Synchronization of Pulse-Coupled Oscillators and Clocks under Minimal Connectivity Assumptions

Anton Proskurnikov, Member, IEEE, Ming Cao, Senior Member, IEEE

Abstract—Populations of flashing fireflies, claps of applauding audience, cells of cardiac and circadian pacemakers reach synchrony via event-triggered interactions, referred to as pulse couplings. Synchronization via pulse coupling is widely used in wireless sensor networks, providing clock synchronization with parsimonious packet exchanges. In spite of serious attention paid to networks of pulse coupled oscillators, there is a lack of mathematical results, addressing networks with general communication topologies and general phase-response curves of the oscillators. The most general results of this type (Wang et al., 2012, 2015) establish synchronization of oscillators with a delay-advance phase-response curve over strongly connected networks. In this paper we extend this result by relaxing the connectivity condition to the existence of a root node (or a directed spanning tree) in the graph. This condition is also necessary for synchronization.

Index Terms—Pulse-coupled oscillators, complex networks, synchronization, event-triggered control, hybrid systems.

I. INTRODUCTION

Recent progress in electronic engineering has opened up the possibility of large scale control systems, whose components are spatially distributed over large areas. The necessity to use communication and energy-supply resources “parsimoniously” has given rise to rapidly growing theories of control under limited data-rate [2] and event-triggered control [3], [4].

Many control and coordination algorithms, facing communication and computational constraints, have been inspired by natural phenomena, discovered long before the “network boom” in control. Early studies of the phenomenon of synchronous flashing in large populations of male fireflies in the dark [5] have disclosed a vision-based distributed protocol, enabling fireflies to synchronize their internal “clocks”: “each individual apparently took his cue to flash from his more immediate neighbors, so that the mass flash took the form of a very rapid chain of overlapping flashes...” [5, p. 310]. In a similar way the claps of many hands synchronize into rhythmic applause [6]. Later works revealed the role of such event-based interactions, referred to as the pulse coupling, in synchronization of neural networks [7], in particular, the cells of cardiac [8] and circadian [9] pacemakers. Self-synchronizing networks of biological pulse-coupled oscillators (PCO) have inspired efficient algorithms for clock synchronization in wireless networks [10]–[14], substantially reducing communication between the nodes and increasing the network’s reliability.

The influential papers [15], [16], addressing the dynamics of PCO networks, attracted extensive attention from applied mathematicians, physicists and engineers, since ensembles of PCO give an instructive model of self-organization in complex systems, composed of very simple units. Each unit of the ensemble is a system, which operates in a small vicinity of a stable limit cycle and is naturally represented by a scalar phase variable [17]. An oscillator’s phase varies in a bounded interval; upon achieving its maximum, the phase is reset to the minimal value. At this time the oscillator fires an event, e.g. emitting electric pulse or other stimulus. The length of these pulses is usually neglected since they are very short, compared to the oscillators’ periods. In other words, unlike Kuramoto networks and other diffusively coupled oscillator ensembles [18], the interactions of PCO are event-triggered. The effect of a stimulus from a neighboring oscillator on an oscillator’s trajectory is modeled by a phase shift, characterized by the nonlinear phase response curve (PRC) mapping [17], [19].

In spite of significant interest to dynamics of PCO networks, the relevant mathematical results are very limited. Assuming that the oscillators are weakly coupled, the hybrid dynamics of PCO networks can be approximated by the Kuramoto model [12], [14], [16] that has been thoroughly studied [18]. The analytic results for general couplings are mostly confined to networks with special graphs [15], [20]–[22], providing a fixed order of the oscillators’ firing. In recent papers [13], [23] synchronization criteria over general strongly connected graphs have been obtained, assuming that oscillators’ PRC maps are delay-advance [7] and the deviations between the initial phases are less than a half of the oscillators’ period. The main idea of the proof in [13], [23] is the contracting property of the network dynamics under the assumption of delay-advance PRC, enabling one to use the maximal distance between the phases (the ensemble’s “diameter”) as a Lyapunov function; this approach is widely used in the analysis of Kuramoto networks [24], [25].

In this paper, we further develop the approach from [13], [23], relaxing the strong connectivity assumption to the existence of a directed spanning tree (or root node) in the interaction graph, which is also necessary for synchronization. Also, unlike [12], [14] the delay-advance PRC maps are not restricted to be piecewise-linear and can be heterogeneous. Both extensions are important. Biological oscillator networks are usually “densely” connected (so the strong connectivity assumption is not very restrictive), but the piecewise linearity of PRC maps is an impractical condition. In clock synchro-
ORIZATION problems the PRC map can be chosen piecewise-linear, but the requirement of strong connectivity excludes many natural communication graphs (e.g. the star-shaped graph with the single “master” clock and several “slaves”).

The paper is organized as follows. Preliminary Section II introduces technical concepts and notation. The mathematical model of PCO networks is introduced in Section III. Main results are formulated in Section IV and confirmed in Section V by numerical simulations. Section VI concludes the paper.

