since Rtx, potassium excretion, high-sensitivity
C-reactive protein (hs-CRP), smoking status (6.2%), fruit intake
(8.6%), and alcohol intake (9.9%)]. Because excluding subjects with
missing values could result in biased prospective results, multiple
imputation (fully conditional specification) was used to obtain 5
imputed datasets (20, 21). Rubin’s rules were followed to obtain
pooled estimates of the regression coefficients and their standard
errors across the imputed datasets (22).

The prospective associations of log-transformed plasma PLP
with long-term outcomes were first assessed by using Kaplan-
Meier curves accompanied by log-rank tests. Secondly, Cox
proportional hazard regression analyses were performed, in
which adjustments were made for potential confounders, in-
cluding age, sex, smoking, BMI, time since Rtx, diabetes, alcohol
intake, fruit intake, potassium excretion, and hs-CRP. For il-
lustration purposes and to enablemore objective comparisons, log-
transformed plasma PLP concentrations were standardized to
z scores and analyzed as such. In the longitudinal analyses,
plasma PLP was entered as a continuous and categorical variable.
Cox regression models were built in a stepwise fashion to avoid
overfitting and to keep the number of predictors in proportion
to the number of events (23). Proportionality of hazards for co-
variates was investigated by inspecting the Schoenfeld residuals.

RESULTS

Baseline characteristics and determinants of plasma PLP

The mean age of RTRs was 53 6 13 y, and 58% were male
compared with 54 6 11 y and 47%, respectively, for controls.
Intake of vitamin B-6 was similar in both groups, being 1.77 6
0.49 mg/d in RTRs and 1.85 6 0.56 mg/d in controls (P = 0.23)
(Figure 1), and so were the proportions of individuals with
lower-than-recommended daily intake, i.e., 15% in RTRs and
13% in controls. However, median plasma PLP concentrations
were significantly lower in RTRs than in controls, 29 nmol/L
(17–50 nmol/L) compared with 41 nmol/L (29–60 nmol/L)
(P , 0.001) (Figure 1). Vitamin B-6 insufficiency and defi-
ciency were identified in 22% and 30% of RTRs compared with
18% and 11% of the controls, respectively. None of the controls
received treatment regimens that included drugs that have been
suggested to affect plasma PLP concentrations, i.e., hydralazine,
penicillin, dopamine, benzodiazepines, antituberculosis drugs,
antiepileptic drugs, or theophylline. Of the RTRs, none used
penicillin, dopamine, antituberculosis drugs, or theophylline,
whereas 1 (0.1%), 21 (3%), and 8 (1%) used hydralazine, ben-
zodiazepines, and antiepileptic drugs, respectively.

Baseline characteristics for the overall RTR cohort and
according to categories of vitamin B-6 status are shown in Table
1. Cross-sectional analyses revealed that plasma PLP was pos-
itively associated with alcohol intake, time since Rtx, intake of
vegetable protein, fruit intake, potassium excretion, vitamin B-6
intake, and HDL cholesterol and inversely associated with BMI,
glucose homeostasis variables, inflammation variables, triglyc-
erides, and proteinuria (all P , 0.05).

In a multivariable regression model, age (b =20.09, P = 0.03),
use of antidiabetic drugs (b = 20.09, P = 0.02), time since Rtx

(b = 0.18, P , 0.001), fruit intake (b = 0.11, P = 0.01), alcohol
intake (b = 0.09, P = 0.02), and potassium excretion (b = 0.17,
P , 0.001) remained as independent determinants. Adjustment
for these independent determinants markedly weakened the as-
sociation of diabetes (b = 20.04, P = 0.47), serum glucose
(b =20.08, P = 0.09), glycated hemoglobin (b =20.05, P = 0.33),
triglycerides (b = 20.09, P = 0.02), and proteinuria (b = 20.08,
P = 0.04) with plasma PLP but left all other baseline associations,
including the inflammation variables, materially unchanged.

