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Parameter inference for stochastic
single-cell dynamics from lineage tree data
Irena Kuzmanovska1, Andreas Milias-Argeitis1,2, Jan Mikelson1, Christoph Zechner1,3

and Mustafa Khammash1*

Abstract

Background: With the advance of experimental techniques such as time-lapse fluorescence microscopy, the
availability of single-cell trajectory data has vastly increased, and so has the demand for computational methods
suitable for parameter inference with this type of data. Most of currently available methods treat single-cell trajectories
independently, ignoring the mother-daughter relationships and the information provided by the population
structure. However, this information is essential if a process of interest happens at cell division, or if it evolves slowly
compared to the duration of the cell cycle.

Results: In this work, we propose a Bayesian framework for parameter inference on single-cell time-lapse data from
lineage trees. Our method relies on a combination of Sequential Monte Carlo for approximating the parameter
likelihood function and Markov Chain Monte Carlo for parameter exploration. We demonstrate our inference
framework on two simple examples in which the lineage tree information is crucial: one in which the cell phenotype
can only switch at cell division and another where the cell state fluctuates slowly over timescales that extend well
beyond the cell-cycle duration.

Conclusion: There exist several examples of biological processes, such as stem cell fate decisions or epigenetically
controlled phase variation in bacteria, where the cell ancestry is expected to contain important information about the
underlying system dynamics. Parameter inference methods that discard this information are expected to perform
poorly for such type of processes. Our method provides a simple and computationally efficient way to take into
account single-cell lineage tree data for the purpose of parameter inference and serves as a starting point for the
development of more sophisticated and powerful approaches in the future.

Keywords: Parameter inference, Cell lineages, Single cell, Stochastic systems, Monte Carlo methods

Background
Biochemical processes in isogenic cells exhibit substan-
tial heterogeneity [1, 2]. Understanding the latter demands
experimental techniques that can resolve such processes
at the single-cell level. In contrast to bulk measurements,
these techniques provide not only access to the average
behavior of intracellular dynamics, but also its variabil-
ity across cells and over time. Most single-cell techniques,
however, reveal only very few components simultaneously
that are often multiple steps away from the actual quanti-
ties of interest. The dynamics of a promoter, for instance,
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may not be accessible directly, but only indirectly through
a fluorescent reporter that is expressed upon activation
of this promoter [3]. Statistical inference in combination
with mathematical models provide a means to reconstruct
inaccessible parameters from available measurements,
making them instrumental for studying biochemical pro-
cesses based on single-cell data.
How such inference can be performed depends strongly

on the way the data has been collected: flow cytome-
try measurements, for instance, reveal fluorescence values
across a population but individual cells cannot be tracked
over time. Consequently, measurements at two different
time instances are considered statistically independent.
Time-lapse microscopy techniques permit tracking of
single-cell trajectories over the duration of a whole exper-
iment [4], which in turn provides a handle also on the
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temporal correlation of the underlying process. This addi-
tional degree of information can dramatically improve the
inference of unknown process parameters [5].
Most existing inference approaches consider single-cell

trajectories to be statistically independent of each other
[3, 5–7]. This way, however, important information stem-
ming from the ancestry of a cell is lost: shortly after
cell division, for example, two daughter cells are likely to
exhibit substantial correlations, which cannot be captured
by a model that assumes independence among cells. This
can yield incomplete and biased results, especially when
the time scale of the process under study is slow compared
with the cell cycle duration.
In addition, stochastic processes of interest such as epi-

genetically regulated phase variation in bacteria are often
driven by DNA replication just before cell division. Exam-
ples in this category are the regulation of agn43 [8, 9]
and Pap [10, 11] systems in E.coli, and the glucosyl-
transferase (gtr) gene cluster in Salmonella [12]. Due to
the non-reversibility of the epigenetic modifications, gene
replication (and consequently cell division) is crucial for
phase variation to happen. Cell lineage information has
to be therefore taken into account in single-cell studies of
these systems.
Until recently, there existed little work on statistical

inference using tree-based single-cell data. In [13], the
authors proposed a method for parameter inference from
single-cell trajectories based on Approximate Bayesian
Computation (ABC). Their approach is applicable to tree-
structured data as well, although it requires all trajectories
to have the same length and sampling resolution. In [14]
the authors proposed an observer-based method for state
and parameter estimation in stochastic chemical reac-
tion networks, which is also able to handle lineage tree
data. However, its applicability is limited to small systems
since it requires the full probability distributions from the
solution of the chemical master equation. Another alter-
native was proposed in [15], which presented an infer-
ence algorithm for HiddenMarkov Trees using variational
Bayesian Expectation Maximization. This class of models
is similar to the one considered here, but cannot incorpo-
rate dynamic readouts or dynamically evolving single-cell
states.
In more recent work, the authors of [16] presented a

method for inferring transition dynamics from cell lin-
eages that is best suited to slowly evolving cell states (such
as in the case of stem cell lineages) and makes use of
end-point smFISH measurements for each cell. Finally,
Feigelman et al. [17] proposed amethod for exact Bayesian
parameter inference from cell lineage data that uses parti-
cle filtering to approximate the full joint state and param-
eter posterior distribution. The method was successfully
applied to a stochastic gene expression system that is crit-
ical for stem cell differentiation and clearly demonstrated

the strengths of lineage-based inference. On the down-
side, the computational burden of the method seems to
be substantial, while particle degeneracy may arise when
trees longer than just a few generations are used because
of the way particle sampling and reweighing are carried
out.
In this work, we propose an approximate Bayesian

parameter inference framework for lineage tree data. The
method relies on a combination of Sequential Monte
Carlo for likelihood approximation and pseudo-marginal
Markov chain Monte Carlo for parameter sampling. To
achieve scalability of our method with the number of gen-
erations, we make use of a plausible simplifying assump-
tion in the likelihood decomposition which is shown to
work well in practice. In contrast to [17], our method
allows efficient likelihood calculation and smaller parti-
cle degeneracy with increasing tree lengths, which allows
us to extract information out of longer lineages. Further-
more, parameter sampling and likelihood approximation
are carried out separately from each other, which permits
the use of more powerful samplers (such as Population
Monte Carlo [18] or Nested Sampling [19]) for the effi-
cient exploration of high-dimensional parameter spaces.
The rest of the manuscript is structured as follows: in

‘Methods’ section we give a mathematical description of
the inference problem and the class of models we con-
sider and we present a detailed description of our method.
In ‘Results and discussion’ section we demonstrate the
application of our method to two different example mod-
els and in ‘Conclusions’ section we give some concluding
remarks.