II. PRELIMINARIES AND NOTATION

Given $t_0 \in \mathbb{R}$ and a function $f(\cdot)$, defined at least on the interval $(t_0 - \varepsilon_0; t_0)$ for $\varepsilon_0 > 0$ sufficiently small, let $f(t_0 -) \equiv \lim_{t \to t_0; t < t_0} f(t)$. If $f(t_0 -) = f(t_0)$, we say $f(\cdot)$ is left-continuous at t_0. The limit $f(t_0 +)$ and right-continuity are defined similarly. A function $f : [0; +\infty) \to \mathbb{R}$ is piecewise continuous, if it is continuous at any $t \geq 0$ except for a sequence $\{t_n\}_{n=1}^{\infty}$, such that $t_n \to \infty$ and at each of the points t_n the left and right limits $f(t_n -), f(t_n +)$ exist.

We denote the unit circle on the complex plane by $S^1 = \{z \in \mathbb{C} : |z| = 1\}$. Given $\varphi \in \mathbb{R}$, $e^{i\varphi} = \cos \varphi + i \sin \varphi \in S^1$. Here i stands for the imaginary unit, $i^2 = -1$.

A (directed) graph is a pair (V, E), where V and $E \subseteq V \times V$ are finite sets, whose elements are referred to as the nodes and arcs respectively. A walk in the graph is a sequence of nodes v_1, v_2, \ldots, v_k where consecutive nodes are connected by arcs $(v_i, v_{i+1}) \in E$. A root is a node, from which the walks to all other nodes exist. A graph having a root is called rooted (this is equivalent to the existence of a directed spanning tree); a graph in which any node is a root is called strongly connected.

III. THE PROBLEM SETUP

An oscillator with frequency $\omega > 0$ (or, equivalently, period $T = 2\pi/\omega$) is a dynamical system $\dot{x}(t) = f(x(t))$ with an exponentially stable T-periodic limit cycle $x^0(t) = x^0(t+T)$. Any solution $x(t)$, staying in the cycle’s basin of attraction, converges as $t \to \infty$ to the function $x^0(\theta(t)/\omega)$. Here $\theta(t) \in [0; 2\pi)$ is a piecewise-linear function, referred to as phase and treated as a “normalized time, evolving on the unit circle” [17]. The phase grows linearly until it reaches 2π and then is reset:

$$\theta(t) = \omega \quad \text{while} \quad \theta(t) < 2\pi,$$

$$\theta(t+ \pi) = 0 \quad \text{if} \quad \theta(t) = 2\pi. \quad (1) \quad (2)$$

In this paper we deal with ensembles of multiple oscillators (1), whose interactions are event triggered. Upon resetting, an oscillator fires an event by sending out some stimulus such as a short electric pulse or message. If an oscillator receives a stimulus from one of its neighbors, its phase jumps

$$\theta(t+ \pi) = \Psi(\theta(t- \pi)) \quad \text{mod} \ 2\pi, \quad \Psi(\theta) \equiv \theta + c\Phi(\theta), \quad (3)$$

after which the “free run” (1) continues. Typically it is assumed that $\Phi(0) = \Phi(2\pi) = 0$ so that if an oscillator is triggering an event at time t, then the stimuli received from the remaining oscillators do not violate (2). The map $\Psi : [0; 2\pi] \to \mathbb{R}$ is referred to as the oscillator’s phase transition curve (PTC) [7]. The PTC is determined as in (3) by

the map $\Phi : [0; 2\pi] \to \mathbb{R}$, referred to as the phase response (or resetting) curve (PRC) [7], [19], and the scalar coupling gain $c > 0$. In networks of biological oscillators, the PRC maps depend on the stimuli waveforms and the gain c depends on the stimulus’ intensity [7], [17], [19], [26]. In time synchronization problems [10], [13], [14] the PRC map Ψ and the coupling gain c are the parameters to be designed.

Henceforth we assume, following [21], that $k > 1$ simultaneous events, affecting an oscillator, superpose as follows

$$\theta(t+ \pi) = \Psi^k(\theta(t- \pi)) \quad \text{mod} \ 2\pi, \quad \Psi^k \equiv \Psi \circ \Psi \circ \ldots \circ \Psi, \quad (4) \quad k \text{ times}$$

Taking $\Psi(0) \equiv \theta$, (4) holds for $k = 0$: if the neighbors fire no events, the phase is continuous unless it has reached 2π. Note that $\theta(t+ \pi) < 2\pi$ at any point; in particular, the oscillator cannot be forced to fire due to its neighbors’ stimuli.

At the points of discontinuity one can define $\theta(t)$ arbitrarily; for definiteness, we suppose that $\theta(t) = \theta(t- \pi) \in [0; 2\pi]$. We also allow the initial phase $\theta(0) = 2\pi$: the oscillator fires an event and is immediately reset to 0.