Vitamin B-6 and mortality

In prospective analyses, with an extended median follow-up of
5.3 y (4.8–6.1 y), 146 of 687 (21%) RTRs died, in 58 (8%) of
whom death was due to a cardiovascular cause. Kaplan-Meier
analyses revealed a gradual increase in all-cause and cardiovas-
cular mortality across groups with worse vitamin B-6 status
(Figure 2, log-rank P , 0.001 and P = 0.01, respectively). In
univariable Cox regression analysis, plasma PLP as a continuous
variable was associated with all-cause mortality (Table 2, model
1). This association remained consistently present independent of
adjustment for potential confounders, such as age, sex (model 2),
smoking, BMI, time since Rtx, (model 3), diabetes (model 4),
alcohol intake, fruit intake, potassium excretion (model 5), and
hs-CRP (model 6). When analyzed according to vitamin B-6
status, vitamin B-6–deficient RTRs were at increased risk of all-
cause mortality, also independent of potential confounders. Fur-
thermore, analyses with cardiovascular mortality as an endpoint
revealed similar point estimates, again without being affected by
adjustments for potential confounders (Table 2).

Vitamin B-6 and graft failure

During follow-up, 82 of 687 (12%) RTRs experienced graft
failure, mainly due to chronic transplant dysfunction. In the
Kaplan-Meier analyses, no associations between plasma PLP

FIGURE 1 Box plots of (A) vitamin B-6 intake and (B) plasma PLP
concentrations in healthy controls and RTRs. Boxes indicate IQRs, whereas
the extended whiskers indicate observations#1.5 IQRs. Black dots represent
outliers, i.e., observations outside of the 1.5-IQR range. The dotted horizontal
lines show the recommended daily vitamin B-6 intake (1.3 mg/d) and plasma
PLP concentration (20 nmol/L) used as cutoffs for vitamin B-6 deficiency.
Differences in vitamin B-6 intake and plasma PLP concentrations were tested
by an independent-samples t test and Mann-Whitney U test, respectively. PLP,
pyridoxal 5#-phosphate; RTR, renal transplant recipient.
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TABLE 1

Baseline characteristics of RTRs, stratified according to vitamin B-6 status1

Total cohort

(N = 687)

Vitamin B-6 status

Standardized

b P-trend

Sufficient

(n = 326)

Insufficient

(n = 153)

Deficient

(n = 208)

Plasma PLP, nmol/L 29 (17–50) 51 (39–71) 24 (22–27) 14 (10–16)

Demographics

Age, y 53 6 13 53 6 13 54 6 12 53 6 12 20.04 0.28

Male, n (%) 395 (58) 181 (56) 93 (61) 121 (58) 0.07 0.07

BMI, kg/m2 26.1 (23.3–29.4) 26.0 (32.0–29.0) 25.1 (23.5–28.7) 26.8 (23.4–30.9) 20.10 0.008

Smoker,2 n (%)

Never 266 (42) 138 (44) 56 (39) 72 (39) 20.12 0.05

Past 291 (43) 141 (45) 69 (48) 81 (44) 0.10 0.13

Current 84 (12) 32 (10) 20 (13) 32 (15)

Alcohol intake, g/d 3.0 (0.0–11.6) 3.6 (0.2–13.8) 3.1 (0.0–9.8) 1.0 (0.0–6.8) 0.18 ,0.001

Energy intake, kcal/d 2169 6 649 2182 6 661 2210 6 606 2102 6 643 0.02 0.54

Vegetarian, n (%) 13 (2) 6 (2) 2 (1) 5 (2) 0.01 0.75

SBP, mm Hg 136 6 17 135 6 17 138 6 18 136 6 18 20.02 0.68

DBP, mm Hg 82 6 11 82 6 11 84 6 11 83 6 18 20.03 0.48

Time spent on dialysis, mo 24 (10–47) 21 (9–48) 26 (11–58) 27 (14–46) 20.07 0.10

Time since Rtx, y 5.3 (1.8–12.1) 6.4 (2.7–14.3) 5.6 (1.6–11.0) 4.4 (1.1–9.0) 0.19 ,0.001