Methods
Themodel class
To introduce the inference problem and the class of mod-
els considered here, we refer to the illustration in Fig. 1.
Let us consider an intracellular biochemical process of
interest modeled by a continuous-time dynamical system
S. The system behavior within each cell can be moni-
tored with the help of a dynamic readout, such as the
abundance of a fluorescent reporter protein. Through
time-lapse microscopy, we assume that a growing popula-
tion of single cells and their progeny can be tracked over
time and measured at multiple time points (green dots in
Fig. 1), giving rise to a hierarchical tree data structure that
describes the time evolution of the population.
We assume that each tree starts with a single mother at

generation 0 and that the population is followed until the
final generation N. Without loss of generality we assume
that a single mother always gives rise to two daughter
cells after division, leading to 2n cells at generation n.
The system S describes the evolution of a set of inter-
nal states x (schematically represented by blue curve in
Fig. 1). These states can be accessed indirectly at discrete
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Fig. 1 Graphical illustration of the observed and unobserved system dynamics in the lineage tree setting. A hypothetical time-lapse microscopy
experiment, in which time-lapse microscopy images of a growing E.coli colony are obtained. The strain contains a fluorescent reporter gene. After
the cells are segmented and tracked, the fluorescence intensity in each of them can be extracted, giving rise to a fluorescence lineage dataset (green
dots). The continuous blue curve represents the unobserved state trajectory of each individual cell. Subscripts on measurements and states denote
the generation number, while superscripts index the cells of each generation

time points through experimental techniques yielding a
corresponding readout y. Each cell is assigned a separate
time index and a separate time of division, T, which can
either be assumed known from the single-cell tracking
data, or be inferred based on these data. We denote by
X the whole trajectory {x(t), t ∈[ 0,T] } from the time of
birth of a cell (at t = 0) until its division (at t = T).
The dynamics of S may evolve on a continuous, discrete
or hybrid space, and similarly be stochastic, determinis-
tic, or involve components of both types. In any case, we
assume that S depends on a set of parameters �, which
are either assumed to be the same across the population
or allowed to vary within the population according to a
population-wide distribution.
From this point on, we will distinguish each cell by its

generation number, n, and an index i, that ranges from 1
to 2n (refer to Fig. 1). The ith cell of the nth generation
gives rise to two daughters, indexed by 2i − 1 and 2i, in
generation n + 1. Henceforth, all quantities related to a
certain cell in a given lineage will be indexed by these two
numbers.
Following this notation, we denote by X i

n the state tra-
jectory of the ith cell in the nth generation; that is,

X i
n := {xin(t), t ∈[ 0,Ti

n] }.

The state trajectories of the daughters originating
from a mother cell with state trajectory X i

n will there-
fore be denoted by X2i−1

n+1 and X2i
n+1 respectively. The

corresponding discrete set of measurements associated
with X i

n is denoted by Y i
n. More specifically,

Y i
n := {yin(tin,k), k = 1, . . . ,Ki

n)}.

This notation reflects the fact that the ith cell of the
nth generation is observed at a total number of Ki

n time
points (each denoted by tin,k) during its lifetime, and that
the number and location of observation time points will
in general be different for every cell.
We will further denote by P(x2i−1

n+1 (0), x2in+1(0)|xin(Ti
n),�)

the distribution of the daughter initial conditions given
the state of the mother just before division, and call this
the transition probability from one generation to the next.
It is reasonable to assume that, once their respective ini-
tial conditions are determined based on their mother cell,
the two daughters evolve independently of each other.
As defined above, the transition probability mechanism
may itself contain unknown parameters that need to be
estimated from the data.

The inference problem
Our goal is to infer the posterior distribution of � given:
1. the set of measured cellular readouts over the whole lin-
eage, 2. our prior knowledge about � encoded in a prior
distribution π(�) and 3. a measurement noise model that
describes the likelihood of observing yin(t) given xin(t)
(possibly also depending explicitly on unknown param-
eters contained in �). The latter is given by the den-
sity f (yin(t)|xin(t),�). With this measurement model, and
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assuming that measurements at individual time points are
independent from each other, the likelihood of the whole
measurement set for a single cell can be defined as

P(Y i
n | X i

n,�) =
Ki
n∏

k=1
f
(
yin

(
tin,k)|xin(tin,k

)
,�

)
.

