Recombinant BCG Expressing ESX-1 of Mycobacterium marinum Combines Low Virulence with Cytosolic Immune Signaling and Improved TB Protection

Gröschel, Matthias I. P.; Sayes, Fadel; Shin, Sung Jae; Frigui, Wafa; Pawlik, Alexandre; Orgeur, Mickael; Canetti, Robin; Honore, Nadine; Simeone, Roxane; van der Werf, Tjip S.

Published in:
Cell reports

DOI:
10.1016/j.celrep.2017.02.057

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2017

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Download date: 17-10-2018
Recombinant BCG Expressing ESX-1 of *Mycobacterium marinum* Combines Low Virulence with Cytosolic Immune Signaling and Improved TB Protection

Graphical Abstract

Highlights
- BCG expressing the ESX-1 T7 secretion system of *M. marinum* induces phagosomal rupture
- Rupture-induced innate immune signaling leads to IFN-β and enhanced IL-1β release
- ESX-1 signaling induces CD8+ and Ag-specific CD4+ T cell responses and high protection
- Recombinant BCG-expressing ESX-1 of BSL2 organism *M. marinum* shows low virulence

Authors
Matthias I. Gröschel, Fadel Sayes, Sung Jae Shin, ..., Sang-Nae Cho, Laleh Majlessi, Roland Brosch

Correspondence
roland.brosch@pasteur.fr

In Brief
Gröschel et al. describe the virulence-neutral expression of the ESX-1 type VII secretion system of *Mycobacterium marinum* in the attenuated BCG vaccine. ESX-1-marinum enables recombinant BCG to rupture the phagosome and to induce cytosolic pattern recognition and dedicated innate immune signaling in mice, resulting in increased protection against tuberculosis.
Recombinant BCG Expressing ESX-1 of Mycobacterium marinum Combines Low Virulence with Cytosolic Immune Signaling and Improved TB Protection

Matthias I. Gröschel,1,2 Fadel Sayes,1 Sung Jae Shin,3 Wafa Frigui,1 Alexandre Pawlik,1 Mickael Orgeur,1 Robin Canetti,1 Nadine Honoré,1 Roxane Simeone,1 Tjip S. van der Werf,2 Wilbert Bitter,4,5 Sang-Nae Cho,3 Laleh Majlessi,1 and Roland Brosch1,6,*

1Unit for Integrated Mycobacterial Pathogenomics, Institut Pasteur, 75015 Paris, France
2Department of Pulmonary Diseases & Tuberculosis, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, the Netherlands
3Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, 03722 Seoul, South Korea
4Department of Medical Microbiology and Infection Control, VU University Medical Center, 1081 HZ Amsterdam, the Netherlands
5Section Molecular Microbiology, Amsterdam Institute of Molecules, Medicine and Systems, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, the Netherlands
6Lead Contact
*Correspondence: roland.brosch@pasteur.fr
http://dx.doi.org/10.1016/j.celrep.2017.02.057

SUMMARY

Recent insights into the mechanisms by which Mycobacterium tuberculosis, the etiologic agent of human tuberculosis, is recognized by cytosolic nucleotide sensors have opened new avenues for rational vaccine design. The only licensed anti-tuberculosis vaccine, Mycobacterium bovis BCG, provides limited protection. A feature of BCG is the partial deletion of the ESX-1 type VII secretion system, which governs phagosomal rupture and cytosolic pattern recognition, key intracellular phenotypes linked to increased immune signaling. Here, by heterologously expressing the esx-1 region of Mycobacterium marinum in BCG, we engineered a low-virulence, ESX-1-proficient, recombinant BCG (BCG::ESX-1Mmar) that induces the cGAS/STING/TBK1/IRF3/type I interferon axis and enhances AIM2 and NLRP3 inflammasome activity, resulting in both higher proportions of CD8+ T cell effectors against mycobacterial antigens shared with BCG and polyfunctional CD4+ Th1 cells specific to ESX-1 antigens. Importantly, independent mouse vaccination models show that BCG::ESX-1Mmar confers superior protection relative to parental BCG against challenges with highly virulent M. tuberculosis.

INTRODUCTION

Tuberculosis (TB) is a chronic infectious disease caused by Mycobacterium tuberculosis that continues to be among the top five causes of death in 18 countries (GBD 2013 Mortality and Causes of Death Collaborators, 2015). Increased prevention would be a tremendous asset in controlling the global epidemic, as reflected by World Health Organization’s new End TB Strategy (Uplekar et al., 2015). Rational design of an improved vaccine that is able to prevent active disease would be the most effective measure in TB control (Knight et al., 2014). Thus, numerous efforts are being undertaken to develop improved anti-TB vaccines, some of which have recently entered clinical development (Fletcher et al., 2016; Grode et al., 2013; Sperini et al., 2015).