Dietary intake3

Total protein, g/d 82 6 21 82 6 11 83 6 20 81 6 22 0.003 0.95

Animal protein, g/d 52 6 16 51 6 16 53 6 16 52 6 17 20.04 0.37

Vegetable protein, g/d 31 6 10 32 6 10 30 6 8 29 6 10 0.08 0.05

Fruit, g/d 123 (62–232) 140 (70–244) 123 (76–232) 99 (41–182) 0.16 ,0.001

Vegetables, g/d 91 (52–122) 91 (57–134) 91 (60–119) 80 (44–113) 0.07 0.08

Potassium excretion, mmol/24 h 72.7 6 24.0 76.8 6 24.9 71.7 6 20.8 66.9 6 23.4 0.17 ,0.001

Vitamin B-6 intake, mg/d 1.77 6 0.49 1.82 6 0.51 1.78 6 0.45 1.68 6 0.46 0.10 0.02

Glucose homeostasis

Diabetes, n (%) 165 (24) 69 (21) 30 (20) 66 (32) 20.11 0.003

Glucose, mmol/L 5.3 (4.8–6.0) 5.2 (4.7–5.8) 5.2 (4.7–6.0) 5.6 (4.9–6.6) 20.10 0.01

HbA1c, % 6.0 6 0.8 5.9 6 0.7 6.0 6 0.8 6.1 6 1.0 20.11 0.004

Inflammation

hs-CRP, mg/L 1.6 (0.7–4.6) 1.3 (0.6–3.2) 1.6 (0.7–4.2) 2.8 (0.9–7.2) 20.21 ,0.001

Leukocytes, 109/L 7.7 (7.5–7.9) 7.6 (7.3–7.9) 7.7 (7.2–8.1) 8.0 (7.6–8.3) 20.10 0.009

Lipids

Total cholesterol, mmol/L 5.1 6 1.1 5.2 6 1.1 5.1 6 1.2 5.1 6 1.1 0.06 0.11

HDL cholesterol, mmol/L 1.4 6 0.5 1.5 6 0.5 1.4 6 0.4 1.3 6 0.4 0.26 ,0.001

LDL cholesterol, mmol/L 2.9 (2.3–3.5) 2.9 (2.3–3.6) 2.9 (2.4–3.6) 2.8 (2.3–3.4) 0.05 0.22

Triglycerides, mmol/L 1.7 (1.3–2.3) 1.6 (1.2–2.2) 1.7 (1.3–2.2) 1.9 (1.3–2.8) 20.16 ,0.001

Kidney function

Serum creatinine, mmol/L 124 (99–160) 120 (99–158) 131 (102–171) 127 (99–157) 20.04 0.35

Cystatin C, mg/L 1.7 (1.3–2.2) 1.6 (1.3–2.5) 1.8 (1.4–2.3) 1.7 (1.3–2.5) 20.10 0.006

eGFR, mL $ min21 $ 1.73 m22 45 6 19 44 6 19 44 6 19 46 6 19 0.06 0.10

Proteinuria, n (%) 157 (23) 69 (21) 28 (18) 60 (29) 20.08 0.03

Nonimmunosuppressive drugs, n (%)

Hydralazine 1 (0.1) 0 (0) 1 (1) 0 (0) 20.004 0.91

Benzodiazepine 21 (3) 12 (4) 4 (3) 5 (2) 0.07 0.08

Antiepileptic 8 (1) 3 (1) 1 (1) 4 (1) 0.04 0.36

Antihypertensive 606 (88) 280 (86) 144 (94) 182 (88) 20.04 0.30

Antidiabetic 105 (15) 44 (14) 19 (12) 42 (20) 20.10 0.009

Statin 362 (53) 170 (52) 82 (54) 110 (53) 20.01 0.83

Immunosuppressive drugs, n (%)