Setting

Xtree := {X i
n, i = 1, . . . , 2n, n = 0, . . . ,N}

and

Y tree := {Y i
n, i = 1, . . . , 2n, n = 0, . . . ,N},

the joint distribution over states and measurements over
a tree starting from a single individual can be written as

P(Xtree,Y tree | �) = P
(
X1
0 | πx

(
X1
0
))
P

(
Y 1
0 | X1

0,�
)

×
N∏

n=1

[( 2n∏

i=1
P

(
X2i−1
n ,X2i

n | X i
n−1,�

)
)

×
( 2n∏

i=1
P

(
Y i
n | X i

n,�
)
)]

,

(1)

where πx(X1
0) is the initial distribution of x10(0). The like-

lihood of the measured outputs given � can therefore
by obtained by marginalization of (1) over all possible
unobserved states:

P(Y tree | �) =
∫

P(Xtree,Y tree | �)dXtree. (2)

As can be seen from the above equations, an additional
difficulty of our inference problem in comparison to infer-
ence based on independent cell trajectories, is the fact
that the likelihood P(Xtree,Y tree | �) does not factorize
over the readouts of individual cells, since the tree struc-
ture of the population introduces dependencies among
the observations coming from different generations. The
dependencies are generated through the unobserved state
dynamics, which must therefore be taken into account.
Moreover, due to the dependencies introduced by the

tree structure of the population, the integral in (2) is ana-
lytically intractable already for very simple state dynamics
and its numerical evaluation scales exponentially with
the number of generations in the tree. To address these
difficulties, we employ a sequential Monte Carlo (SMC)
scheme as described below to approximate the marginal
likelihood (2).

Recursive likelihood and state posterior propagation
The joint likelihood over states and observations given by
(1) can be recursively computed, for example by first iter-
ating over generations and then over the individuals of
each generation. However, the same cannot be immedi-
ately said for (2), where the marginalization complicates

the calculation. Here we propose an iterative calculation
of this likelihood that again proceeds sequentially through
the tree generations and the daughter pairs of each gen-
eration. The dependencies between different daughter
pairs of the same generation add to the complexity of the
numerical approximation of the likelihood, but, as we will
see at the end of the section, this computation can be
sped up considerably by making a reasonable simplifying
approximation.
Before we derive the exact formulas, we need some

additional notation. Let

Y 1,...,2n
n :=

{
Y 1
n, . . . ,Y 2n

n

}

denote the whole dataset of generation n and

Y0:n :=
{
Y 1,...,2m
m ,m = 0, . . . , n

}

the dataset of all generations up to generation n. Similarly,

X1,...,2n
n :=

{
X1
n, . . . ,X2n

n

}

and

X0:n :=
{
X1,...,2m
m ,m = 0, . . . , n

}
.

To arrive at the exact formula for the likelihood, we first
break up the total likelihood over the generations as fol-
lows (the dependence on � is suppressed to simplify the
notation):

P(Y tree) = P(Y 1
0)

N∏

n=1
P

(
Y 1,...,2n
n |Y0:n−1

)
.

Assume now that P(Y0:n) (i.e. the likelihood of the sub-
tree consisting of the first n generations) is available, and
so is P(X0:n|Y0:n) (the state posterior over the same sub-
tree). Consider the first two individuals of generation n+1,
with state trajectories X1

n+1 and X2
n+1, descending from

the mother cell with state trajectory X1
n.
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Adding the information of this daughter pair to the
posterior of the previous generations, we get

P
(
X1
n+1,X2

n+1,X0:n|Y 1
n+1,Y 2

n+1,Y0:n
)

= P
(
Y 1
n+1,Y 2

n+1,Y0:n|X1
n+1,X2

n+1,X0:n
)
P

(
X1
n+1,X2

n+1,X0:n
)

P
(
Y 1
n+1,Y 2

n+1,Y0:n
)

= P
(
Y 1
n+1|X1

n+1
)
P

(
Y 2
n+1|X2

n+1
)
P

(
X1
n+1,X

2
n+1|X0:n

)

P
(
Y 1
n+1,Y

2
n+1|Y0:n

)

× P (Y0:n|X0:n)P (X0:n)

P (Y0:n)

= P
(
Y 1
n+1|X1

n+1
)
P

(
Y 2
n+1|X2

n+1
)
P
(
X1
n+1,X

2
n+1|X1

n
)

P
(
Y 1
n+1,Y

2
n+1|Y0:n

) P(X0:n|Y0:n).

(3)

The denominator of Eq. (3) extends P(Y0:n) with the
daughter pair of the next generation:

P(Y 1
n+1,Y 2

n+1|Y0:n) =
∫∫∫ (

P
(
Y 1
n+1,Y 2

n+1|X1
n+1,X2

n+1
)

× P
(
X1
n+1,X

2
n+1|X1

n
)
dX1

n+1dX
2
n+1

)

× P(X1
n|Y0:n)dX1

n (4)

Equations. (3) and (4) allow us to update the starting
posterior and likelihood with the first daughter pair from
generation n + 1. However, to add the second daughter
pair (cells 3 and 4 of generation n+1, descending from cell
2 of generation n), we need to take into account the infor-
mation provided by the first pair. To see this, we proceed
as above (3) to arrive at:

P
(
X3,4
n+1,X

1,2
n+1,X0:n|Y 3,4

n+1,Y
1,2
n+1,Y0:n

)

= P
(
X1,2
n+1,X0:n|Y 1,2

n+1,Y0:n
)

×
P

(
Y 3,4
n+1|X3,4

n+1

)
P

(
X3,4
n+1|X1,2

n+1,X0:n
)

P(Y 3,4
n+1|Y 1,2

n+1,Y0:n)
. (5)

The above expression can be simplified by noting
that P

(
X3,4
n+1|X1,2

n+1,X0:n
) = P

(
X3,4
n+1|X0:n

)
, i.e. daugh-

ter pairs of the same generation are conditionally inde-
pendent given the parent states. However, the term
P

(
X1,2
n+1,X0:n|Y 1,2

n+1,Y0:n
)

implies that, by taking into
account the measurements of the first daughter pair, our
posterior belief about the n-th generation states also needs
to be updated before proceeding to the next pair. This
leads to the creation of dependencies between the tree
branches and means that they cannot be treated indepen-
dently of each other, a feature than can create computa-
tional difficulties when one attempts to approximate the
joint posterior by simulation. We thus make the simplify-
ing assumption that