The currently licensed anti-TB vaccine Mycobacterium bovis BCG, also known as Bacille Calmette Guérin, confers insufficient protection against pulmonary TB in adolescents and adults (Kaufmann et al., 2015). The absence of a 9.5-kb genomic region across all BCG strains, termed Region of Difference 1 (RD1), is the principal molecular determinant underlying BCG attenuation (Hsu et al., 2003; Pym et al., 2002). RD1 harbors genes required for the paradigm type VII secretion (T7S) ESX-1, or ESAT-6 secretion system that is dedicated to the export of proteins that play key roles in host-pathogen interactions and pathogenic potential (Gröschel et al., 2016). During infection of host phagocytes, a functional ESX-1 secretion system and selected lipids (i.e., phthiocerol dimycocerosates) are required for communication of M. tuberculosis with the host cytosol (Simeone et al., 2016; Augenstreich et al., 2017), with subsequent detection of bacterial DNA by cytosolic sensors, and mitochondrial stress (Wiens and Ernst, 2016). This process leads to a cascade of innate immune signaling events (Collins et al., 2015; Wassermann et al., 2015; Watson et al., 2015), including reinforced AIM-2 (Absence in Melanoma 2) and NLRP3 inflammasome activation, increased interleukin-1β (IL-1β) and/or IL-18 secretion (Dorhoi et al., 2012; Kupz et al., 2016; Wong and Jacobs, 2011) and activation of the cyclic GMP-AMP synthase (cGas)/Stimulator of Interferon Genes (STING)/TANK-binding kinase 1 (TBK1)/IRF3 axis. The latter signaling cascade results in the production of type I interferons (IFNs) (Stanley et al., 2007). Apart from innate immune activation, secreted ESX-1 effectors also induce specific host Th1 cell
Figure 1. Stable Genetic Complementation of BCG Pasteur Integrating the esx-1 Region of M. marinum

(A) Schematic representation of the integrating vector (Bange et al., 1999), the NheI cloning site, and the 38.7-kb insert from M. marinum M containing the esx-1 locus. Amino acid sequence identities between gene products in the orthologous esx-1 loci of M. marinum and M. tuberculosis are depicted in percentages.

(B) PCR-based verification of the integration of the esx-1 locus into BCG::ESX-Mmar, using several primers spanning the esx-1 locus of M. marinum and negative and positive DNA controls.

(C) Ethidium-bromid stained fragments of XhoI restriction digest of pRD1-Mmar, separated by agarose gel electrophoresis.

(legend continued on next page)
responses with strong protective potential (Brodin et al., 2004, 2006). Early attempts to improve the protective efficacy of BCG by heterologously expressing ESX-1 from M. tuberculosis, a biosafety level (BSL) 3 organism, produced mixed results. Vaccine efficacy was improved (Pym et al., 2003), but as a side effect virulence was increased (Pym et al., 2002), making this recombinant BCG strain too virulent as to be used for vaccine applications. Thus, the rationale emerged to express the ESX-1 systems of related but less pathogenic mycobacteria in BCG. M. tuberculosis H37Rv and M. marinum, a BSL2 aquatic mycobacterium that can infect fish or frogs and occasionally causes skin infections in humans, share a substantial core genome, with high amino acid sequence conservation, particularly across the genes encoding the ESX-1 system (Figure 1A). Here, we engineered a recombinant BCG candidate vaccine that harbored the esx-1 locus of M. marinum (BCG::esx-1^{Mmar}). We then interrogated the biological and immunological consequences of this heterologous ESX-1^{Mmar} expression in the context of vaccination. Using different murine infection models, we identified previously undiscovered immunological features of recombinant BCG linked to cytosolic pattern recognition and we provide compelling evidence of significantly improved protective vaccine efficacy.

RESULTS

Construction of the Recombinant BCG ESX-1^{Mmar}-Proficient Strain

An esx-1 locus-containing clone was selected from a Bacterial Artificial Chromosome (BAC) library of M. marinum reference strain M. This library was originally constructed to scaffold and validate the whole-genome sequence assembly of this strain (Stinear et al., 2008). The BAC clone was used as substrate for sub-cloning a 38.7-kb-sized fragment into the integrating cosmid vector pYUB412 (Bange et al., 1999) (Figures 1A and 1B). Sequence analysis revealed that the cloned fragment carried a nucleotide deletion in the eccCb gene (6 C instead of 7 C in the published genome sequence [Stinear et al., 2008] GenBank CP000854 at position 6589,378-84) (Figure S1), causing a frameshift in EccCb₁. Further analysis showed that the same eccCD₁ nucleotide deletion was present in the genome of the M strain (M^{astami}), used for construction of the BAC library (Figure S1). This finding likely explains the previously reported differences in ESAT-6 secretion and virulence between the attenuated M. marinum M^{VU} variant and other M. marinum M variants used in diverse laboratories (Abdallah et al., 2009; Hagedorn et al., 2009; Ramakrishnan et al., 2000; Simeone et al., 2012), as the M. marinum M^{VU} also harbors this mutation. The frameshift in the cosmid was repaired using a phage lambda Red recombineering approach (Chaverro et al., 2000). We then transformed the ESX-1-repaired cosmid into BCG Pasteur 1173P2 (Figure 1C). Comparison of the in vitro growth character-

istics of the obtained recombinant BCG::ESX-1^{Mmar} strain showed that they were similar to other BCG strains (Figure S2A).

