"Hypodense Holes" and the Ocular Glymphatic System

Wostyn, Peter; De Groot, Veva; Van Dam, Debby; Audenaert, Kurt; De Deyn, Peter Paul; Killer, Hanspeter Esriel

Published in:
Investigative ophthalmology & visual science

DOI:
10.1167/iovs.16-21143

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2017

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
“Hypodense Holes” and the Ocular Glymphatic System: Author Response: “Black Holes” and the Ocular Glymphatic System

We would like to acknowledge our appreciation for Denniston and Keane for their thoughtful and generous comments on our letter. Their statement that their hypothesis of the existence of an “ocular glymphatic system,” published in early June 2015 in *Investigative Ophthalmology & Visual Science*, bears resemblance to cosmologic predictions of the existence of “black holes” may, at first sight, seem to be purely metaphoric. However, there may be a surprising realistic relationship between “holes” in the retinal nerve fiber layer (RNFL) and the ocular glymphatic system.

As noted as a personal communication in our hypothesis paper published in June 2015 in *Fluids and Barriers of the CNS*, we had already discussed the possibility of glymphatics in the optic nerve with Illiff in 2013. Xin et al. had previously reported hypodense regions, which looked like holes, in the RNFL of frequency-domain optical coherence tomography (OCT) scans of glaucoma patients and suspects. These holes were typically located adjacent to major blood vessels. In a follow-up study by the same group, eyes from glaucoma patients or suspects previously identified as having holes were studied with en face slab analysis of wide-field swept-source OCT scans. The eyes exhibited paravascular defects even in the absence of epiretinal membranes or high myopia. The authors defined a paravascular defect as a break in the RNFL that extends at least over three B-scans (0.11 mm) along a blood vessel. The paravascular defects appeared as holes or fissures, which followed the course of the blood vessel, as previously described for paravascular inner retinal defects seen with OCT line scans near blood vessels in individuals with high myopia and/or epiretinal membranes. The authors did not have a satisfactory explanation for why the holes tended to appear near blood vessels. One possibility was that a local loss of axons might create a local mechanical force that pulls axons away from the nearest vessel. Here, we propose a possible alternative explanation based on extrapolation of the findings in the brain to the retina.

In particular, we raise the question of whether the hyporeflective regions (holes) in the RNFL seen on circum-papillary OCT images of glaucoma patients and suspects could be dilated paravascular spaces analogous to the described dilated Virchow-Robin spaces (VRSs) in the brain. Dependent on their orientation and plane of imaging, enlarged VRSs appear as dots or stripes on magnetic resonance imaging (Fig.). The mechanisms of dilated VRSs are still not well understood, but several different theories have been postulated. Evidence indicates that the VRSs have an important role in the homeostasis of cerebral fluids in the central nervous system, and suggests a possible correlation between VRS enlargement and a disturbance of cerebrospinal fluid (CSF) dynamics. Indeed, if CSF outflow is reduced as a consequence of either CSF obstruction or cerebral artery pulsatility inefficiency, or cerebrospinal venous insufficiency and lymphatic disorders, local perivascular CSF recirculation may be impaired and, consequently, the VRSs may dilate due to fluid retention. Given that distension of the VRSs may be related to the fluid retention in and along the paravascular circulation, and given that recent evidence suggests the existence of a glymphatic system in human retina (Hu P, et al. *IOVS* 2016;57:ARVO E-Abstract 996), we postulate that at least some holes in the RNFL and some defects along blood vessels seen in glaucoma patients and suspects could result from ocular glymphatic pathway dysfunction. Obviously, additional research is needed to substantiate this view, and other explanations could also account for these findings in glaucoma patients and suspects.

Peter Wostyn
Vera De Groot
Debby Van Dam
Kurt Audenaert
Peter Paul De Deyn
Hanspeter Esriel Killer

1Department of Psychiatry, PC Sint-Amandus, Beernem, Belgium; 2Department of Ophthalmology, Antwerp University Hospital, Antwerp, Belgium; 3Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Department of Biomedical Sciences, Antwerp, Belgium; 4Department of Neurology and Alzheimer Research Center, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands; 5Department of Psychiatry, Ghent University Hospital, Ghent, Belgium; 6Department of Neurology and Memory Clinic, Middelheim General Hospital (ZNA), Antwerp, Belgium; and the 7Department of Ophthalmology, Kantonsspital Aarau, Aarau, Switzerland.

E-mail: wostyn.peter@skynet.be

References

1. Denniston AK, Keane PA. “Black holes” and the ocular glymphatic system: author response to “the glymphatic system:

Citation: *Invest Ophthalmol Vis Sci.* 2017;58:1132–1133. doi:10.1167/iovs.16-21143