P(X i
n|Y 2i−1,2i

n+1 ,Y0:n) ≈ P(X i
n|Y0:n) (6)

In words, we assume that the additional state informa-
tion transferred from the measurement of a daughter pair
at generation n + 1 to their corresponding mother at gen-
eration n is negligible in comparison to the information
provided by the previous generations to the mother. This
is especially the case when frequent observations of a cell
population are available. In such a setting, the state of the
mother can already be well constrained by measurements
of itself and its ancestors, making the additional informa-
tion provided by the daughters less significant. In case of
very sparse measurements which are only available for the
daughter cells right after cell division it is not certain to
what extent the assumption will hold, since these mea-
surements will also carry information about the state of
the mother cell. However, frequent observations of the
cells in the lineage can be easily achieved with currently
used time-lapse microscopy methods.
As we will show below, the aforementioned assumption

allows us to treat each mother-daughters triplet within a
generation independently from the rest. Continuing the
analysis of the first two daughter pairs from above, we
have that

P
(
X1,2
n+1,X0:n|Y 1,2

n+1,Y0:n
)

= P
(
X1,2
n+1|X0:n,Y 1,2

n+1,Y0:n
)
P

(
X0:n|Y 1,2

n+1,Y0:n
)

≈ P
(
X1,2
n+1|X0:n,Y 1,2

n+1,Y0:n
)
P (X0:n|Y0:n)

= P
(
X1,2
n+1|X0:n,Y 1,2

n+1

)
P (X0:n|Y0:n) . (7)

This fact therefore leads to a simplification of the condi-
tional likelihood, P(Y 3,4

n+1|Y 1,2
n+1,Y0:n):

P(Y 3,4
n+1|Y 1,2

n+1,Y0:n)

=
∫∫∫ (

P
(
Y 3,4
n+1|X3,4

n+1
)
P
(
X3,4
n+1|X2

n
)
dX3,4

n+1

)

× P
(
X1,2
n+1|X2

n,Y
1,2
n+1

)
P

(
X2
n|Y0:n

)
dX1,2

n+1dX
2
n

=
∫∫ (

P
(
Y 3,4
n+1|X3,4

n+1
)
P
(
X3,4
n+1|X2

n
)
dX3,4

n+1

)
P

(
X2
n|Y0:n

)

× dX2
n = P

(
Y 3,4
n+1|Y0:n

)
,

(8)

and the total likelihood of generation n + 1 (conditioned
on Y0:n) can be decomposed as a product of likelihoods
over the individual daughter pairs.
Finally, the joint posterior (5) can be also decomposed

as:

P
(
X3,4
n+1,X

1,2
n+1,X0:n|Y 3,4

n+1,Y
1,2
n+1,Y0:n

)

= P
(
X1,2
n+1|Y 1,2

n+1,X0:n
)
P

(
X3,4
n+1|Y 3,4

n+1,X0:n
)
P (X0:n|Y0:n) .

(9)



Kuzmanovska et al. BMC Systems Biology  (2017) 11:52 Page 6 of 13

These facts will be put in use in the next section, where
a sequential Monte Carlo algorithm for the approximation
of the tree likelihood will be presented.

Recursive likelihood approximation
Our SMC scheme is used to approximate P(Y tree | �), i.e.
the likelihood of a set of measurements over a tree start-
ing from a single individual, given a set of parameters �,
under the simplifying assumption presented above. Our
algorithm uses this assumption to exploit the conditional
independence structure of the tree dynamics it generates
in order to break down the likelihood computation. More
concretely, the idea is to start at the root of the tree (i.e.,
a single cell) and recursively propagate the data likelihood
from one generation to the next, treating the mother-
daughter triplets of each generation independently from
each other. This can be understood as a generalization
of recursive filtering for tree-structured data. To illus-
trate the idea better, we present the treatment of a single
mother-daughter triplet in detail.
Given data up to generation n, assume that L sam-

ples (particles) from the already estimated posterior
P(xin(Ti

n) | Y0:n) of the i-th mother in the n-th gen-
eration are available. First, a pair of daughter cells
is generated according to the transition probabilities
P

(
x2i−1
n+1 (0), x2in+1(0)|xin(Ti

n),�
)

for each particle. Given
the daughters’ initial conditions, we next simulate each
daughter until its own division time and calculate the like-
lihoods P

(
Y 2i−1
n+1 | X2i−1,l

n+1 ,�
)
and P

(
Y 2i
n+1 | X2i,l

n+1,�
)
for

l = 1, . . . , L.
By assigning to the l-th particle a weight

wi,l
n+1 = P

(
Y 2i−1
n+1 | X2i−1,l

n+1 ,�
)
P

(
Y 2i
n+1 | X2i,l

n+1,�
)
,

we next compute the marginal likelihood of the ith
mother-daughter triplet by averaging the weights for all
the particles:

P
(
Y 2i−1
n+1 ,Y

2i
n+1|�

)
= 1

L

L∑

l=1
wi,l
n+1.

After normalizing the particle weights to sum up to one,
we have obtained weighted samples from the posteriors
P(X2i−1

n+1 | Y 2i−1
n+1 ,�) and P(X2i

n+1 | Y 2i
n+1,�). The samples

are subsequently unweighted by resampling L particles
from each posterior according to the normalized weights.
These samples will serve as starting points for the daugh-
ters of the next generation. The same process is repeated
for the rest of the nth generation mothers, before moving
on to generation n+1. This very general procedure is sum-
marized in Algorithm 1, in which for simplicity we assume
X1
0 to be known.