A. Mathematical model of the PCO network

Consider a team of $N > 1$ oscillators of the same period $T = 2\pi/\omega$ and PTC mappings $\Psi_1(\theta), \ldots, \Psi_N(\theta)$, corresponding to PRC maps Φ_i and coupling gains $c_i > 0$. The vector of oscillators’ phases is denoted by $\theta(t) \equiv (\theta_1(t), \ldots, \Psi_N(\theta))$, (5)

$\theta(t+ \pi) = \psi(\theta(t)) \quad \text{mod} \ 2\pi \quad \text{if} \quad \theta(0) \notin \emptyset, \quad (6)$

$$\Psi(\theta_1, \ldots, \theta_N) \equiv \left(\psi(\theta_1), \ldots, \Psi_N(\theta_N)\right), \quad (7)$$

$$\theta(t) \equiv \{j ; \theta_j = 2\pi\}, \quad t_k = k(\theta) \equiv |I(\theta) \cap N|, \quad (8)$$

Here $| \cdot |$ denotes the cardinality of a set. The phases obey (1) until some oscillators fire; $I(\theta(t)) \notin \emptyset$ stands for the set of their indices. Oscillator i is affected by $k_i > 0$ firing neighbors, and its phase jumps in accordance with (4). If $k_i = 0$ then $\theta_i(t+ \pi) < 2\pi$ (since $i \in N_i$) and $\theta_i(t)$ is continuous at t.

Definition 1: A function $\theta : \Delta \to [0; 2\pi]$ is said to be a solution to the system (5), (6) on the interval $\Delta \subseteq [0; \infty)$ if the following conditions hold

1) on any compact interval $\Delta' \subseteq \Delta$ only a finite number of events are fired $|\Delta' \cap \{t : I(\theta(t)) \notin \emptyset\}| < \infty$;

2) the function $\theta(t)$ is left-continuous and obeys (5) at any $t \geq 0$ except for the points where some oscillators fire; at such points $\theta(t)$ switches in accordance with (6).

1Dealing with “weakly coupled” PCO networks ($c \approx 0$) (4) is often replaced by the additive rule $\theta(t+ \pi) = \theta(t) + c\Phi(\theta(t))$ mod 2π, enabling one to approximate the PCO network by the Kuramoto model [16].
Assumption 1: The mappings $\bar{\Psi}$ are continuous on $[0; 2\pi) \setminus \{\pi\}$, satisfying the conditions $\bar{\Psi}(0) = 0$, $\bar{\Psi}(2\pi) = 2\pi$ and

$$\bar{\Psi}(\theta) \in (\theta; \theta + 2\pi) \forall \theta \in (0; \pi), \quad \bar{\Psi}(\theta) \in (\theta; 2\pi) \forall \theta \in (\pi; 2\pi).$$

Assumption 1 is illustrated by Fig. 1. The ith “clock” is delayed by the phase jump (4) if it is ahead of its firing neighbors (Fig. 1, left part) and advanced if it is behind them (Fig. 1, right part). Such operations do not lead to “overshoots”: a “retarding” oscillator cannot overrun its neighbors and become “advancing”, and vice versa. A firing oscillator is not influenced by the others’ events since $\Psi_i(2\pi) \equiv 2\pi$.

Assumption 1 holds, in particular, for PCOs with coupling gains $c_i \in (0; 1)$ and piecewise-linear PRC maps

$$\Phi_i(\theta) = \ldots = \Phi_N(\theta) = \begin{cases} -\theta, & \theta \in [0; \pi) \\ 2\pi - \theta, & \theta \in (\pi; 2\pi] \end{cases} \quad \text{any}, \quad \theta = \pi.$$

Such a choice of the PRC map appears to be the most natural in time synchronization problems [12], [14], [22], [23]. More generally, the PRC map $\Phi(\theta)$ is called delay-advance [13] if $\Phi(\theta) < 0$ for $\theta \in [0; \pi)$ and $\Phi(\theta) > 0$ when $\theta \in (\pi; 2\pi]$. Mathematical models of natural oscillators with delay-advance PR include, but are not limited to, “isochron clocks” [20] and the Andronov-Hopf oscillator [7]. Assumption 1 holds for sufficiently small $c_i > 0$ if Φ_i are delay-advance and

$$\inf_{\theta \in (0; \pi)} \frac{\Phi_i(\theta)}{\theta} > -\infty \quad \text{and} \quad \sup_{\theta \in (\pi; 2\pi]} \frac{\Phi_i(\theta)}{2\pi - \theta} < \infty \forall i.$$

To introduce our second assumption, restricting oscillators to be “partially synchronous”, we need a technical definition.

Definition 3: An arc of S^1 is a closed connected subset $L \subseteq S^1$. Given a vector of phases $\tilde{\theta} = (\theta_i)_{i=1}^N$, its diameter $d(\tilde{\theta})$ is the length of the shortest arc, containing the set $\{e^{i\theta_i}\}_{i=1}^N$.

The definition of diameter is illustrated by Fig. 2: one of the two shortest arcs, containing the phases, is drawn in red.

Assumption 2: The initial phases of the oscillators are “partially synchronized”, satisfying the inequality

$$d(\tilde{\theta}(0)) < \pi. \quad (11)$$

Remark 2: The “partial synchronization” Assumption 2 can be relaxed in some special situations [15], [20], but generally cannot be fully discarded. The simplest example is a network of $N = 2$ coupled oscillators, whose PRC maps Φ_1, Φ_2 satisfy the condition $\Phi_1(\pi) = \Phi_2(\pi) = 0$. Then the solution, starting at $(\theta_1(0), \theta_2(0)) = (0; \pi)$, is T-periodic and $d(\tilde{\theta}(t)) \equiv \pi$. Conditions similar to (11) are often adopted to prove the synchronization of diffusively coupled oscillators [18].

