Observation of J/psi phi Structures Consistent with Exotic States from Amplitude Analysis of B+ -> J/psi phi K+ Decays

Published in:
Physical Review Letters

DOI:
10.1103/PhysRevLett.118.022003

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2017

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Observation of $J/\psi\phi$ Structures Consistent with Exotic States from Amplitude Analysis of $B^+ \rightarrow J/\psi\phi K^+$ Decays

R. Aaij et al.
(LHCb Collaboration)

(Received 25 June 2016; revised manuscript received 29 September 2016; published 11 January 2017)

The first full amplitude analysis of $B^+ \rightarrow J/\psi\phi K^+$ with $J/\psi \rightarrow \mu^+\mu^-$, $\phi \rightarrow K^+K^-$ decays is performed with a data sample of 3 fb$^{-1}$ of pp collision data collected at $\sqrt{s} = 7$ and 8 TeV with the LHCb detector. The data cannot be described by a model that contains only excited kaon states decaying into ϕK^+, and four $J/\psi\phi$ structures are observed, each with significance over 5 standard deviations. The quantum numbers of these structures are determined with significance of at least 4 standard deviations. The lightest has mass consistent with, but width much larger than, previous measurements of the claimed $X(4140)$ state.

DOI: 10.1103/PhysRevLett.118.022003

There has been a great deal of experimental and theoretical interest in $J/\psi\phi$ mass structures in $B^+ \rightarrow J/\psi\phi K^+$ decays since the CDF Collaboration presented 3.8σ evidence for a near-threshold $X(4140)$ mass peak, with width $\Gamma = 11.7$ MeV [1]. Much larger widths are expected for charmonium states at this mass because of open flavor decay channels [2], which should also make the kinematically suppressed $X \rightarrow J/\psi\phi$ decays undetectable. Therefore, it has been suggested that the $X(4140)$ peak could be a molecular state [3–9], a tetraquark state [10–14], a hybrid state [15,16] or a rescattering effect [17,18].

Subsequent measurements resulted in the confusing experimental situation summarized in Table I. Searches for the narrow $X(4140)$ in $B^+ \rightarrow J/\psi\phi K^+$ decays were negative in the Belle [19,20] (unpublished), LHCb [21] (0.37 fb$^{-1}$) and BABAR [22] experiments. The $X(4140)$ structure was, however, observed by the CMS [23] and D0 [24,25] collaborations.

In an unpublished update to their analysis [26], the CDF Collaboration presented 3.1σ evidence for a second relatively narrow $J/\psi\phi$ mass peak near 4274 MeV. A second peak was also observed by the CMS Collaboration at a mass which is higher by 3.2 standard deviations, but its statistical significance was not determined [23]. The Belle Collaboration obtained 3.2σ evidence for a narrow ($\Gamma = 13^{+18}_{-9} \pm 4$ MeV) $J/\psi\phi$ peak at 4350.6$^{+16}_{-51} \pm 0.7$ MeV in two-photon collisions, which implies $J^{PC} = 0^{++}$ or 2^{++}, and found no signal for $X(4140)$ [27].

The $X(4140)$ and $X(4274)$ states are the only known candidates for four-quark systems that contain neither of the light u and d quarks. Their confirmation, and determination of their quantum numbers, would allow new insights into the binding mechanisms present in multiquark systems, and help improve understanding of QCD in the nonperturbative regime.

The data sample used in this work corresponds to an integrated luminosity of 3 fb$^{-1}$ collected with the LHCb detector in pp collisions at center-of-mass energies 7 and 8 TeV. The LHCb detector is a single-arm forward spectrometer covering the pseudorapidity range $2 < \eta < 5$, described in detail in Refs. [28,29]. Thanks to the larger signal yield, corresponding to 4289 ± 151 reconstructed $B^+ \rightarrow J/\psi\phi K^+$ decays, the roughly uniform efficiency and the relatively low background across the entire $J/\psi\phi$ mass range, this data sample offers the best sensitivity to date, not only to probe for the previously claimed $J/\psi\phi$ structures, but also to inspect the high mass region for the first time. All previous analyses were based on naive $J/\psi\phi$ mass ($m_{J/\psi\phi}$) fits, with Breit-Wigner (BW) signal peaks on top of incoherent background described by ad hoc functional shapes (e.g. the three-body phase space distribution in $B^+ \rightarrow J/\psi\phi K^+$ decays). While the $m_{\phi K}$ distribution has been observed to be smooth, several resonant contributions from kaon excitations (denoted generically as K^*) are expected. It is important to prove that any $m_{J/\psi\phi}$ peaks are not merely reflections of K^* states. If genuine $J/\psi\phi$ states are present, it is crucial to determine their quantum numbers to aid their theoretical interpretation. Both of these tasks call for a proper amplitude analysis of $B^+ \rightarrow J/\psi\phi K^+$ decays, in which the observed $m_{\phi K}$ and $m_{J/\psi\phi}$ masses are analyzed simultaneously with the distributions of decay angles, without which the resolution of different resonant contributions is difficult, if not impossible.