Algorithm 1: The SMC algorithm for tree likelihood
calculation
Result: Estimate of P(Y tree|�)

1 Create L replicates of X1
0, {X1,l

0 }Ll=1 ;
2 Set P(Y tree|�) = 1 ;
3 for n = 0 to N-1 do
4 for i=1 to 2n do
5 for l = 1 to L do
6 Simulate a pair of daughter cells, X2i−1,l

n+1
and X2i,l

n+1 with initial conditions drawn
from P(x2i−1

n+1 (0), x2in+1(0)|xin(Ti
n),�) ;

7 Compute the weights wi,l
n+1 = P(Y 2i−1,l

n+1 |
X2i−1,l
n+1 ,�)P(Y 2i,l

n+1 | X2i,l
n+1,�) ;

8 end
9 Compute marginal likelihood of the triplet:

P(Y 2i−1
n+1 ,Y 2i

n+1|�) = L−1 ∑L
l=1 w

i,l
n+1 ;

10 Update tree likelihood estimate:
P(Y tree|�) = P(Y tree|�)P(Y 2i−1

n+1 ,Y
2i
n+1|�) ;

11 Compute normalized weights:
w̃i,l
n+1 := wi,l

n+1/
∑L

l=1 w
i,l
n+1 ;

12 Resample {X2i−1,l
n+1 }Ll=1 and {X2i,l

n+1}Ll=1
according to {w̃i,l

n+1}Ll=1 ;
13 end
14 end

Notes

1. To simplify the presentation of the algorithm, the
state trajectory of the initial mother cell was assumed
known. In practice it is not and the initial conditions
for the particles {x1,l0 (0)}Ll=1 would be drawn from a
prior distribution. Then, a classical filtering step
[7, 20] can be employed to obtain the final particle
conditions for the first mother.

2. The most computationally intensive step of the
algorithm lies between lines 5-9, where the marginal
likelihood of each mother-daughter triplet needs to
be computed. Depending on the type of the
unobserved state dynamics, accurate marginalization
may require the use of very large particle numbers
and greatly increase the computational cost of the
algorithm. Typically, the situation is worse when the
hidden state contains components driven by
stochastic dynamics. This challenge has already been
recognized and addressed in the literature, since it
also appears in the parameter inference problem
from independent single-cell trajectories [7, 21]. One
can thus employ one of the several available
alternatives at this step, such as sequential
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computation of the likelihood [7], or the use of
approximating dynamics [7, 22, 23].

3. Since we assume that the measurements from
individual trees are independent from each other, the
joint likelihood of a dataset consisting of several trees
is simply a product of the likelihood of the individual
trees. The likelihoods of individual trees can be thus
estimated in parallel. Moreover, looking at the
algorithm structure for a single tree, the likelihood
calculation can be parallelized at two levels: 1) the
mother cells of a given generation can be treated
independently of each other 2) individual particle
calculations for a given mother-daughter triplet can
be done in parallel.

A pseudo-marginal MCMC sampler for parameter inference
The goal of Bayesian inference is to compute or approxi-
mate via sampling the posterior distribution of the param-
eters of the system �, P(�|Y tree) ∝ P(Y tree|�)π(�).
To this end, we follow the “pseudo-marginal” MCMC
approach [24], according to which a Markov chain Monte
Carlo (MCMC) sampler makes use of the noisy marginal
likelihood estimates provided by the SMC algorithm of the
previous section to generate samples from the posterior of
� (Algorithm 2).

Algorithm 2: The pseudo-marginal MCMC sampler
for parameter inference
Result: {�m}Mm=1 ∼ P(�|Y tree)

1 Draw an initial point �1 from the prior π(�);
2 Estimate the likelihood P(Y tree|�1) using
Algorithm 1;

3 form = 1 to M − 1 do
4 Propose a parameter vector �∗ according to a

proposal distribution q(·|�m);
5 Calculate the likelihood P(Y tree | �∗) using

Algorithm 1 ;
6 Sample u ∼ U([ 0, 1] );
7 If

u < min{1, P(Y tree | �∗)π(�∗)q(�m|�∗)
P(Y tree | �m)π(�m)q(�∗|�m)

},

8 accept the proposed parameters and set
�m+1 = �∗ and P(Y tree | �m+1) = P(Y tree | �∗);
else, set �m+1 = �m and
P(Y tree | �m+1) = P(Y tree | �m).

9 end

It should be noted that the use of very noisy SMC esti-
mates may considerably slow down the mixing of the
sampler, since the chain may get trapped at a point with
artificially large likelihood value. However, as the variance

of the estimator decreases (e.g. through the use of larger
particle sample sizes), it is expected that the mixing speed
of our sampler will converge to that of a sampler with
perfect (i.e. noiseless) marginal likelihood information.

Results and discussion
In the following sections we will consider two possible
examples for the dynamical system S and demonstrate the
application of our inference method on these cases. We
use the first example primarily to verify and characterize
the performance of our algorithm and the second exam-
ple to convincingly demonstrate its application on a more
complex problem. In both examples, we assume that a cell
is characterized by a discrete state, xd(t). Over time and
across generations, cells stochastically adopt a certain type
(which for example corresponds to cell phenotype) deter-
mined by xd(t). The cell type in turn determines the evo-
lution of a continuous state vector, which may for example
correspond to the immature and mature molecule types
of a fluorescent reporter. In abstract terms, xd(t) may be
thought of as the state of a gene, whose activity affects the
cell phenotype.
In the first example, the discrete state dynamics is

described by a generalized two-type branching process.
According to this scenario, the type of a cell is fixed
throughout its lifetime and may change only at cell divi-
sion, since the types of the daughters depend probabilis-
tically on the type of the mother. In the second example,
the cell type may stochastically vary throughout the cell
lifetime according to a two-state continuous-timeMarkov
chain (CTMC), while the two daughters are assumed to
inherit the type of the mother. To test the performance of
our inference framework, we generated simulated datasets
for the two example systems (Additional file 1: Figure S1)
and used them to infer parameters of interest in each case.
Details about some of the parameters used in the data
generation process are provided in Additional file 1: Table
S1. The results for each example system are summarized
below.