The Heterologous ESX-1 System Is Functional in the BCG::ESX-1^{Mmar}

The main secreted M. tuberculosis ESX-1 effectors ESAT-6 and CFP-10 share very high amino acid sequence identity with their M. marinum orthologs (Figure S2B), so we assessed the functionality of the heterologous ESX-1^{Mmar} secretion machinery by using major histocompatibility complex (MHC)-II-restricted T cell hybridomas specific to different ESX-1 effectors. In this model, presentation of ESX-1 effectors is dependent on their proper secretion (Frigui et al., 2008). BCG::ESX-1^{Mmar}-infected bone-marrow-derived dendritic cells (BM-DCs) presented ESAT-6^{Mmar} and CFP-10^{Mmar} to specific T cell hybridomas in a manner indistinguishable from BCG::ESX-1^{Mtb}-infected BM-DCs (Figure 1D). Similarly, EspC (Rv3615c), an ESX-1-secretion-associated protein that forms secretion-needle-like structures (Ates and Brosch, 2017; Lou et al., 2017), and is exported in a co-dependent way with ESAT-6 (MacGurn et al., 2005), was efficiently presented by BM-DCs infected with either BCG::ESX-1^{Mmar} and BCG::ESX-1^{Mbt} (Figure 1D). All tested BCG strains induced the antigenic presentation of the control antigen Ag85A, secreted by the Twin-Arginine Translocation (TAT) pathway (Figure 1D). These data confirmed the functionality of the heterologous M. marinum ESX-1 system in BCG::ESX-1^{Mmar}, including the successful interaction with the trans-acting EspACD proteins of BCG that are encoded outside the cosmid-contained M. marinum fragment.

BCG::ESX-1^{Mmar} Shows Reduced Virulence Compared to BCG::ESX-1^{Mbt}

We next compared in vivo growth in severe combined immunodeficient (SCID) mice of BCG::ESX-1^{Mmar} with M. tuberculosis H37Rv, BCG::ESX-1^{Mtb} and parental BCG Pasteur. In this model in which weight loss is an index of disease development, BCG::ESX-1^{Mmar} induced a weight-loss curve similar to BCG Pasteur (Figures 2A and 2B). In contrast, mice infected with M. tuberculosis H37Rv or BCG::ESX-1^{Mbt} lost 20% of their weight significantly earlier, indicating that BCG::ESX-1^{Mmar} is more attenuated than BCG::ESX-1^{Mbt} (Pym et al., 2002, 2003).

BCG::ESX-1^{Mmar} Modulates the Host Innate Immune Response via Phagosomal Rupture

To determine further ESX-1^{Mmar}-associated biological consequences, we first confirmed that BCG::ESX-1^{Mmar} induced phenotypic and functional maturation of DC in a similar manner as control strains (BCG::pYUB, BCG::ESX-1^{Mtb} and wild-type (WT) M. tuberculosis H37Rv). This effect was evaluated by the upregulation of the CD40, CD80, and CD86 co-stimulatory molecules, modulation of MHC-1/II expression (Figure S3A), and production
of pro/anti-inflammatory cytokines and chemokines (Figure S3B). As selected ESX-1-proficient mycobacteria such as M. marinum, M. kansasii, or M. tuberculosis (Simeone et al., 2012; Stamm et al., 2003; Wang et al., 2015) have been shown to induce ESX-1-mediated phagosome-to-cytosol communication, we explored whether BCG::ESX-1^{Mmar} was able to induce phagosomal rupture in host phagocytes. We used a flow-cytometric fluorescence resonance energy transfer (FRET) approach based on a green-to-blue fluorescence shift following cleavage of cytosolic coumarin-cephalosporin-fluorescein 4 (CCF4) by endogenous mycobacterial β-lactamase (Simeone et al., 2015). Analysis of infected human THP-1 macrophages revealed that BCG::ESX-1^{Mmar} induced a solid blue shift, implying contact with the host cytosol, albeit to a lesser degree compared to M. tuberculosis H37Rv and BCG::ESX-1^{Mtb} (Figure 3A). In contrast, the ESX-1-deficient negative control BCG strain did not induce a blue shift in the infected cells (Figure 3A).

Infection of WT THP-1 macrophage-like cells with BCG::ESX-1^{Mmar} or control strains showed that BCG::ESX-1^{Mmar} and BCG::ESX-1^{Mtb} both induced IFN-β production, although at a lower level than WT M. tuberculosis. In comparison, IFN-β secretion was not detected in BCG::pYUB and M. tuberculosis ΔESX-1 (Figure 3B). Infection of THP-1 cells deficient in either cGAS or STING, revealed that neither BCG nor M. tuberculosis (either WT or recombinant) led to IFN-β release (Figure 3C). As a functional control, we showed that cGAS or STING-deficient THP-1 cells released tumor necrosis factor-α (TNF-α) in a similar manner. These data support our contention that a type I IFN response by ESX-1-proficient BCG strains depends on cytosolic exposure of mycobacterial DNA to then associate with cGAS.