In this paper, results with a focus on $J/\psi\phi$ mass structures are presented from the first amplitude analysis of $B^+ \rightarrow J/\psi\phi K^+$ decays. A detailed description of the analysis with more extensive discussion of the results on

1 Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

1 Inclusion of charge-conjugate processes is implied.

2 Units with $c = 1$ are used.
TABLE I. Previous results related to the $X(4140) \rightarrow J/\psi \phi K^+$ mass peak. The number of reconstructed $B^+ \rightarrow J/\psi \phi K^+$ decays (N_B) is given if applicable. Significances (σ) correspond to numbers of standard deviations. Upper limits on the $X(4140)$ fraction of the total $B^+ \rightarrow J/\psi \phi K^+$ rate are at 90% confidence level. The statistical and systematic errors are added in quadrature and then used in the weights to calculate the averages, excluding unpublished results (shown in italics).

<table>
<thead>
<tr>
<th>Experiment</th>
<th>N_B</th>
<th>Mass (MeV)</th>
<th>Width (MeV)</th>
<th>σ</th>
<th>Fraction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDF [1]</td>
<td>58</td>
<td>4143.0 ± 2.9 ± 1.2</td>
<td>11.7$^{+3.3}_{-5.0} \pm 3.7$</td>
<td>3.8</td>
<td></td>
</tr>
<tr>
<td>Belle [19]</td>
<td>325</td>
<td>4143.0 fixed</td>
<td>11.7 fixed</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>CDF [26]</td>
<td>115</td>
<td>4143.4$^{+4.9}_{-3.0}$ ± 0.6</td>
<td>15.3$^{+10.4}_{-6.1}$ ± 2.5</td>
<td>5.0</td>
<td>15 ± 4 ± 2</td>
</tr>
<tr>
<td>LHCb [21]</td>
<td>346</td>
<td>4143.4 fixed</td>
<td>15.3 fixed</td>
<td>1.4</td>
<td><7</td>
</tr>
<tr>
<td>CMS [23]</td>
<td>2480</td>
<td>4148.0 ± 2.4 ± 6.3</td>
<td>28$^{+15}_{-14}$ ± 19</td>
<td>5.0</td>
<td>10 ± 3</td>
</tr>
<tr>
<td>D0 [24]</td>
<td>215</td>
<td>4159.0 ± 4.3 ± 6.6</td>
<td>19.9$^{+12.6}_{-9.0}$</td>
<td>3.1</td>
<td>21 ± 8 ± 4</td>
</tr>
<tr>
<td>BABAR [22]</td>
<td>189</td>
<td>4143.4 fixed</td>
<td>15.3 fixed</td>
<td>1.6</td>
<td><13</td>
</tr>
<tr>
<td>D0 [25]</td>
<td></td>
<td>4152.5 ± 1.7$^{+0.2}_{-0.4}$</td>
<td>16.3 ± 5.6 ± 11.4</td>
<td>4.7–5.7</td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>4147.1 ± 2.4</td>
<td>15.7 ± 6.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

kaon spectroscopy can be found in Ref. [30]. The data selection is similar to that described in Ref. [21], with modifications [30] that increase the B^+ signal yield per unit luminosity by about 50% at the expense of larger background. A K^+K^- pair with mass within ±15 MeV of the known ϕ mass [31] is accepted as a ϕ candidate. To avoid reconstruction ambiguities, we require that there be exactly one ϕ candidate per $J/\psi K^+K^- K^+$ combination, which reduces the B^+ yield by 3.2%. A fit to the mass distribution of $J/\psi K^+K^-$ candidates yields 4289 ± 151 $B^+ \rightarrow J/\psi K^+K^-$ events, with a background fraction (β) of 23% in the region used in the amplitude analysis (twice the B^+ mass resolution on each side of its peak). The non-ϕ $B^+ \rightarrow J/\psi K^+K^- K^+$ background is small (2.1%) and neglected in the amplitude model, but considered as a source of systematic uncertainty.