Example 1: a two-type branching process with dynamic
readouts
In this example, cells can adopt one of two possible types
(ON or OFF) and maintain their type throughout their
lifetime, which, for simplicity, we assume to be the same
and equal to T for every cell. At cell division, the daughter
cell types are determined based on the type of the mother
cell, according to a set of transition probabilities, as illus-
trated in Fig. 2a. In turn, the type of each cell is assumed
to determine the production rate of a fluorescent reporter
protein (such as GFP) which can then be observed using
fluorescence time-lapse microscopy.
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a

b c

Fig. 2 Graphical illustration of the two systems considered. aModel 1: All possible daughter pairs from a single mother and the corresponding
probabilities of obtaining those pairs. The cells can be found in two possible states OFF (black) and ON (white). Note that the probability of the first
daughter cell being OFF and the second ON is equal as the probability of the first daughter being ON and the second OFF. bModel 2: Cell types
switch during the cell lifetime according to a two state continuous-time Markov chain with rates q1 and q2, cModel 2: An example of the evolution
of a cell type during its lifetime. The blue crosses on the time axis indicate switching point from ON-OFF or vice versa

The state vector of each cell is thus defined as x =[
xd(t) D(t) F(t)

]
, where xd(t) contains the cell type, while

D(t) and F(t) correspond to the concentrations of the
immature (dark) and mature (fluorescent) forms of the
fluorescent reporter, respectively. Out of these, we assume
that we can only obtain noisy measurements of F(t) at
discrete points in time. Contrary to the cell type, the con-
centrations of the two reporter species are carried over
from the mother to the daughters unchanged. That is,
D2i−1
n+1 (0) = Di

n(T), F2i−1
n+1 (0) = Fi

n(T) and similarly for the
second daughter. This is a reasonable modeling assump-
tion, given that a daughter cell has half the volume of the
mother and receives roughly half of its protein content as
well.
The fluorescent reporter dynamics of every cell evolves

according to the following set of linear ODEs:

Ḋ(t) = α(xd(t)) − δ · D(t) − m · D(t) (10)
Ḟ(t) = −δ · F(t) + m · D(t), (11)

where α(xd(t)), δ and m are reporter protein production,
dilution and maturation rates respectively. The produc-
tion rate is determined by the cell type: for an OFF-type
cell, α(OFF) = αOFF , while a cell of the ON type has
α(ON) = αON > αOFF .
As described above, we assume that noise-corrupted

measurements proportional to the F(t) species are avail-
able atM points, t1, ..., tM , during the life of every cell. The

readout of a single cell at a given time is therefore assumed
to be a scaled and noisy version of the F(t) concentration:

y(tm) ∼ N (c · F(tm), σ 2 · F(tm)),

where the scaling constant c and the measurement vari-
ance σ 2 are known. The intuition behind this noise model
is that a single concentration unit of mature GFP emits
fluorescence which is normally distributed with mean c
and variance σ 2. Therefore, for F(t) concentration units
of mature GFP, the overall fluorescence emitted will be
normally distributed with mean c · F(t) and variance
σ 2 · F(t). The issue of mapping from protein concentra-
tions to fluorescence intensities is still not well-established
in the literature, but several possible approaches have
been proposed. The method presented in [25] exploits the
deviations in daughter cell fluorescence levels from the
average at each cell division. An alternative approach, sug-
gested in [5] is based on recording a calibration curve with
several proteins of known abundance fused to the same
fluorescence tag.
Given that individual measurements for each cell are

independent from each other, the expression for the likeli-
hood P(Y i

n | X i
n,�), where Y i

n = {yin(tm), m = 1, . . . ,M},
is given by

P
(
Y i
n | X i

n
) =

M∏

m=1
P

(
yin(tm) | Fi

n(tm)
)
. (12)
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Using this type of reporter measurements for every cell
belonging to a fully observed tree, our goal is to infer
the transition probabilities that govern cell type switching
(θ1, . . . , θ4 in Fig. 2a).
If the type of each cell was readily measurable, the

use of simple maximum likelihood estimators for branch-
ing processes would suffice to obtain all the necessary
discrete state statistics from a fully observed tree, mak-
ing the use of the reporter model unnecessary. How-
ever, the intervening reporter maturation step, the slow
dilution dynamics and the sparse, noisy sampling, make
inference much more challenging and require the use of
the sophisticated computational machinery presented in
this work.
To test the performance of our algorithm on this system

we simulated a synthetic dataset comprising of a single
tree seven generations long (Additional file 1: Figure S1).
The lifetime of each cell in the dataset was fixed at 30 min
and the measurement interval was 5 min. We generated
the daughter types according to the transition probabili-
ties shown in Table 1. The rest of the parameters used for
the data generation are summarized in Additional file 1:
Table S1.
Note that due to symmetry, the second and third entries

of each row are equal. Moreover, the values of the first
and second entries in each row determine the rest of
the entries, since every row sums to one. We therefore
considered θ1, θ2, θ3 and θ4 as unknown.
We ran the pseudo-marginal MCMC sampler

(Algorithm 2) to generate samples from the posterior
distribution of � =[ θ1 θ2 θ3 θ4]. The transition probabil-
ities θ1 and θ2 were sampled with the help of a Dirichlet
distribution (more details are given in Additional file 1)
and similarly for θ3 and θ4. For all of the parameters we
considered flat priors supported on the interval [0,1].
The initial values of θ1 − θ4 were chosen to be all equal
to 0.25, with the initial assumption that there are equal
probabilities for all of the four possible transitions from a
single mother. The number of SMC particles used for the
inference procedure was 1000.
The estimated posterior distributions P(�|Y ) based on