IV. MAIN RESULT

We start with establishing basic properties of the dynamical network (5), (6) (Subsect. IV-A) and then prove the main result of the paper, ensuring synchronization (Subsect. IV-B).

Our method extends the idea of the diameter Lyapunov function, used to prove stability of multi-agent coordination protocols [28], to the hybrid system (5), (6). We show that the diameter $d(\tilde{\theta}(t))$ of the oscillator ensemble is non-increasing and, furthermore, there exists a period T_N, independent of the initial condition, such that $d(\tilde{\theta}(T_N)) - d(\tilde{\theta}(0)) < 0$ unless $d(\tilde{\theta}(0)) = 0$. The key idea is to establish the LaSalle-type result for the hybrid system (5), (6) and the Lyapunov function $d(\cdot)$, stating that any solution converges to the synchronous manifold $\{\theta \in [0; 2\pi]^N : d(\theta) = 0\}$. In the existing literature [13], [23], this is done via a straightforward estimation of the diameter’s decrease $d(\tilde{\theta}(T_N)) - d(\tilde{\theta}(0))$, employing the special structure of PRC maps and the strong connectivity of the graph. We extend these results to the case of rooted graph and general delay-advanced PRC maps, deriving the mentioned LaSalle-type result from the continuity of the trajectory with respect to the initial condition.

A. Basic properties of the solutions

We first show existence and uniqueness of solutions to the system (5), (6) and establish their basic properties.

Theorem 1: Under Assumption 1, for any initial condition $\tilde{\theta}(0) \in [0; 2\pi]^N$ the following statements hold:
1) the solution to (5), (6) exists on $[0; \infty)$ and is unique;
2) if some oscillator fires two consecutive events at instants $t' > 0$ and $t'' > t'$ respectively, then $t'' - t' > T/2$;
If the initial condition satisfies the inequality (11), then
3) the diameter function $d(t) \equiv d(\hat{\theta}(t))$ is non-increasing;
4) let $L(t) = L(\hat{\theta}(t))$ be the arc of the minimal length, containing $\{e^{i\theta(t_j)}\}_{j=1}^N$, then $L(t) \leq e^{k_0(t-t_0)}L(t_0)$ and $L(t_0+\varepsilon) \subseteq L(t_0)$ whenever $t > t_0 \geq 0$;
5) for any $s \geq 0$ each oscillator fires on $(s; s + 3T/2)$.

Remark 3: The problem of solution existence has been studied in [22] (Proposition 4) and [23] (Proposition 1), using the general framework of hybrid systems theory [27]. However, as discussed in Remark 1, these results do not imply the existence of solutions in the sense of Definition 1. The proofs of Theorem 1 in [13] and Theorem 1 in [23] contain in fact statements 3) and 4) for special PRC maps (10). However, the proof of Theorem 1 for general delay-advance oscillators seems not to be available in the literature.

The proof of Theorem 1 relies on the following proposition, proved in Appendix A.

Proposition 1: For a vector $\xi \in [0; 2\pi]^N$, denote

$$\xi^+ \equiv \Psi(\xi) \mod 2\pi, \quad \delta_0 \equiv T - \omega^{-1}\max_{i} \xi^+ > 0.$$

Then on the interval $\Delta_0 = [0; \delta_0]$ the system (5), (6) has a unique solution with the initial condition $\hat{\theta}(0) = \xi$. On $[0; \delta_0]$ no events are fired (events at time $t = 0$ are possible).

Proof of Theorem 1: We start with proving the implication: if the system has a solution (defined on some interval) then for this solution statement 2) holds. We are going to prove a more general fact: if a solution $\hat{\theta}(\cdot)$ exists on $[t'; t]$, where $t' < t$ and $0 \leq \hat{\theta}(t') \leq \pi - \omega(t-t')$ for some i, then

$$0 < \hat{\theta}(t) \leq \hat{\theta}(t') + \omega(t-t').$$

(12)

In particular, if $\hat{\theta}(t') = 0$ and $t - t' \leq T/2$, then $\hat{\theta}(t) \leq \pi$ and thus oscillator i cannot fire at time t. To prove (12), recall that by Definition 1 only a finite number of events are fired between t' and t. Denote the corresponding instants $t_1 < \ldots < t_n$. Since $\hat{\theta}(t_1) = \hat{\theta}(t' +) + \omega(t_1 - t') \in [0; \pi]$ and thus $0 \leq \hat{\theta}(t_1 +) \leq \hat{\theta}(t_1)$.

Iterating this procedure for t_2, \ldots, t_n, one obtains that $0 \leq \hat{\theta}(t_n) \leq \omega(t_n - t') + \hat{\theta}(t') \leq \pi$, which entails (12) since $\hat{\theta}(t) = \hat{\theta}(t_n +) + \omega(t - t_n)$.