In parallel, we found that infection with BCG::ESX-1^{Mmar}, BCG::ESX-1^{Mtb} or WT M. tuberculosis, significantly enhanced release of active IL-1β, compared to BCG::pYUB and M. tuberculosis ΔESX-1 (Figure 3B). These data are in agreement with earlier studies, which revealed that the release of active IL-1β is partially dependent on the interaction of mycobacterial DNA with AIM2 (Saiga et al., 2015).

Since ESX-1-dependent activation of STING has been reported to increase autophagy (Watson et al., 2012), we tested whether the BCG::ESX-1^{Mmar} or BCG::ESX-1^{Mtb} increased the presence of the cytosolic autophagy effector microtubule-associated protein 1A/1B-light chain 3 (LC3)-II. Using a flow-cytometry-based assay, we observed increased LC3-II accumulation in THP-1 cells infected with ESX-1-proficient recombinant BCGs relative to BCG::pYUB-infected cells (Figure S4A), without notable differences in cell mortality (Figure S4B). However, the observed differences between BCG WT and recombinant strains remained relatively small, in concordance with previous studies using western blotting or confocal microscopy (Romagnoli et al., 2012; Watson et al., 2012) (Figure S4A).

BCG::ESX-1^{Mmar} Induces Potent Polynufunctional Th1 Cell Responses against ESX-1-Secrected Antigens

Protection against TB largely depends on the host’s ability to generate potent Th1 cell responses against mycobacterial protective antigens (Majlessi et al., 2015). C57BL/6 (H-2^b) and C3H (H-2^k) mice, immunized subcutaneously (s.c.) with BCG::ESX-1^{Mmar}, mounted IFN-γ T cell responses against esx-1-encoded ESAT-6 and CFP-10 antigens as well as ESX-1-secreted-associated EspC (Figures S5). These responses were similar to those detected in the BCG::ESX-1^{Mtb}- or WT M. tuberculosis-immunized groups. BCG::ESX-1^{Mmar}-immunized mice also displayed IFN-γ T cell responses against non-ESX-1-associated antigens shared with BCG that were comparable to those induced by the BCG::pYUB control, as exemplified by Ag85A-, PE19-, or PPE25-specific IFN-γ release (Figure S5A).

In-depth characterization of the functional Th1 subsets by intracellular cytokine staining (ICS) (Figures 4A, S6, and S7) showed...
that BCG::ESX-1^{MMar}, BCG::ESX-1^{Mtb}, as well as BCG::pYUB, all induced comparable percentages of Th1 cytokine-producing cells and similar compositions in single-, double-, and triple-Th1 cytokine producing cells, specific to the antigens present in BCG, i.e., Ag85A (Figure 4B) and PE19 or PPE25 (Figure S7A).

In addition, BCG::ESX-1^{MMar} and BCG::ESX-1^{Mtb} induced similar ESAT-6- or EspC-specific Th1 responses (Figure 4B). Indeed, the total percentage of Th1 cytokine-producing cells per mouse against these antigens was comparable among the mice immunized with the two ESX-1-proficient recombinant BCG strains (Figure S7). The responses were dominated by IL-2⁺ TNF-α⁺ and TNF-α⁺ IFN-γ⁺ double-positive and IL-2⁺ TNF-α⁺ IFN-γ⁺ triple-positive CD4⁺ T cells. Furthermore, the amount of Th1 cytokines produced by ESAT-6-specific CD4⁺ T cell subsets in response to BCG::ESX-1^{MMar} and BCG::ESX-1^{Mtb} were comparable (Figure 4C).

Figure 3. Dynamic Effects of Functional ESX-1 Secretion System of BCG::ESX-1^{MMar} on the Host Innate Immune Responses
(A) Gating strategy and results of phagosomal rupture assay in WT THP-1 human macrophages, infected with different recombinant BCG strains, as detected at day 3 post-infection by CCF-4 FRET-based cytometry, compared to controls (Sayes et al., 2016).

(B and C) ELISA-based quantification of IFN-β and IL-1β (B), or IFN-β and TNF-α (C) contents in the culture supernatants of the infected WT or mutant THP-1 cells at 24 hr post-infection. The results are representative of two independent experiments. NS, not significant, ** or ***, statistically significant, as determined by one-way ANOVA test with Tukey’s correction, with p < 0.005 or p < 0.001, respectively. Error bars indicate SD levels.
Figure 4. Dissection of Th1 Cell Responses Induced by BCG::ESX-1^Mmar^ immunization

(A) Gating strategy adopted to detect different functional subsets of specific Th1 effectors in the spleen of BCG::ESX-1^Mmar^-immunized C57BL/6 mice using ICS. Cytometric plots represent 5% contours, representative of three mice per group. Shown are cultures of splenocytes stimulated by ESAT-6:1-20.