We first try to describe the data with kaon excitations alone. We construct an amplitude model (\mathcal{M}) using the helicity formalism [32–34] in which the six independent variables fully describing the $B^+ \rightarrow J/\psi K^+K^+, J/\psi \rightarrow \mu^+\mu^-$, $K^+ \rightarrow \phi K^+$, $\phi \rightarrow K^+K^-$ decay chain are $m_{\phi K}$, θ_K^*, $\theta_{J/\psi}$, ϕ, $\Delta \phi_{K^*J/\psi}$ and $\Delta \phi_{K^*\phi}$, where θ denotes helicity angles, and $\Delta \phi$ angles between decay planes. The set of angles is denoted by Ω. The matrix element for a single K^+ resonance (j) with mass M_j^0 and width Γ_j is assumed to factorize, $\mathcal{M}_{K^+j}^{\Delta \phi_{j}} = R(m_{\phi K}, M_j^0, \Gamma_j) H_{\Delta \phi_{j}}(\Omega; \{A^j\})$, where $R(m_{\phi K}, M_j^0, \Gamma_j)$ is a complex BW function and $H_{\Delta \phi_{j}}(\Omega; \{A^j\})$ describes the angular correlations, with $\{A^j\}$ being a set of complex helicity couplings which are determined from the data (1–4 independent couplings depending on J^P, where $\Delta \lambda_{\mu} = \lambda_{\mu} - \lambda_{\mu'}$, and λ denotes the helicity. The total matrix element sums coherently over all possible K^+ resonances: $|\mathcal{M}|^2 = \sum_{j=0}^{\Delta \lambda_{\mu} = \pm 1} |\mathcal{M}_{K^+j}^{\Delta \phi_{j}}|^2$.

Detailed definitions of $R(m_{\phi K}, M_j^0, \Gamma_j)$ and of $H_{\Delta \phi_{j}}(\Omega; \{A^j\})$ are given in Ref. [30]. The free parameters are determined from the data by minimizing the unbinned six-dimensional (6D) negative log-likelihood ($-\ln L$), where the probability density function (PDF) is proportional to $(1 - \beta)|\mathcal{M}|^2$, multiplied by the detection efficiency, plus a background term. The signal PDF is normalized by summing over $B^+ \rightarrow J/\psi \phi K^+$ events generated [35,36] uniformly in decay phase space, followed by detector simulation [37] and data selection. This procedure accounts for the 6D efficiency in the reconstruction of the signal decays [30]. We use B^+ mass sidebands to obtain a 6D parametrization of the background PDF [30].