To prove statement 1), we invoke Proposition 1, showing that the solution exists and is unique on $\Delta = [0; \delta]$ for $\delta > 0$ is sufficiently small. Consider the maximal interval $\Delta = [0; \delta)$ with this property. We are going to show that $\delta = \infty$. Suppose on the contrary that $\delta < \infty$. Statement 2) shows that each oscillator fires a finite number of events (at most $[2\delta/T]$) on Δ. Denoting the last event instant by t_s, the phases obey (5) on (t_s, δ) and hence the limit $\hat{\theta}(\delta) \equiv \hat{\theta}(\delta-) \in [0; 2\pi]^N$ is defined. Applying Proposition 1 to $\xi \equiv \hat{\theta}(\delta)$, the solution is prolonged uniquely to $[\delta; \delta + \varepsilon]$ for small $\varepsilon > 0$ and one arrives at a contradiction. Statement 1) is proved.

Comments 3) and 4) are proved analogously to the inequality (12). If $d(t) < \pi$ at the instant when some oscillators fire, then $L(t+) \subseteq L(t)$ and thus $d(t+) \leq d(t)$ thanks to Assumption 1 since the new phases $\theta_i(t+)$ belongs to $L(t)$ (see Fig. 1). Considering any interval $[t'; t]$ (where $t' < t$) and the instants of events $t_1 < \ldots < t_n \leq t$, one has

$$L(t) = e^{k_0(t-t_n)}L(t_n+) \subseteq e^{k_0(t-t_n)}L(t_n) \subseteq e^{k_0(t-t_{n-1})}L(t_{n-1}) \subseteq \cdots \subseteq e^{k_0(t-t_1)}L(t_1) \subseteq e^{k_0(t-t')}L(t').$$

(13)

It remains to prove statement 5). Retracing the proof of (12), one proves that if $\hat{\theta}_i(s) \in (\pi; 2\pi)$ for all i and each oscillator fires during the interval $\Delta \leq \pi > s + T/2$, then

$$\phi_i(t) \geq \phi_i(t') + \omega(t-t').$$

(14)

Hence if $\phi_i(t') \in \{\pi; 2\pi\}$, oscillator i fires on $[t'; t + T/2]$. For any $s > 0$ there exists such $\pi \in [0; T]$ that $L(s + \pi) = e^{k_{\pi}r}L(s + \pi)$ (Fig. 3). Thus $\phi_i(s + \pi) \in (\pi; 2\pi)$ for any i, and therefore each oscillator fires during the interval $(s + \pi; s + T/2) \subseteq (s; s + 3T/2)$.

Remark 4: Statements 2) and 5) of Theorem 1 show that under Assumptions 1 and 2 the time elapsed between two consecutive events, fired by the same oscillator, lies strictly between $T/2$ and $3T/2$. Both bounds are tight and cannot be relaxed, as demonstrated by the following example.

Example 1: Consider a network of two oscillators $(N = 2)$ with $T = 2\pi$, PRC map (10) and gain $c \in (0; 1)$, whose graph contains only the arc $2 \Rightarrow 1$. Starting at $\hat{\theta}(0) = 0$ and $\hat{\theta}_2(0) = \pi$, oscillator 2 fires at time $t_2 = 2\pi - \pi < \phi_2$ and $\hat{\theta}_1(t_2 +) = (1 - c)\hat{\theta}_2$. Hence the next event is fired by oscillator 1 at time $t_1 + 2\pi - (1 - c)t_1 = 2\pi + c(2\pi - \phi_2)$. Thus $\hat{\theta}_2 < \phi_2$, then $t_n > \pi$ and $\hat{\theta}_1(t_n +) = (1 - c)\hat{\theta}_2 + c\pi$. Thus oscillator 1 fires the next event at $t = t_n + (1 - c)\hat{\theta}_2 = 2\pi - c\pi$. When $c \approx 1$ and $\pi \approx \omega$ the time elapsed between two events of oscillator 1 can be arbitrarily close to both $T/2$ and $3T/2$.

Henceforth we confine ourselves to the trajectories satisfying Assumption 2. It appears that such trajectories continuously depend on the initial conditions in the following sense. For a given solution $\theta(t)$, let $t_{ik} = t_{ik}^\theta[\theta(0)]$ stand for the time instant when oscillator i fires its kth event.

Lemma 1: Suppose that Assumption 1 holds. Consider a sequence of solutions $\hat{\theta}^{(n)}(t)$ such that $\hat{\theta}^{(n)}(0) \xrightarrow{n \to \infty} \hat{\theta}(0)$, where $d(\hat{\theta}(0)) < \pi$. Then $t_{ik}^{(n)} \equiv t_{ik}^{\hat{\theta}^{(n)}(0)} \xrightarrow{n \to \infty} t_{ik}^{\hat{\theta}(0)}$. Furthermore, $\hat{\theta}^{(n)}(t) \xrightarrow{n \to \infty} \hat{\theta}(t)$ whenever $t \neq t_{ik}$ for all i, k.

To prove Lemma 1, we use a technical proposition, which is based on Assumption 1 and proved in Appendix A.

Proposition 2: For any $d_\ast < \pi$ and $\delta > 0$ there exists $\tau = \tau(\delta, \delta) > 0$ such that if $\theta(0) \leq 2\pi - \delta$ and $d(\hat{\theta}(0)) < d_\ast$, then oscillator i fires at no earlier than $t = \tau$ (i.e. $t_{ii} \geq \tau$).
Proposition 2 has the following corollary, entailing that the “leading” oscillators, whose initial phases are sufficiently close to the maximal one, fire earlier than the remaining oscillators.