(B) Percentages of antigen-specific Th1 cytokine producing T cells compared to total CD4^+ T splenocytes (left) and composition of Th1 cytokine-producing functional CD4^+ T cells, specific to different mycobacterial antigens, at 28 days post-immunization. Total splenocytes from each group were stimulated in vitro with 10^\(\mu\)g/mL of different synthetic peptides containing I-A^*^-restricted immunodominant epitopes, prior to ICS, in order to determine frequencies of

(legend continued on next page)

Cell Reports 18, 2752–2765, March 14, 2017 2757
BCG::ESX-1'^Mmar Boosts Initiation of Anti-Mycobacterial Host CD8^+ T Cell Immunity

Independent lines of evidence point to a major role of CD8^+ T cells in anti-mycobacterial protection (Behar, 2013; Ryan et al., 2009). To evaluate the impact of BCG complementation with ESX-1, we immunized C3H (H-2b) mice that specifically recognize a MHC-I-restricted CFP-10:32-39 epitope (Kamath et al., 2004) and found that the mice mounted CD8^+ T cell responses against CFP-10, as detected by IFN-γ production subsequent to stimulation of splenocytes with the peptide (Figure 5A). In addition, higher percentages of TNF-α^+ IFN-γ^+ bi-functional CD8^+ T cells specific to Ag85A:144-152 (Denis et al., 1999), TB10.4:20-28 (Majlessi et al., 2003), or PPE26:44-52- (Sayes et al., 2012) MHC-I-restricted epitope were detected in the spleen of BCG::ESX-1'^Mmar^+^, or BCG::ESX-1'^Mtb^+, immunized BALB/c (H-2b) mice, relative to their BCG-immunized counterparts (Figure 5B). The increase in CD8^+ T cell responses against non-ESX-1-secreted antigens upon immunization with ESX-1-proficient BCGs supports the notion that ESX-1-mediated phagosomal rupture facilitates cross-presentation of mycobacterial antigens either due to type I IFN production (Le Bon et al., 2003) or by enhanced access of antigens to the cytosolic presentation machinery (van der Wel et al., 2007). The potentially increased persistence of ESX-1-proficient BCGs in the vaccinated host may also contribute to sustained availability of mycobacterial antigens required for the initiation of robust CD8^+ T cell effectors (Woodworth et al., 2008).

BCG::ESX-1'^Mmar Protects Mice from TB Better than Standard BCG Vaccines

To assess the protective efficacy of the BCG::ESX-1'^Mmar^+ as a potential vaccine candidate, we immunized s.c. groups of C57BL/6 mice (n = 5 per group) with the different BCG strains. After 4 weeks, mice were challenged with M. tuberculosis H37Rv via the aerosol route and mycobacterial loads were determined in lungs and spleen (Figure 6A). Both BCG ESX-1-proficient strains were superior to BCG Danish 1331, the model control BCG strain used in TB vaccine research, or BCG::pYUB in protecting against an M. tuberculosis H37Rv challenge both in the lungs and in spleen (Figures 6B and 6C). These data suggest that BCG::ESX-1'^Mmar^+ and BCG::ESX-1'^Mtb^+ show similar protective efficacies that are, in turn, superior to the parental BCG strains.

To further explore its protective performance, BCG::ESX-1'^Mmar^+ was tested in an independent preclinical vaccine trial within the framework of the TBVAC2020 consortium, where potential TB vaccine candidates are compared head-to-head relative to BCG Danish 1331 (Figure 7A). BCG::ESX-1'^Mmar^+ showed significantly enhanced protection against a challenge with the highly virulent M. tuberculosis strain HN878 (Beijing family) (Figure 7B) and M. tuberculosis strain M2 from the Harleem family (Figure 7C), as evidenced by greatly reduced mycobacterial loads in the lungs and spleen, as well as decreased proportions of inflamed lung tissue (Figure 7D).

DISCUSSION

With millions of doses delivered across generations of humans around the world, BCG is perhaps the most well-known example of a live, attenuated vaccine and is still widely used today as no higher-performing alternatives have been licensed to date. Developed in the 1920s by Calmette and Guérin after long-term in vitro passaging of a virulent Mycobacterium bovis isolate that became irreversibly attenuated, vaccination with BCG of an estimated 3 billion individuals confirmed that BCG was safe in the immunocompetent host (Fine et al., 1999). Besides BCG, the other human anti-TB vaccine used at a larger scale is the vole-bacillus Mycobacterium microti. Different attenuated variants were successfully used to vaccinate 10,000 adolescents in the UK (Hart and Sutherland, 1977) and half a million babies in the former Czechoslovakia (Sula and Radkovský, 1976) in the 1960s.

However, reflection on the history of almost 100 years of human anti-TB vaccination shows that despite undeniable beneficial effects conferred to small children, vaccination with BCG or M. microti has been insufficient to prevent the current global re-emergence of TB. Interestingly, BCG and M. microti strains have one major genetic feature in common. They have independently deleted portions of the region of difference 1 (RD1) (Mahairas et al., 1996; Brodin et al., 2002), which in M. tuberculosis and many other mycobacteria encodes the ESX-1 type VII secretion system (Abdallah et al., 2007; Bottai et al., 2016; Gröschel et al., 2016). The biological basis for key ESX-1-mediated effects are primarily linked to the ESX-1-dependent induction of phagosome-lysosomal communication (Simeone et al., 2012, 2015; van der Wel et al., 2007; Conrad et al., 2017). Indeed, mycobacterial cytosolic contact triggers a cascade of cellular signaling events that are of utmost importance for innate and adaptive immune responses. ESX-1-deficient BCG and M. microti vaccine strains are unable to initiate these responses (Gröschel et al., 2016; Majlessi and Brosch, 2015; Majlessi et al., 2015).