16604 MCMC samples are given in Fig. 3, where it can
be clearly seen that the inferred posterior means (black
dashed lines) are located close to the true parameter

Table 1 Transition probabilities for the cell types considered in
Example 1 and depicted on Fig. 2

Daughter Types

(OFF,OFF) (OFF,ON) (ON,OFF) (ON,ON)

Mother type OFF θ1 = 0.6 θ2 = 0.1 θ2 1 − θ1 − 2θ2

ON θ3 = 0.1 θ4 = 0.05 θ4 1 − θ3 − 2θ4

values (red lines). On Additional file 1: Figure S2 we can
see that the sampler takes very few iterations to find the
high-log-likelihood region. The movement of the chain
is shown in Additional file 1: Figure S3, the autocorrela-
tion of the samples is given in Additional file 1: Figure S4,
while their pairwise scatter plots are given in Additional
file 1: Figure S5. Sufficient number of independent sam-
ples (low autocorrelation) need to be obtained in order
to be confident that they are representative of the true
posterior distribution. To check this, we also thinned
the chain by using every 10th sample, after discarding
the first 1000 burn-in samples. While the thinned chain
exhibits much lower sample autocorrelation than the orig-
inal chain (Additional file 1: Figure S6), the obtained
posteriors in Additional file 1: Figure S7 are visually iden-
tical to those in Fig. 3. The raw data files generated by
the sampler, which were used to generate some of the
aforementioned figures, are given in Additional file 2.
To assess the variability of the likelihood SMC estima-

tor as a function of the number of particles we estimated
the log likelihood P(Ytree|�true) of the same dataset with
different numbers of particles, given the true parameter
values �true. As it can be seen on Fig. 4 (top), the average
of 100 log-likelihood estimates converges as the particle
number increases. With the increase of the number of
particles the coefficient of variation of the log-likelihood
calculations also drops quickly (Fig. 4 (bottom)). To avoid
negative values we computed the coefficient of variation
by dividing the standard deviation by the absolute value
of the mean of the log-likelihood. We used the conver-
gence properties of the estimator to get an initial sense
of the order of magnitude for the particle number in the
SMC algorithm. The particle number choice was refined
empirically, based on the mixing and convergence behav-
ior of the pseudo-marginal MCMC sampler. It can be seen
in Fig. 4 that the estimator starts converging when around
750 particles are used. For the above-mentioned inference
run we used 1000 particles.
To verify computationally that the simplifying assump-

tion we employ in Eq. 6 does not lead to considerable
bias in the estimated posteriors, we performed an infer-
ence run in which the assumption was not employed
and the full likelihood was calculated using a particle fil-
ter based on the exact formulas presented above. The
obtained posterior distributions (Additional file 1: Figure
S7) are visually identical to the ones in Fig. 3, indicating
that the simplifying assumption does not create significant
bias of the inference results for the example considered
here. The mean, variance and the median of the two
sets of marginal posterior distributions of each inferred
parameter are compared side-by-side in Additional file 1:
Table S3. Their similarity indicates that by employing the
approximation the basic features of the distributions are
maintained.
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Fig. 3 The proposed algorithm successfully infers parameters involved in the cell division process. Posterior distributions of the inferred parameters
described in Example 1. The posteriors were obtained using 16,604 samples, after 2000 burn-in samples had been discarded. The red vertical bar is
positioned at the true parameter value (the one used for data generation), while the black dashed line is positioned at the estimated posterior mean.
The blue curves are obtained by smoothing of the normalized histograms of the samples

Example 2: stochastic cell type switching
In the second example, we assume that the cell type
evolves according to a two-state CTMC with rates q1
and q2 for the OFF-to-ON and ON-to-OFF transi-
tions respectively. At division, each daughter inherits

the type of its mother (together with the reporter con-
centrations, as before), but subsequently evolves inde-
pendently from other cells according to the CTMC
dynamics, as shown on Fig. 2b and c. In this case,
during the cell lifetime the reporter production rate

Fig. 4 Convergence of the SMC likelihood estimator with increasing numbers of particles. Mean (top) and coefficient of variation (bottom) of the
log-likelihood vs. number of particles used in the our likelihood estimation algorithm. To avoid negative values, the coefficient of variation was
calculated by dividing the standard deviation by the absolute value of the mean, and plotted in log10 scale for better visualization. The results were
based on 100 repetitions of the likelihood estimation for each particle count
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alternates between αON and αOFF in accordance with the
cell type.
Furthermore, to simulate a more biologically realistic

scenario, we also incorporated extrinsic variability in our
model by considering different GFP production rates for
different cells. When a single cell was born, the GFP
production rates αOFF and αON were drawn in a corre-
lated fashion from lognormal distribution with log-mean
at [μαOFF μαON ]. The value of the log-standard deviation
of each marginal distribution σext (henceforth referred
to as ‘extrinsic noise’) was chosen to be 0.3. More con-
cretely, the production rates were drawn by first drawing
z from logN (1, σ 2

ext) and then defining αOFF and αON
as described below. These production rates were subse-
quently used throughout the cell lifetime.

z ∼ logN (1, σ 2
ext) (13)