CNI

Cyclosporine 271 (39) 119 (37) 61 (40) 91 (44) 20.08 0.05

Tacrolimus 123 (18) 58 (18) 26 (17) 39 (19) 20.02 0.65

Proliferation inhibitor 575 (84) 268 (91) 117 (77) 190 (82) 20.08 0.05

Prednisolone 687 (99) 326 (100) 153 (98) 205 (99) 20.03 0.41

1Values are means 6 SDs or medians (IQRs) unless otherwise indicated. Plasma PLP was log-transformed for linear regression analyses. CNI,

calcineurin inhibitor; DBP, diastolic blood pressure; eGFR, estimated glomerular filtration rate; HbA1c, glycated hemoglobin; hs-CRP, high-sensitivity

C-reactive protein; PLP, pyridoxal-5#-phosphate; RTR, renal transplant recipient; Rtx, renal transplantation; SBP, systolic blood pressure.
2 Variables consisting of .2 groups were recoded into dummy variables before being entered in a linear regression model simultaneously.
3 Dietary intake was assessed by using a validated food-frequency questionnaire.
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concentrations and graft failure were observed (Figure 2, log-
rank P = 0.18).

DISCUSSION

To the best of our knowledge, this study is the first to compare
both vitamin B-6 intake and plasma PLP concentrations between
RTRs and healthy individuals. We found a higher prevalence of
vitamin B-6 deficiency in RTRs and an indication that this might
be the consequence of altered vitamin B-6 handling. Importantly,
this vitamin B-6–deficient state, compared with the vitamin B-6–
sufficient state, is independently associated with an increased
risk of cardiovascular mortality in RTRs.

The vitamin B-6 intake of RTRs in the present study meets the
recommended daily intake (12) and complies with data from a
previous study in RTRs, which revealed insufficient intake in
w12% of RTRs (24). The adequate vitamin B-6 intake in RTRs,
as well as the overall absence of overt vitamin B-6 deficiency in
general populations of developed countries, is explained by the
fact that many common foods, such as various meats and veg-
etables, are high in vitamin B-6 content and thus readily con-
tribute to sufficient intake (19). We found a poor-to-absent
association of intake of animal protein and vegetables with
circulating PLP concentrations. We can only speculate on a
reason for this fact. One possibility is that in RTRs vitamin B-6
coming from food is diverted from the circulation toward sites of

FIGURE 2 Kaplan Meier curves with log-rank tests for (A) all-cause mortality, (B) cardiovascular mortality, and (C) graft failure according to vitamin B-6 status.

TABLE 2

Cox regression analyses for the association of vitamin B-6 status with all-cause and cardiovascular mortality in RTRs, with subsequent adjustment for

potential confounders1

Model2

Vitamin B-6 status

Sufficient (n = 326) Insufficient (n = 153) Deficient (n = 208) Continuous (N = 687)