Past experiments on K^* states decaying to ϕK [38–40] had limited precision, gave somewhat inconsistent results, and provided evidence for only a few of the states expected from the quark model in the 1513–2182 MeV range probed in our data. We have used the predictions of the relativistic potential model by Godfrey and Isgur [41] (horizontal black lines in Fig. 2) as a guide to the quantum numbers of the K^* states to be included in the amplitude model. The masses and widths of all states are left free; thus our fits do not depend on details of the predictions, nor on previous measurements. We also include a constant nonresonant amplitude with $J^P = 1^+$, since such ϕK^* contributions can be produced, and can decay, in the S-wave. Allowing the magnitude of the nonresonant amplitude to vary with $m_{\phi K}$ does not improve fit qualities. While it is possible to describe the $m_{\phi K}$ and $m_{J/\psi K}$ distributions well with K^* contributions alone, the fit projections onto $m_{J/\psi K}$ do not provide an acceptable description of the data. For illustration we show in Fig. 1 the projection of a fit with the following composition: a nonresonant term plus candidates for two $2P_1$, two $1D_2$, and one of each of 1^3F_3, 1^3D_1, 3^1S_1, 3^1S_0, 2^3P_2, 1^3F_2, 1^3D_3 and 1^3F_4 states, labeled here with their intrinsic quantum numbers $n^{2S+1}L_J$ (n is the radial quantum number, S the total spin of the valence quarks, L the orbital angular momentum between quarks, and J the total angular momentum of the bound state). The fit
The matrix element for $B^+ \rightarrow XK^+$, $X \rightarrow J/\psi\phi$ decays can be parametrized using $m_{J/\psi\phi}$ and the θ_X, $\theta_{J/\psi}$, θ_{ϕ}, $\Delta\phi_{X,J/\psi}$, $\Delta\phi_{X,\phi}$ angles. The angles $\theta_{J/\psi}$ and θ_{ϕ} are not the same as in the K^* decay chain since J/ψ and ϕ are produced in decays of different particles. For the same reason, the muon helicity states are different between the two decay chains, and an azimuthal rotation by an angle α_X is needed to align them [30,42]. The parameters needed to characterize the X decay chain, including α_X, do not constitute new degrees of freedom since they can all be derived from $m_{\phi K}$ and Ω. We also consider possible contributions from $B^+ \rightarrow Z^+\phi$, $Z^+ \rightarrow J/\psi K^+$ decays, which can be parametrized in a similar way [30]. The total matrix element is obtained by summing all possible K^+ (j), X (k) and Z^+ (n) contributions: $|M|^2 = \sum_{\Delta_j\nu=\pm1} \sum_{\Delta_k\lambda} \sum_{\Delta_n\mu} M_{\Delta_j\lambda\Delta_k\mu\Delta_n\nu}^2 + e^{i\Delta_j\lambda\nu} \sum_{\Delta_k\lambda} \sum_{\Delta_n\mu} M_{\Delta_j\lambda\Delta_k\mu\Delta_n\nu}^2 + e^{i\Delta_k\mu\nu} \sum_{\Delta_j\lambda} \sum_{\Delta_n\mu} M_{\Delta_j\lambda\Delta_k\mu\Delta_n\nu}^2$.

We have explored adding X and Z^+ contributions of various quantum numbers to the fit models. Only X contributions lead to significant improvements in the description of the data. The default resonance model is summarized in Table II. It contains seven K^{*+} states (Fig. 2), four X states, and ϕK^+ and $J/\psi\phi$ nonresonant components. There are 98 free parameters in this fit. Additional K^{*+}, X or Z^+ states are not significant. Projections of the fit onto the mass variables are displayed in Fig. 3. The χ^2 value (71.5/68 bins) between the fit projection and the observed $m_{J/\psi\phi}$ distribution corresponds to a p-value of 22%, where the effective number of degrees of freedom has been obtained with simulations of pseudoexperiments generated from the default amplitude model. Projections onto angular variables, and onto masses in different regions of the Dalitz plot, can be found in Ref. [30].

The systematic uncertainties [30] are obtained from the sum in quadrature of the changes observed in the fit results when the K^{*+} and $X(1410)$ models are varied (the dominant errors); the BW amplitude parametrization is modified; only the left or right B^+ mass peak sidebands are used for the background parameterization; the ϕ mass selection is changed; the signal and background shapes are varied in the fit to $m_{J/\psi\phi K^+}$ which determines β; and the weights assigned to simulated events, in order to improve agreement with the data on B^+ production characteristics and detector efficiency, are removed.

The significance of each (non)resonant contribution is calculated from the change in log-likelihood between fits with and without the contribution included. The distribution of $\Delta(-2 \ln \mathcal{L})$ between the two hypotheses should follow a χ^2 distribution with number of degrees of freedom equal to the number of free parameters in its parametrization (doubled when M_0 and Γ_0 are free parameters). The validity of this assumption has been verified using simulated pseudoeexperiments. The significances of the X contributions are given after accounting for systematic uncertainties.

The K^{*+} composition of our amplitude model is in good agreement with the expectations for the $\bar{s}n$ states [41], and also in agreement with previous experimental results on K^{*+}.
states in this mass range \cite{31} as illustrated in Fig. 2 and in Table II. Effects of adding extra insignificant K^{*+} resonances of various J^P, as well as of removing the least significant K^{*+} contributions, are included among the systematic variations of the fit amplitude. More detailed discussion of our results for kaon excitations can be found in Ref. \cite{30}.