αOFF = μαOFF · z
αON = μαON · z

For the inference, the production rates were drawn at the
beginning of the cell lifetime in a similar fashion for each
particle.
Using the same type of reporter model dynamics and

readouts as in the previous example, our goal in this case
was to infer the CTMC transition rates q1 and q2 (Fig. 2b),
the production rate log-mean of the ON cells μαON , the

dilution rate δ, the extrinsic noise σext and the measure-
ment variance σ 2, assuming the rest of the parameters to
be known (i.e. � = [

q1 q2 μαON δ σext σ 2]).
While in the first example system the tree-structure

information was essential for inference as the cell type can
only change at cell division, it was not equally obvious that
our method would outperform traditional inference on
independent single-cell trajectories in this example sys-
tem, where each daughter inherits the state of its mother
and then evolves independently. To verify this, we addi-
tionally performed parameter inference (using the same
MCMC sampler) by breaking up the tree into individual
cell trajectories and considering each cell independently
from the others (see Additional file 1), as is usually done
in conventional inference based on single-cell data.
To ensure that the MCMC chains converge to the same

region of the parameter space, we performed several inde-
pendent inference runs for each type of data by using the
same sampler settings. After obtaining sufficiently long
MCMC chains (Additional file 1: Figures S9 and S10) we
thinned the chains as described in Additional file 1. The
posterior distributions obtained from the thinned chains
from a single tree-based and trajectory-based inference
run are plotted and compared in Fig. 5. The posterior
distribution sets obtained from the multiple independent
MCMC runs are overlayed in Additional file 1: Figure S12.
It can be easily seen that posterior distributions based
on individual cell trajectories are in several cases biased,

Fig. 5 The proposed tree-based inference method outperforms the traditionally used inference on independent cell trajectories. Posterior
distributions of the six unknown parameters presented in Example 2, obtained both with tree-based (green) and trajectory-based inference (blue).
The red bars are positioned at the true parameter values (i.e. the ones used for data generation), while the dashed lines indicate the estimated
posterior means. The curves are obtained by smoothing of the normalized histograms of the MCMC samples. One can clearly observe the bias in the
parameter estimates when trajectory-based inference was used
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which indicates a potential disadvantage of the tradition-
ally used trajectory-based inference. More details about
the inference runs, including the prior distribution for the
parameters and the proposal kernels used in the MCMC
are given in Additional file 1, along with the running log-
likelihoods, autocorrelation plots and the pairwise scatter
plots of some of the samples. The raw data files produced
by some of the MCMC runs (including all the accepted
parameters and their corresponding log-likelihood values)
are given in Additional file 2.
The advantage of using lineage data instead of individual

trajectories for inference is that the uncertainty regarding
the initial conditions of the system states (xd(t),D(t), F(t))
of each cell is greatly reduced, since the prior of each
daughter state is based on the posterior of its mother.
On the contrary, when the cell trajectories are assumed
to be independent, the state of every cell has to be
independently initialized according to an assumed prior
(described in detail in Additional file 1). Moreover, when
the switching rates correspond tomean holding times that
exceed the lifetime of a single cell, inference based on a
relatively small number of single-cell trajectories will tend
to produce biased estimates, as our results show.

Conclusions
In this work we proposed a parameter inference method
for stochastic single-cell dynamics from tree-structured
data. More specifically, we considered a class of sys-
tems with one or more unobserved states and fluo-
rescent reporter readouts, observed through time-lapse
microscopy, which allows tracking individual cells and
their progeny over time. Our goal was to estimate the
posterior distribution of the unknown system parameters
given such readouts. To calculate the likelihood of the
data for a given parameter set, the hidden state trajecto-
ries had to be integrated out. This marginalization was
accomplished with the help of a sequential Monte Carlo
method, which recursively computes a sampling-based
estimate of this analytically intractable quantity. To sam-
ple the system parameter space, we employed an MCMC
scheme, which was able to target the correct parame-
ter posterior despite the noisy likelihood estimates. The
application of our method to two simple examples showed
that it can correctly infer the parameters of interest and
approximate their posterior distribution. Our algorithm
is currently implemented in C++ and an inference run
for the second example presented, consisting of 111,000
MCMC iterations, took about 24 h.
Our inference framework extends to more complex

applications in a straightforward manner (for instance
larger stochastic chemical reaction networks), although
its computational complexity increases with the state
and parameter dimensionality. More complex networks
will require heavier stochastic simulations, which take

a crucial part of the computations carried out in our
method. They will also require a larger number of parti-
cles to achieve a reasonable accuracy of the SMC-based
likelihood estimator. If the latter is too noisy, one may
observe slow mixing of the MCMC sampler and in turn
poor posterior estimates.
The choice of the MCMC sampler is also a critical issue

and depends on the features of the problem at hand,
such as the complexity of the target distribution. The
Metropolis-Hastings sampler was sufficiently well-suited
for the examples presented in this study, but may not be
the best choice for every problem. To apply our inference
framework onmore complex problems, different samplers
might need to be employed, with better and more effec-
tive convergence and parameter exploration properties. In
some cases the model structure might also not be com-
pletely known a priori and model selection should be per-
formed to discriminate among several candidate model
structures. Bayesian model selection requires the com-
putation of the evidence (marginal likelihood) for each
candidate model, which will demand much more power-
ful and sophisticated samplers than the MCMC sampler
presented here. Model selection is, however, beyond the
scope of this work.
The inference framework presented here could be very

useful in the case of systems where accurate tracking of
single-cell dynamics across cell lineages plays an impor-
tant role. These are, for example, systems involved in
stem cell fate decisions, or stochastic phenotype switch-
ing in bacteria [8, 10]. In many such cases, stochastic
fluctuations of key factors over long timescales and/or
stochastic events taking place at cell division create strong
mother-daughter and daughter-daughter correlations that
play a crucial role in determining the overall behavior
of a colony. In such cases, treatment of the measured
single-cell trajectories independently from each other will
result a large loss of information and biased parameter
estimates. We believe that proper incorporation of the
population lineage information into the parameter infer-
ence problem will thus provide the right framework for
treating this type of systems and may reveal important
insights into their function.

Additional files

Additional file 1: Further details about the examples presented. (PDF
6448 kb)

Additional file 2: A ZIP file containing the raw datasets obtained from the
MCMC runs presented. (ZIP 449 kb)
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