We reasoned that influencing phagosome biology through ESX-1 secretion might enhance the protective ability of BCG, and we wanted to uncouple the beneficial immunological ESX-1-mediated effects from the gain-of-virulence linked to the insertion of genes from a BSL3 organism into BCG. We thus heterologously expressed in BCG the ESX-1 from M. marinum, a mycobacterium that shares with BCG the BSL2 classification. Successful integration of the M. marinum ESX-1 locus was confirmed by PCR and use of a panel of ESX-1 antigen-specific T cell hybridomas. Interestingly, we detected lower antigenic presentation of CFP-10 by dendritic cells infected with BCG::ESX-1'^Mmar^+ compared to BCG::ESX-1'^Mtb^+, which might reflect a lower CFP-10 antigen availability due to the single-, double-, or triple-positive CD4^+ cells producing IL-2, TNF-α, and/or IFN-γ. NS, not significant as determined by one-way ANOVA test with Tukey’s correction.

(C) The geometric mean fluorescence intensities (MFIs), proportional to the intracellular amounts of IL-2, TNF-α, or IFN-γ, in each of the ESAT-6-specific functional Th1 subsets, as determined in the spleen of mice immunized with BCG::ESX-1'^Mmar^+ or BCG::ESX-1'^Mtb^+. Additional information is provided in Figures S6 and S7.
Figure 5. Enhanced Induction of Key CD8+ T Cell Effectors by BCG::ESX-1Mmar in Immunocompetent Mice

(A) T cell IFN-γ responses of C3H (H-2k) mice (n = 3 per group) immunized s.c. with 1 × 10^6 CFUs/mouse of different BCG strains, as assessed at 4 weeks post-immunization. Pool of total splenocytes of the immunized mice were stimulated in vitro with synthetic MHC-I-restricted CFP-10-derived peptides during 72 hr. Error bars represent SD.

(B) Detection of TNF-α- and/or IFN-γ-producing CD8+ CD4- CD8+ T splenocytes by ICS applied on total splenocytes of BALB/c (H-2d) mice (n = 3 per group), immunized s.c. with 1 × 10^6 CFUs/mouse of different BCG strains. At 5 weeks post-immunization, splenocytes were stimulated in vitro with MHC-I H-2Kd-restricted epitopes from Ag85A, TB10.4, PPE26, or the LCMV-NP:118-126 as a negative control peptide. In parallel, stimulated cells were stained with control immunoglobulin (Ig) isotypes. Cytometric plots represent 5% contours with outliers, representative of three mice per group. The results are representative of two independent experiments.
The introduction of the ESX-1Mmar region into BCG resulted in a minor, non-significant increase in virulence relative to parental BCG Pasteur and was greatly reduced compared to the virulence of BCG::ESX-1Mtb. As the magnitude of phagosomal rupture by BCG::ESX-1Mmar and BCG::ESX-1Mtb was comparable, it suggests that phagosome escape is not the only determining factor that explains the virulence differences observed between ESX-1-proficient and ESX-1-deficient mycobacteria. Alternatively, the heterologous expression of a large DNA fragment from a more distantly related species with different host specificity, i.e., \textit{M. marinum}, in BCG might reduce the in vivo fitness of the recombinant BCG::ESX-1Mmar, although we observed similar in vitro growth characteristics to standard BCG.

We next evaluated the immunological repercussions of the ESX-1-introduction into BCG by analyzing innate immune responses, particularly in light of the most recent literature. IL-1β is protective in the context of \textit{M. tuberculosis} infection (Fremond et al., 2007), and its catalytic cleavage is mediated by the NLRP3 inflammasome/caspase-1 pathway (Muruve et al., 2008). We showed that ESX-1-proficient BCGs mount a higher IL-1β response suggesting that cytotoxic access of mycobacterial compounds promotes activation of the inflammasome. In addition to induction of IL-1β, recent evidence points to a role for ESX-1-mediated cytotoxic contact in NLRP3-inflammasome-mediated secretion of IL-18 by infected CD11c⁺ immune cells (Kupz et al., 2016). This leads to non-cognate production of IFN-γ by \textit{M. tuberculosis}-antigen-independent memory CD8⁺ T cells and NK cells. Such IL-18-dependent and rapid IFN-γ responses are not induced by current anti-TB vaccines (Gengenbacher et al., 2016; Kupz et al., 2016). In this context, the rationale is strengthened for leveraging ESX-1 function as an important additional element in the design of third-generation vaccines and host-directed therapy against TB.