Corollary 1: For any \(d_n < \pi, \delta > 0 \) there exists \(\varepsilon = \varepsilon(\delta, d_n) > 0 \) with the following property: for the phases satisfying the condition \(\theta_1(0) \geq \cdots \geq \theta_m(0) \geq \theta_1(0) - \varepsilon \) and \(\theta_{m+1}(0), \ldots, \theta_N(0) \leq \theta_1(0) - \delta \), oscillators \(1, \ldots, m \) fire earlier than the remaining ones; moreover, \(t_\star \leq t_n \leq t_\star + \omega^{-1} \varepsilon < t_j \) whenever \(1 \leq i \leq m < j \leq N \). Here \(t_\star = T - \omega^{-1} \theta_1(0) \) stands for the instant of first event.

Proof: Obviously, oscillator 1 fires at time \(t_{j_1} = t_\star \), and the phases obey (5) until its event. Since \(\theta_j(t_n) > 2\pi - \delta \) for \(j > m \), one has \(t_{j_1} > t_\star + \tau \), where \(\tau = \pi(\delta, d_n) \) is defined in Proposition 2. Choosing \(\varepsilon < \min(\omega \tau, \pi) \), one notices that \(\theta_j(t_n) > 2\pi - \varepsilon \) for \(i = 1, \ldots, m \). Using (14), oscillator \(i \) fires at time \(t_{j_1} \leq t_n + \omega^{-1} \varepsilon < t_j \), which ends the proof.

We are now ready to prove Lemma 1.

Proof of Lemma 1: For the solution \(\theta(t) \), let \(\tau_1 < \tau_2 < \cdots < \tau_n \) be the instants when some oscillators fire, i.e. \(I_1(\theta(\tau_1)) \neq 0 \). Without loss of generality, one may assume that \(I_1 = \{1, \ldots, m\} \), i.e. \(\theta_i(0) = \cdots = \theta_m(0) > \theta_{m+1}(0) \) for any \(j > m \). Notice first that \(\theta_i(0) + \omega t_n \rightarrow \theta_i(0) \) for any \(t \in [0; \tau_1] \). Indeed, \(\tau_1 = T - \omega^{-1} \theta_i(0) > t \) implies that \(T - \omega^{-1} \max \theta_i(0) > t \) for large \(n \), and hence \(\theta_i(0) + \omega t_n \rightarrow \theta_i(0) + \omega t = \theta_i(0) \) for any \(i \).

Applying Corollary 1, one proves that \(t_{j}^{(n)} \rightarrow \tau_1 \) for any \(i \leq m \) and \(t_{j}^{(n)} \leq \max_{i \leq m} t_{j}^{(n)}(0) < \min_{i > m} t_{j}^{(n)}(0) \). Using (12), one shows that \(t_{j}^{(n)}(t_{j}^{(n)}(0) + \omega \theta_{m}(t_n)) \rightarrow \theta_j(t_{j}^{(n)}(0)) \) for any \(t \in [0; \tau_1] \) and \(\theta_j(t_{j}^{(n)}(0)) \) for large \(n \). The same holds for the remaining phases \(\theta_j(j_{\star}^{(n)} + \omega t_n) \rightarrow \theta_j(j_{\star} + \omega t_n) \) (where \(j_{\star} > m \)) since the cumulative effect of all events separated, by infinitesimally small time periods, is the same as that of \(m \) simultaneous events. Thus we have proved that \(\theta_j(j_{\star}^{(n)} + \omega t_n) \rightarrow \theta_j(j_{\star} + \omega t_n) \).

We now can iterate this procedure, replacing \(\theta(t) \) and \(\bar{\theta}(t) \) with, respectively, \(\bar{\theta}(j_{\star}) \) and \(\bar{\theta}(j_{\star} + \omega t_n) \). One shows that \(\bar{\theta}(j_{\star}) \rightarrow \bar{\theta}(t) \) for any \(t \in [\tau_1, \tau_2] \) and for large \(n \) the group of oscillators with indices from \(I_2 \) fires their events at times converging to \(\tau_2 \). The value of the \(n \)th state \(\bar{\theta}(n) \) after the last of these events converges to \(\bar{\theta}(\tau_2) \), and so on.

B. Synchronization criterion

Up to now, we have not assumed any connectivity properties, required to provide the oscillators’ synchronization. The minimal assumption of this type is the existence of a root (or, equivalently, a directed spanning tree) in the interaction graph \(G \). In a graph without roots there exist two non-empty subsets of nodes, which have no incoming arcs and thus are “isolated” from each other and the remaining graph [28, Theorem 5]. Obviously, the corresponding two groups of oscillators are totally independent of each other and thus do not synchronize.

The following theorem shows that under Assumptions 1 and 2 rootedness is sufficient for the synchronization (9).

Theorem 2: Suppose that Assumptions 1 and 2 hold, and the interaction graph \(G \) is rooted. Then the phases get synchronous (9).
Conjecture 2: For any constants $d_1, d_2 > 0$ such that $0 < d_1 < d_2 < \pi$ there exists $\varepsilon = \varepsilon(d_1, d_2) > 0$ that $d(\bar{\theta}(T_N)) - d(\bar{\theta}(0)) \leq -\varepsilon$ for any solution with $d_1 \leq d(\bar{\theta}(0)) \leq d_2$.