A near-threshold $J/\psi\phi$ structure in our data is the most significant (8.4σ) exotic contribution to our model. We determine its quantum numbers to be $J^{PC} = 1^{++}$ at 5.7σ significance from the change in $-2\ln \mathcal{L}$ relative to other J^P assignments \cite{43} including systematic variations. When fitted as a resonance, its mass ($4146.5 \pm 4.5^{+4.6}_{-2.8}$ MeV) is in excellent agreement with previous measurements for the $X(4140)$ state, although the width ($83 \pm 21^{+21}_{-14}$ MeV) is substantially larger. The upper limit previously set for production of a narrow ($\Gamma = 15.3$ MeV) $X(4140)$ state based on a small subset of our present data \cite{21} does not apply to such a broad resonance; thus the present results are consistent with our previous analysis. The statistical power of the present data sample is not sufficient to study its phase motion \cite{44}. A model-dependent study discussed in Ref. \cite{30} suggests that the $X(4140)$ structure may be affected by the nearby $D_s^{\pm} D_s^{\mp+}$ coupled-channel threshold. However, larger data samples will be required to resolve this issue.

We establish the existence of the $X(4274)$ structure with statistical significance of 6.0σ, at a mass of $4273.3 \pm 8.3^{+17.2}_{-3.6}$ MeV and a width of $56.2 \pm 10.9^{+8.4}_{-11.1}$ MeV. Its quantum numbers are determined to be $J^{PC} = 1^{++}$ at 5.8σ significance. Due to interference effects, the data peak above the pole mass, underlining the importance of proper amplitude analysis.

The high $J/\psi\phi$ mass region also shows structures that cannot be described in a model containing only K^{*+} states. These features are best described in our model by two $J^{PC} = 0^{++}$ resonances, $X(4500)$ (6.1σ) and $X(4700)$

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|}
\hline
Contribution & Significance or Reference & M_0 (MeV) & Γ_0 (MeV) & FF % \\
\hline
All $K(1^{+})$ & 8.0σ & $42 \pm 8.5^3_{\pm 2}$ & \\
NR$_{\phi K}$ & & & \\
$K(1^{-})^2P_1^+$ & 7.6σ & $46 \pm 13.3^{+3.5}_{-6}$ & \\
$K_3^0(1650)$ & [31] & $1793 \pm 59^{+153}_{-101}$ & $365 \pm 157^{+138}_{-215}$ & $12 \pm 10^{+7.7}_{-6}$ \\
$K'^{(1^{-})}^2P_1^+$ & 1.9σ & 1650 ± 50 & 150 ± 50 & \\
All $K(2^{-})$ & 5.6σ & $1968 \pm 65^{+70}_{-172}$ & $396 \pm 170^{+154}_{-178}$ & $23 \pm 20^{+31}_{-29}$ \\
$K(2^{-})^{1}D_2^+$ & 5.0σ & $1777 \pm 35^{+122}_{-77}$ & $217 \pm 116^{+221}_{-154}$ & \\
$K_2^0(1770)$ & [31] & 1773 ± 8 & 188 ± 14 & \\
$K'^{(2^{-})}^{1}D_2^+$ & 3.0σ & $1853 \pm 27^{+18}_{-35}$ & $167 \pm 58^{+82}_{-32}$ & \\
$K_2^0(1820)$ & [31] & 1816 ± 13 & 276 ± 35 & \\
$K'^{(1^{-})}^{1}D_2^+$ & 8.5σ & $1722 \pm 20^{+33}_{-109}$ & $354 \pm 75^{+140}_{-181}$ & $6.7 \pm 1.9^{+3.2}_{-3.9}$ \\
$K'^{(0^{-})}^{1}D_1^0$ & [31] & 1717 ± 27 & 322 ± 110 & \\
$K'^{(2^{-})}^{2}P_2^+$ & 5.4σ & $2073 \pm 94^{+245}_{-240}$ & $678 \pm 311^{+1153}_{-559}$ & $2.9 \pm 0.8^{+1.7}_{-0.7}$ \\
$K_2^0(1890)$ & [31] & 1973 ± 26 & 373 ± 69 & \\
$K(0)^{-3}S_0^-$ & 3.5σ & $1874 \pm 43^{+59}_{-115}$ & $168 \pm 90^{+280}_{-104}$ & $2.6 \pm 1.1^{+2.3}_{-1.8}$ \\
$K(1830)$ & [31] & $1830 \sim 250$ & & \\
All $X(1^{+})$ & & $16 \pm 3^{+6}_{-2}$ & \\
$X(4140)$ & 8.4σ & $4146.5 \pm 4.5^{+4.6}_{-2.8}$ & $83 \pm 21^{+21}_{-14}$ & $13.0 \pm 3.2^{+4.7}_{-2.0}$ \\
Average form & Table I & 4147.1 ± 2.4 & 15.7 ± 6.3 & \\
$X(4274)$ & 6.0σ & $4273.3 \pm 8.3^{+17.2}_{-3.6}$ & $56 \pm 11^{+8}_{-11}$ & $7.1 \pm 2.5^{+3.4}_{-2.4}$ \\
CDF & [26] & $4274.4^{+8.4}_{-6.7} \pm 1.9$ & $32^{+22}_{-15} \pm 8$ & \\
CMS & [23] & $4313.8 \pm 5.3 \pm 7.3$ & $38^{+30}_{-15} \pm 16$ & \\
All $X(0^{+})$ & & $28 \pm 5 \pm 7$ & \\
NR$_{J/\psi\phi}$ & 6.4σ & $46 \pm 11^{+11}_{-21}$ & \\
$X(4500)$ & 6.1σ & $4506 \pm 11^{+12}_{-15} \pm 20$ & $92 \pm 21^{+21}_{-20}$ & $6.6 \pm 2.4^{+3.5}_{-2.3}$ \\
$X(4700)$ & 5.6σ & $4704 \pm 10^{+14}_{-24}$ & $120 \pm 31^{+42}_{-33}$ & $12 \pm 5^{+9}_{-5}$ \\
\hline
\end{tabular}
\end{table}
The LHCb analysis of quantum number determinations for the high mass states $\psi\phi$ is also significant (5.6σ), with parameters given in Table II. The resonances interfere with a nonresonant $J^{PC} = 0^{++}$/$J/\psi\phi$ contribution that is also significant (6.4σ). The significances of the quantum number determinations for the high mass states are 4.0σ and 4.5σ, respectively.