Reference HR HR (95% CI) P HR (95% CI) P HR (95% CI) P

All-cause mortality

1 1.00 1.25 (0.80, 1.96) 0.32 2.14 (1.48, 3.08) ,0.001 0.70 (0.59, 0.82) ,0.001

2 1.00 1.20 (0.77, 1.88) 0.42 2.15 (1.49, 3.09) ,0.001 0.71 (0.60, 0.84) ,0.001

3 1.00 1.17 (0.75, 1.84) 0.49 2.44 (1.66, 3.59) ,0.001 0.67 (0.56, 0.80) ,0.001

4 1.00 1.15 (0.73, 1.80) 0.55 2.40 (1.63, 3.53) ,0.001 0.68 (0.57, 0.81) ,0.001

5 1.00 1.02 (0.65, 1.61) 0.93 2.01 (1.34, 3.01) 0.001 0.74 (0.61, 0.89) 0.001

6 1.00 1.12 (0.71, 1.76) 0.63 2.25 (1.51, 3.37) ,0.001 0.69 (0.57, 0.83) ,0.001

Cardiovascular mortality

1 1.00 1.71 (0.85, 3.44) 0.13 2.56 (1.40, 4.67) 0.002 0.67 (0.51, 0.87) 0.003

2 1.00 1.63 (0.81, 3.28) 0.17 2.52 (1.38, 4.62) 0.003 0.67 (0.53, 0.89) 0.005

3 1.00 1.75 (0.87, 3.52) 0.11 2.51 (1.33, 4.74) 0.005 0.68 (0.51, 0.91) 0.01

4 1.00 1.72 (0.86, 3.45) 0.13 2.39 (1.26, 4.51) 0.007 0.70 (0.53, 0.93) 0.02

5 1.00 1.52 (0.74, 3.12) 0.25 2.17 (1.12, 4.20) 0.02 0.73 (0.54, 0.99) 0.04

6 1.00 1.65 (0.82, 3.32) 0.16 2.16 (1.12, 4.17) 0.02 0.73 (0.54, 0.99) 0.04

1 Plasma PLP was log-transformed and standardized to z scores for continuous analyses. One z-score unit corresponds to 0.336 nmol/L log plasma PLP

and 2.17 nmol/L plasma PLP. hs-CRP, high-sensitivity C-reactive protein; PLP, pyridoxal-5#-phosphate; RTR, renal transplant recipient.
2Model 1, crude model; model 2, adjusted for age and sex; model 3, adjusted as for model 2 and for smoking, BMI, and time since renal transplantation;

model 4, adjusted as for model 3 and for diabetes; model 5, adjusted as for model 3 and for alcohol intake, fruit intake, and potassium excretion; model 6,

adjusted as for model 3 and for hs-CRP.
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ongoing chronic low-grade inflammation (25). Our observation
that vitamin B-6 intake in RTRs is similar to that in controls and
yet plasma PLP concentrations are lower suggests that the poor
vitamin B-6 status in RTRs is the consequence of altered vitamin
B-6 handling rather than inadequate intake. These alterations in
handling could include decreased absorption from the small in-
testine, impaired subsequent transport to the liver, aberrant me-
tabolism to active or inactive isoforms, or increased excretion of
the vitamin B-6 catabolite in urine (26). However, plasma PLP
concentrations were reported to be essentially unaffected by renal
function (27), which we corroborated by finding no association
between baseline plasma PLP and serum creatinine or estimated
glomerular filtration rate. Interestingly, Lacour et al. (4) previously
suggested that the deficit in plasma PLP in RTRs could originate
from the period on dialysis and that it might be maintained by the
immunosuppressive medication used by RTRs; however, they ac-
knowledge that data for such a drug-induced effect were lacking
(5). To our knowledge, the potential in vivo effects of prednisolone
on vitamin B-6 isoforms have been investigated in one in-
tervention study in experimental animals (28). It was found that
long-term prednisolone treatment increased circulating plasma
concentrations of PLP, pyridoxal, and pyridoxic acid in rats and
mice. However, it is not known whether these findings, which
seem consistent with a beneficial effect of prednisolone on vitamin
B-6 levels, are also present in humans. Moreover, the possible
presence of such an effect cannot explain the fact that we found
low rather than high circulating concentrations of PLP in RTRs
compared with those in healthy controls, despite similar intake.

One other factor that has been proposed to affect vitamin B-6
handling is diabetes (29–32). Our study extends these reports by
showing that antidiabetic drugs, as an indicator of diabetes, in-
dependently determine circulating plasma PLP concentrations.