Proof: Assume, on the contrary, that a sequence of solutions $\bar{\theta}^{(n)}(t)$ exists such that $d_1 \leq d(\bar{\theta}^{(n)}(0)) \leq d_2$, however $d(\bar{\theta}^{(n)}(T_N)) - d(\bar{\theta}^{(n)}(0)) \geq -1/n$. Since the set $\{\theta \in [0; 2\pi]^N : d_1 \leq d(\bar{\theta}) \leq d_2\}$ is compact, one may assume, without loss of generality, that the limit $\bar{\theta}_0 = \lim_{n \to \infty} \bar{\theta}^{(n)}(0)$ exists. Consider the solution $\bar{\theta}(t)$ with the initial condition $\bar{\theta}(0) = \theta_0$. Arbitrary close to T_N there exists a time instant t_0, such that none of the oscillators fires at t_0 and $d(\bar{\theta}(t_0)) = d(\bar{\theta}(T_N))$. Thanks to Lemma 1, one has $\bar{\theta}^{(n)}(t_0) \to \bar{\theta}(t_0)$ as $n \to \infty$ and thus $d(\bar{\theta}(T_N)) - d(\bar{\theta}(0)) \geq d_1 > 0$, arriving thus at a contradiction with Lemma 2.

The proof of Theorem 2 is now immediate.

Proof of Theorem 2: Since the diameter is non-increasing, the limit $d_1 = \lim_{n \to \infty} d(\bar{\theta}(0))$ exists. It suffices to prove that $d_1 = 0$. Suppose, on the contrary, that $d_1 > 0$. Denoting $d_2 = d(\bar{\theta}(0))$, one has $d_1 \leq d(\bar{\theta}(t)) \leq d_2$ for any t due to Theorem 1. Corollary 2 implies that $0 \leq d(\bar{\theta}(kT_N)) \leq d_2 - ke$ for any $k \geq 1$, where $e > 0$ is constant, arriving at a contradiction. Hence the oscillators synchronize (9).

V. NUMERICAL SIMULATIONS

In this section, we confirm the result of Theorem 2 by a numerical test. We simulate a network of $N = 4$ identical oscillators, whose natural frequency is $\omega = 1$ rad/s (and the period $T = 2\pi s$), starting with phases $\theta_1 = \pi/2$, $\theta_2 = 0.3\pi$, $\theta_3 = 0.03\pi$ and $\theta_4 = 0.9\pi$, thus $d(\bar{\theta}(0)) = 0.87\pi < \pi$.

We have simulated the dynamics of the oscillators under the interaction graph, shown in Fig. 5. Notice that the graph in Fig. 5 is rooted but not strongly connected because the phase of the “leading” oscillator 1 is unaffected by the others.

Two numerical tests have been carried out.

Test 1 deals with identical oscillators, having the delay-advanced PRC $\Phi(\theta) = -\sin \theta$ (Fig. 6a) and the coupling gain $c = 0.4$ and the delay-advanced PRC $\Phi(\theta) = -\sin \theta$. The corresponding dynamics of oscillators’ phases $\bar{\theta}_1$ (blue), $\bar{\theta}_2$ (orange), $\bar{\theta}_3$ (green) and $\bar{\theta}_4$ (red) are shown in Fig. 7, and Fig. 8 illustrates the corresponding event diagrams: the point (t, i) on the plot in Fig. 8 (where $i \geq 0$ and $i \in 1 : 4$) indicates that the ith oscillator fires an event at time t. Finally, Fig. 9 illustrates synchronization of phases on the unit circle S^1: plots (a)-(d) correspond to the case $\Phi(\theta) = -\sin \theta$, $c = 0.4$, and (e)-(h) illustrate the solution with $\Phi(\theta)$ from (15) and $c = 0.5$. In both numerical examples the oscillators synchronize (9).

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we have examined the dynamics of networks of pulse-coupled oscillators of the delay-advance type. The
models, studied in this paper, describe some biological networks [7], [20] and naturally arise in problems of synchronization of networked clocks [12], [13]. We have proved that the oscillators get synchronized if the maximal distance between the initial phases is less than \(\pi \) and the interaction graph is static and rooted (has a directed spanning tree), which is the minimal possible connectivity assumption. An extension to time-varying repeatedly rooted graphs is also possible.

An important problem, which is beyond the scope of this paper and remains open even for strongly connected graphs, is synchronization under general initial conditions. The existing results deal mainly with all-to-all or cyclic graphs [15], [20]–[22], [29] which guarantee some ordering of the oscillators’ events and global contraction of the return map. For instance, as was noticed in [23], for the PRC map (10), the coupling gain 0.5 \(\leq c \leq 1 \) and the complete interaction graph, the diameter of ensemble becomes less than \(\pi \) after the first event independent of the initial condition. Another result, reported in [23], ensures synchronization over “strongly rooted” (star-shaped) and connected bidirectional graphs. However, as noticed in Remark 2, in general the phases of pulse-coupled oscillators do not synchronize and can e.g. split into several clusters [21]. Even more complicated is the problem of synchronization between oscillators of different periods. One of the first results in this direction has been obtained in the recent paper [30].