In summary, we have performed the first amplitude analysis of $B^+ \rightarrow J/\psi\phi K^+$ decays. We have obtained a good description of the data in the 6D phase space composed of invariant masses and decay angles. The K^{++} amplitude model extracted from our data is consistent with expectations from the quark model and from the previous experimental results on such resonances. We determine the J^{PC} quantum numbers of the $X(4140)$ structure to be 1^{++}. This has a large impact on its possible interpretations, in particular ruling out the 0^{++} or $2^{++} D_s^+ D_s^{-}$ molecular models [3–8]. The $X(4140)$ width is substantially larger than previously determined. The below-$J/\psi\phi$-threshold $D_s^+ D_s^{-}$ cusp [9,18] may have an impact on the $X(4140)$ structure, but more data will be required to address this issue, as discussed in more detail in the companion article [30]. The existence of the $X(4274)$ structure is established and its quantum numbers are determined to be 1^{++}. Molecular bound states or cusps cannot account for these J^{PC} values. A hybrid charmonium state would have 1^{++} [15,16]. Some tetraquark models expected 0^{++}, 1^{++} [11] or 0^{++}, 2^{++} [12] state(s) in this mass range. A tetraquark model implemented by Stancu [10] not only correctly assigned 1^{++} to $X(4140)$, but also predicted a second 1^{++} state at a mass not much higher than the $X(4274)$ mass. Calculations by Anisovich et al. [13] based on the diquark tetraquark model predicted only one 1^{++} state at a somewhat higher mass. Lebed and Polosa [14] predicted the $X(4140)$ peak to be a 1^{++} tetraquark, although they expected the $X(4274)$ peak to be a 0^{++} state in the same model. A lattice QCD calculation with diquark operators found no evidence for a 1^{++} tetraquark below 4.2 GeV [45].

The high $J/\psi\phi$ mass region is investigated for the first time with good sensitivity and shows very significant structures, which can be described as two 0^{++} resonances: $X(4500)$ and $X(4700)$. The work of Wang et al. [46] predicted a virtual $0^{++} D_s^+ D_s^{-}$ state at 4.48 ± 0.17 GeV. None of the observed $J/\psi\phi$ states is consistent with the state seen in two-photon collisions by the Belle Collaboration [27].