In addition to diabetes, inflammation has been suggested
to adversely affect handling of vitamin B-6 through various
mechanisms, including increased mobilization of PLP from
circulation to sites of inflammation for use by PLP-dependent
enzymes that mediate the inflammatory response (25, 33). Our
cross-sectional data agree with these reports because both in-
flammation markers, i.e., hs-CRP and leukocyte count, were
associated with plasma PLP concentrations, independent of
determinants, and call for mechanistic studies to further unravel
the underlying molecular mechanisms. In this regard, it would be
useful to distinguish between low status and altered distribution
of vitamin B-6 by evaluating alkaline phosphatase, serum al-
bumin, inorganic phosphate, and functional indexes of vitamin
B-6, including erythrocyte transaminase activities, plasma kynur-
enines, and one-carbonmetabolites (19). Previous studies on blood
PLP and mortality were conducted in populations with different
types of pathophysiology and have shown varying results (34–36).
The most recent report suggested that the relation between plasma
PLP and mortality in patients with coronary artery disease could
be secondary to inflammation (36). However, in the present study,
adjustment for inflammation had no material effect on the asso-
ciation between plasma PLP and both all-cause and cardiovas-
cular mortality.

Some limitations of this study need to be addressed. First, we did
not have information on other B-6 isoforms, such as pyridoxal and
pyridoxic acid, and therefore could not estimate vitamin B-6 ca-
tabolism. It would be interesting if future studies would explore
vitamin B-6 handling by assessing the complete vitamin B-6 profile

in this population. Second, although the observational nature of this
study enables speculation regarding potential causal mechanisms
underlying associations of plasma PLP with diabetes, inflamma-
tion, and mortality, it unfortunately precludes conclusions on cau-
sality. For evidence regarding causality, intervention studies are
essential. Third, one should realize that this study, as with most
epidemiologic studies, uses a single baseline measurement for
studying the association of variables with outcomes, which in theory
could affect the strength and relevance of such associations. However,
the intraclass correlation coefficient, an indicator of within-person
reproducibility over years, of plasma PLP is excellent, thus allow-
ing for one-exposure assessment of vitaminB-6 status (37).Moreover,
if intra-individual variability of plasma PLP over timewould be taken
into account by including data on repeated measurements, associa-
tions that already exist for single measurements of PLP would
strengthen, because intra-individual variation would be accounted for.
The higher the intra-individual day-to-day variation, thus the lower the
intraclass correlation coefficient, the greater one would expect the
benefit of inclusion of repeated measurements for finding prospective
associations (38, 39). Finally, the FFQ is not well suited for obtaining
estimates of precise amounts of vitamin B-6 eaten. The reason is that
an FFQ by nature cannot include all food items, but only those that are
commonly used in a population. The fact that not every food item is
included is also the reason that the energy intake estimated from an
FFQ is typically lower than from 24-h recalls or from food records.
One can therefore not use data fromFFQs for the estimation of precise
amounts of intake, but rather for epidemiologic research wherein
subjects are ranked and compared, like we do in this study.

Strengths of this study include the large cohort size of this specific
population consisting of well-characterized, stable RTRs, in which
no cases were lost to follow-up. Also, the availability of appropriate
healthy controls positively contributed to the reliability of our data.
Moreover, extensive information onmetabolic parameters, aswell as
dietary intake, allowed adjustment for potential confounders.

To conclude, we have shown that vitamin B-6 deficiency is
common in RTRs and that it might be the consequence of altered
vitamin B-6 handling. Importantly, vitamin B-6 deficiency is
independently associated with an increased risk of mortality in
RTRs. Because the observational nature of our study precludes
conclusions on cause-effect relations, randomized controlled
clinical trials are required to determine whether correction of
vitamin B-6 status with vitamin B supplements would in fact
improve long-term outcome in RTRs with a low vitamin B-6
status. Nevertheless, it would seem prudent to endorse a diet
based on foods rich in this vitamin, in particular fruits and le-
gumes, in RTRs with a low vitamin B-6 status.
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