REFERENCES

APPENDIX A

PROOF OF PROPOSITION 1

Let \(\bar{\theta}(0) \triangleq \xi \) and \(\theta_i(0) \triangleq \xi_{i}^{*} + \omega \varpi \forall i \in (0; \delta_0) \forall \varpi \). We are going to show that \(\bar{\theta}(t) \) is a solution to the system (5), (6) on \([0; \delta_1]\) with the initial condition \(\bar{\theta}(0) = \xi \). Indeed, on \((0; \delta_0)\) one has \(\theta_i(t) \leq 2 \varpi \forall \varpi \), therefore, \(I(\bar{\theta}(0)) = 0 \) and (5) holds. If \(I(\xi) = 1 \), one has \(\xi^+ = \xi \) and hence (5) holds also for \(t = 0 \). Otherwise, at \(t = 0 \) the function \(\theta_i \) jumps in accordance with (6): \(\bar{\theta}(0+) = \xi^+ = \Psi(\bar{\theta}(0)) \).

To prove the uniqueness, notice that for arbitrary solution with \(\bar{\theta}(0) = \xi \), defined on \(\Delta_0 \), one has \(\bar{\theta}(0+) = \xi^+ \). Indeed, if \(I(\xi) = 0 \) then \(\xi^+ = \xi = \bar{\theta}(0) = \bar{\theta}(0+) \), otherwise \(\bar{\theta}(0+) = \bar{\theta}(0) \triangleq \xi \leq \bar{\theta}(0) \triangleq \xi \).
there are two possibilities: \(\theta \) that \(t \) thus \(m \) its event at least \(t \) so \(\tau \) m \) on \(\theta \) events are fired, one has \(\theta \) proved for \(m \) oscillator cannot fire earlier than at \(t \) no event is fired on \(0; \tau \) \(m \) of Theorem 1, otherwise the initial phases of all oscillators belong to \([\theta_i(0) - \delta; \theta_i(0) + \delta] \subseteq [0; 2\pi - (\delta - d_\omega)] \) and hence no event is fired on \(0; \tau \). We assume thus that \(0 < \delta \leq d_\omega \).

We first prove the following weaker statement via induction on \(m \geq 1 \). For any \(d_\omega < \pi \) and \(\delta \leq d_\omega \) there exists \(\tau_m = \tau_m(d_\omega, \delta) > 0 \) such that if \(\theta_i(0) \leq 2\pi - \delta \) and \(d(\theta(0)) < d_\omega \), then either oscillator \(i \) does not fire on \([0; \tau_m] \), unless before its event at least \(m \) other events are fired. For \(m = 1 \) the claim is obvious: if no event is fired, oscillator \(i \) fires no earlier that at \(\tau_0 = \omega^{-\delta} \). Suppose that \(m \geq 2 \) and the claim has been proved for \(m - 1 \). Let \(\varphi_m(\delta, d_\omega) \triangleq \min\{2\pi - \Psi^k(\theta) : \theta \in [2\pi - d_\omega; 2\pi - \delta/2], 1 \leq k \leq m \} > 0 \). Then one can put \(\tau_m \triangleq \min(T/2, \omega^{-\delta/2}, \tau_m - 1(\varphi_m(\delta))) \). Consider the instant \(t_0 \) of first event. At this time one either has \(\theta_i(t_0) \leq d_\omega \) (and thus \(t_1 > t_0 + T/2 \)) or \(\theta_i(t_0) \geq 2\pi - d_\omega \). In the latter case, there are two possibilities: \(\theta_i(t_0) \geq 2\pi - \delta/2 \) or \(\theta_i(t_0) \in [2\pi - d_\omega; 2\pi - \delta/2] \). The first of these possibilities implies that \(t_1 \geq t_0 \geq \omega^{-\delta/2} \), and the second one implies that \(\theta_i(t_0^+) \leq 2\pi - \varphi_m(\delta, d_\omega) \). Since on \([t_0; t_1] \) less than \(m \) events are fired, one has \(t_1 \geq t_0 + \tau_m - 1(\varphi_m(\delta, d_\omega)) \geq \tau_m \).

It remains to notice that, due to statements 5) and 2) of Theorem 1 at most \(2(N - 1) \) events may occur until the oscillator fires for the first time. Thus one can put \(\tau \triangleq \tau_{2(N-1)}. \)

\(\xi^± \) due to (6). Notice now that on \((0; \delta_0) \) no oscillator can fire. Indeed, were some events fired on this interval, the first event instant \(\tau \in (0; \delta_0) \) would be well defined due to condition 1) in Definition 1. Since (5) holds on \((0; \tau) \), \(\theta_i(\tau) = \xi^\tau + \tau \omega < 2\pi \forall i \), arriving thus at the contradiction with the definition of \(\tau \). Therefore, (5) holds on \((0; \delta_0) \) and \(\theta_i(t) \triangleq \xi^\tau + t \omega \forall t \in (0; \delta_0) \forall i \), which ends the proof of uniqueness. ■