Mastering data pre-processing for accurate quantitative molecular profiling with liquid chromatography coupled to mass spectrometry
Mitra, Vikram

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2017

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Mitra, V. (2017). Mastering data pre-processing for accurate quantitative molecular profiling with liquid chromatography coupled to mass spectrometry [Groningen]: University of Groningen

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Download date: 26-12-2018
Mastering data pre-processing for accurate quantitative molecular profiling with liquid chromatography coupled to mass spectrometry

PhD thesis

to obtain the degree of PhD at the University of Groningen on the authority of the Rector Magnificus Prof. E. Sterken and in accordance with the decision by the College of Deans.

This thesis will be defended in public on

Monday 3 July 2017 at 09.00 hours

by

Vikram Mitra

born on 3 July 1985 in Kolkata, India
Supervisors
Prof. P.L. Horvatovich
Prof. R.P.H. Bischoff
Prof. A.K. Smilde

Assessment Committee
Prof. M. Biehl
Prof. L. Martens
Prof. G.L. Corthals
Table of contents

Table of contents

Chapter 1. General Introduction ... 5
 1.1 Data pre-processing steps involved in analysis of label-free LC-MS/MS proteomics datasets 9
 1.2 Scope of the thesis ... 10
 REFERENCES .. 12

Chapter 2. Monotonic shifts and orthogonality in single-stage LC-MS/(MS) data.......................... 16
 2.1 Abstract ... 16
 2.2 Introduction ... 17
 2.3 Accurate alignment of single-stage LC-MS/(MS) data ... 22
 2.4 Causes for shifts and orthogonality in single-stage LC-MS data .. 28
 2.5 Conclusion ... 39
 REFERENCES .. 41

Chapter 3. Inversion of peak elution order prevents uniform time alignment of complex liquid-
 chromatography coupled to mass spectrometry datasets ... 48
 3.1 Abstract ... 48
 3.2 Introduction ... 49
 3.3 Materials and Methods ... 52
 3.4 Theory .. 52
 3.5 Results and Discussions ... 58
 3.6 Conclusion and outlook ... 72
 REFERENCES .. 74

Chapter 4. Assessment of identification transfer in data dependent LC-MS/MS experiments 78
 4.1 Abstract ... 78
 4.2 Introduction ... 80
 4.3 Materials and Method .. 82
 4.4 Results ... 86
 4.5 Conclusion ... 95
 REFERENCES .. 98

Chapter 5. Identification of analytical factors affecting complex proteomics profiles acquired in a
 factorial design study with ANOVA – simultaneous component analysis .. 102
 5.1 Abstract ... 102
 5.2 Introduction ... 104
 5.3 Methods ... 106
 5.4 Sample preparation and description of experimental factors ... 108
 5.5 LC-MS Analysis .. 110
 5.6 ASCA analysis ... 111
 5.7 Results & Discussions ... 112
 5.8 Conclusion ... 120
 REFERENCES .. 122

Chapter 6. Summary and future outlook ... 124
 REFERENCES .. 127

Dutch Summary (Samenvatting) ... 130

Supporting information for chapter 3 ... 135
 RAT CSF sampling and LC-MS acquisition .. 135
 Mouse experimental design dataset ... 138
 Monte-Carlo simulated dataset .. 141
 Detailed description of the time alignment algorithm ... 142