By acquiring cytotoxic access, mycobacterial molecular fingerprints, such as extracellular DNA, can also be sensed by germ-line-encoded pattern recognition receptors in host cell such as AIM2 (Hornung et al., 2009; Saiga et al., 2015) or cGAS (Collins et al., 2015; Wassermann et al., 2015; Watson et al., 2015). We observed that the BCG::ESX-1 strains induced IFN-β mediated by the cGAS/STING pathway in human macrophages. We acknowledge that the role of type I IFNs in the context of \textit{M. tuberculosis} infection is somewhat conflicted (McNab et al., 2015). Studies in humans (Berry et al., 2010) and in animal models report a detrimental role of type I IFNs during \textit{M. tuberculosis} infection (Manca et al., 2005; Ordway et al., 2007; Stanley et al., 2007). A possible explanation is that IFN-α/β undermine inflammasome activation and associated host protective cytokines such as IL-1β (Guarda et al., 2011). However, this pro-bacterial role of type I IFNs during infection with \textit{M. tuberculosis} could turn out to be pro-host during vaccination. While type I IFNs negatively regulate active IL-1β secretion during \textit{M. tuberculosis} infection (Novikov et al., 2011), we observed both increased IL-1β and IFN-β production induced by the ESX-1-proficient BCG vaccine candidates. Therefore, if an activated cGAS/STING/TBK1/IFR3/ type I IFN pathway contributes to the persistence of attenuated vaccine strains and the activation of non-infected neighboring cells (Ablasser et al., 2013), this effect might favorably increase the spatial and temporal interplay between the vaccine and the host immune system, ultimately contributing to improved vaccine efficacy.

Apart from the prompt innate immune response, the late adaptive immune system plays a key role in anti-mycobacterial immunity (Orme et al., 2015). We found that the BCG::ESX-1Mmar induces a potent Th1 cell response against strong immunogens exported by ESX-1, which enlarges the antigenic repertoire compared to the currently used BCG vaccine, and thus represents a desirable feature in the light of the incomplete protection conferred by BCG. The presence of polyfunctional...
Figure 7. Improved Protection Potential of BCG::ESX-1Δmar Strain Relative to Standard BCG Strains in Mice against a Challenge with Hypervirulent \textit{M. tuberculosis} Strains HN878 and M2

(A) Immunization protocol with different BCG strains.
(B and C) Bacterial loads in the lungs and spleens 26 weeks post-immunization and 16 weeks after aerosol challenge with the \textit{M. tuberculosis} HN878 (B) or M2 (C) strains. Mice were challenged with the \textit{M. tuberculosis} HN878 strain (approximately 200 CFUs/mouse) or M2 strain (approximately 50–60 CFUs/mouse) via the aerosol route. The CFUs in the lungs and spleens of each group were analyzed by culturing lung and spleen homogenates and enumerating the bacteria. Note that CFU data shown correspond to counts that were obtained from the left-superior lobes of the lungs. The data are presented as the median ± interquartile range (IQR) log_{10} CFUs/organ (n = 6), and the levels of significance for comparisons between samples were determined by a one-way ANOVA, followed by Dunnett’s multiple comparison test.

(legend continued on next page)
Th1 cytokine-producing cells against ESX-1-secreted antigens upon vaccination with the recombinant BCGs adds another convincing feature of the broadened T cell specificities. Apart from CD4+ T cells, we detected improved CD8+ T cell responses by analyzing functional CD8+ T cells. This strong adaptive immune response could be partly explained by a bridging function of activated IFN-β between innate and adaptive immunity, as has been described for type I IFNs (Le Bon et al., 2003). Importantly, in addition to type I IFNs IL-1β and inflammasome activation also play roles in regulating the differentiation and function of CD8+ T cells during M. tuberculosis infection (Booty et al., 2016). CD8+ T cell effectors are primed through increased inflammasome signaling (IL-1β), in concert with the upregulation of chemo-attractants CCL2, CCL5, and CXCL10, of which we detected elevated levels (Figure S3B) (Le Bon et al., 2003; Sago et al., 2016). These data support a model where ESX-1-mediated cytosolic access assists presentation to and activation of the cytosolic presentation machinery through induction of type I IFNs (Le Bon et al., 2003) and potentially increased bacterial persistence (Woodworth et al., 2008).

The hypothesis that ESX-1-mediated cytosolic access improves the performance of recombinant BCG through enhanced innate immune signaling and enlarged antigenic repertoire is supported by our results from the mouse models where BCG::ESX-1Δmtn showed superior protective efficacy compared to parental BCG. These results are in accord with those obtained using an attenuated M. tuberculosis strain that lacks the characteristic esx-5-associated pep/ppe genes, but harbors all other components of the ESX-5 system, as well as an intact ESX-1 system (Sayes et al., 2012). Like BCG::ESX-1Δmtn, this strain named MtbbΔppe25-ppe19 is able to induce innate immune responses linked to cytosolic pattern recognition and shows significantly improved protection against an M. tuberculosis challenge in a mouse infection model (Sayes et al., 2016). These results suggest that, despite the different genetic background and the different origin of the ESX-1 system, ESX-1-mediated functions are essential for increasing protection levels above those provided by vaccination with standard BCG strains.

In conclusion, the heterologous expression of an M. marinum-derived ESX-1 system in BCG yielded a recombinant vaccine candidate with relatively low virulence levels in SCID mice, which are comparable with those of other BCG strains (Zhang et al., 2016), and a capacity to induce selected innate and adaptive immune responses that depend on phagosome-lysosomal communication in the host phagocyte. Such responses are not induced by first-generation anti-TB vaccines such as BCG or M. microti and might as well be induced by the second-generation anti-TB vaccine candidates that have recently entered clinical development (Kupz et al., 2016). Given that 90%–95% of M. tuberculosis exposed individuals do not develop active TB disease during their lifetime, host immune effectors are largely capable of inducing protective immunity (Ottenhoff and Kaufmann, 2012). We propose that a virulence-attenuated, ESX-1-proficient BCG vaccine might be best able to mimic the natural route of infection and induce the “correct” phagosomal biology, leading to protective immunity at the same points of host-pathogen contact as M. tuberculosis. We argue that this important biological feature should not be left out from the rational design of third-generation vaccines, giving BCG::ESX-1Δmtn a clear potential to better control TB.

EXPERIMENTAL PROCEDURES

Mycobacterial Strains and Preparation of Recombinant Strains

Mycobacterial strains included the M. tuberculosis strains H37Rv (stocks held at Institut Pasteur, Paris), HN878 and M2 (ITRC, Changwon), as well as the BCG strains Pasteur 1173P2 and Danish 1331. Recombinant strains were obtained by transformation with the pRD1-2F9 cosmids (Pym et al., 2002) and the pESX-1Δmtn cosmids described in detail in the Supplemental Information.

Antigen-Presenting Assay

Several MHC-II-restricted T cell hybridomas specific to mycobacterial antigens were used in order to detect the secretion by mycobacteria, which leads to the antigenic presentation by the infected BM-DCs of different ESX-1 substrates, as described in detail in the Supplemental Information.

ELISA and Multiplex Cytokine and Chemokine Assays and FRET Assays

Levels of various cytokines and chemokines in BM-DC culture supernatants were determined by multiple ProcartaPlex (Affymetrix) kit assays and a Luminox X-100 Reader (Supplemental Information). For FRET analyses a recently described protocol (Simeone et al., 2015) was used with THP-1 cells to detect fluorescence emission changes from green (S35 nm) to blue (447 nm) induced by β-lactamase-mediated cleavage of coumarin-cephalosporin-fluorescein (CCF-4) (Supplemental Information).

Immunogenicity and T Cell Assay and T Cell Intracellular Th1 Cytokine Assay

For immunological studies splenocytes from immunized C3H and C57BL/6 mice (Janvier) were cultured in 24- or 96-well plates in the presence of various mycobacterial antigens, followed by ELISA-mediated quantification of IFN-γ and/or flow-cytometric analysis (described in detail in the Supplemental Information).

In Vivo Experiments

Studies in immunocompetent and immunodeficient mice were performed according to European and French guidelines (Directive 86/869/CEE and Decree 87–848 of 19 October 1987) after approval by the Institut Pasteur Safety, Animal Care and Use Committee (Protocol 11.245) and local ethical committees (CETEA 2012–0005 and CETEA 2013–0036). In addition, independent vaccine efficacy studies involving M. tuberculosis HN878 and M2 challenges were performed in accordance with Korean Food and Drug Administration (KFDA) guidelines and approved by the Ethics Committee and Institutional Animal Care and Use Committee (Permit Number: 2015-0274) of the Laboratory Animal Research Center at Yonsei University College of Medicine (Seoul, Korea). More details on these experiments are described in the Supplemental Information.

Statistical Analyses

For statistical analyses, GraphPad Prism software (GraphPad) was used as described in detail in the Supplemental Information.
REFERENCES

The accession number for selected flow-cytometric data reported in this paper is Flow Repository: FR-FCM-ZY24 (https://flowrepository.org/id/FR-FCM-ZY24).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures and six figures and can be found with this article online at http://dx.doi.org/10.1016/j.cceirep.2017.02.057.

AUTHOR CONTRIBUTIONS

ACKNOWLEDGMENTS

We thank Veit Hornung (University of Munich) for kindly providing cGAS and STING K.O. cell lines; Peter Sebo (Czech Academy of Sciences, Prague) for ESAT-6 and CFP-10 proteins, Jean-Marc Ghigo for vector pKOBEG and advice, and Lalita Ramakrishnan, Thierry Soldati, and Timothy Stinear for M. marinum M strains. We are also grateful to Timothy Stinear for critically reading of the manuscript and advice. M.I.G. receives an MD/PhD scholarship and support from the Graduate School of Medical Sciences, both University of Groningen, the Netherlands. This study was in part supported by the European Union’s Horizon 2020 Research and Innovation Program (grant 643381 TBVAC2020), the Agence National de Recherche (grants ANR-14-JAMR-001-02, ANR-14-CE-08-0017-04, ANR-10-LABX-62-IBEDI), the Fondation pour la Recherche Médicale FRM (DEQ20130326471), and the Institut Pasteur (PTR441). This study was also supported by the International Research & Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning of Korea (NRF-2014K1A3A7A03070504). The mycobacterial construct BCG::ESX-1::Mmar has been patented under number PCT/EP2015/062457.

Received: December 6, 2016
Revised: January 18, 2017
Accepted: February 16, 2017
Published: March 14, 2017

REFERENCES

Fremond, C.M., Topje, D., Doz, E., Rose, S., Vasseur, V., Maillot, I., Jacobs, M., Ryffel, B., and Quesniaux, V.F. (2007). IL-1 receptor-mediated signal is an