We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); NSFC (China); CNRS/IN2P3 (France); BMBF, DFG and MPG (Germany); INFN (Italy); FOM and NWO (The Netherlands); MNiSW and NCN (Poland); MEN/IFA (Romania); MinES and FASO (Russia); MinECo (Spain); SNSF and SER (Switzerland); NASU (Ukraine); STFC (United Kingdom); NSF (USA). We acknowledge the computing resources that are provided by CERN, IN2P3 (France), KIT and DESY (Germany), INFN (Italy), SURF (The Netherlands), PIC (Spain), GridPP (United Kingdom), RRCKi and Yandex LLC (Russia), CSCS (Switzerland), IFIN-HH (Romania), CBPF (Brazil), PL-GRID (Poland) and OSC (USA). We are indebted to the communities behind the multiple open source software packages on which we depend. Individual
groups or members have received support from AvH Foundation (Germany), EPLANET, Marie Skłodowska-Curie Actions and ERC (European Union), Conseil Général de Haute-Savoie, Labex ENIGMASS and OCEVU, Région Auvergne (France), RFBR and Yandex LLC (Russia), GVA, XuntaGal and GENCAT (Spain), Herchel Smith Fund, The Royal Society, Royal Commission for the Exhibition of 1851 and the Leverhulme Trust (United Kingdom).

[10] F. Stancu, Can $Y(4140)$ be a $c\bar{c}s\bar{s}$ tetraquark?, J. Phys. G 37, 075017 (2010).

[14] R. F. Lebed and A. D. Polosa, $X_{c0}(3915)$ as the lightest $c\bar{c}s\bar{s}$ state, Phys. Rev. D 93, 094024 (2016).

[22] J. P. Lees et al. (BABAR Collaboration), Study of $B^{\pm,0} \to J/\psi K^+\!\!K^0\!\!K^{\pm,0}$ and search for $B^0 \to J/\psi \phi$ at BABAR, Phys. Rev. D 91, 012003 (2015).

[23] S. Chatrchyan et al. (CMS Collaboration), Observation of a peaking structure in the $J/\psi\phi$ mass spectrum from $B^\pm \to J/\psi\phi K^\mp$ decays, Phys. Lett. B 734, 261 (2014).

[24] V. M. Abazov et al. (D0 Collaboration), Search for the $X(4140)$ state in $B^+ \to J/\psi\phi K^+$ decays with the D0 detector, Phys. Rev. D 89, 012004 (2014).

[26] T. Aaltonen et al. (CDF Collaboration), Observation of the $Y(4140)$ structure in the $J/\psi\phi$ mass spectrum in $B^\pm \to J/\psi\phi K^\mp$ decays, arXiv:1101.6058.

[27] C. P. Shen et al. (Belle Collaboration), Evidence for a New Resonance and Search for the $Y(4140)$ in the $\gamma\gamma \to \phi J/\psi$ Process, Phys. Rev. Lett. 104, 112004 (2010).

[43] F. James, Statistical Methods in Experimental Physics (World Scientific Publishing, Singapore, 2006); see Sect. 10.5.7 on testing separate hypotheses.

Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine
University of Birmingham, Birmingham, United Kingdom
H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
Department of Physics, University of Warwick, Coventry, United Kingdom
STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
Imperial College London, London, United Kingdom
School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
Department of Physics, University of Oxford, Oxford, United Kingdom
Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
University of Cincinnati, Cincinnati, Ohio, USA
University of Maryland, College Park, Maryland, USA
Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil
(associated with Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil)
University of Chinese Academy of Sciences, Beijing, China
(associated with Center for High Energy Physics, Tsinghua University, Beijing, China)
Institute of Particle Physics, Central China Normal University, Wuhan, Hubei, China
(associated with Center for High Energy Physics, Tsinghua University, Beijing, China)
Departamento de Física, Universidade Nacional de Colombia, Bogotá, Colombia
(associated with LPNHE, Université Pierre et Marie Curie, Université Paris Diderot, CNRS/IN2P3, Paris, France)
Institut für Physik, Universität Rostock, Rostock, Germany
(associated with Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany)
National Research Centre Kurchatov Institute, Moscow, Russia
(associated with Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia)
Yandex School of Data Analysis, Moscow, Russia
(associated with Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia)
Instituto de Física Corpuscular (IFIC), Universitat de Valencia-CSIC, Valencia, Spain
(associated with ICCUB, Universitat de Barcelona, Barcelona, Spain)
Van Swinderen Institute, University of Groningen, Groningen, The Netherlands
(associated with Nikhef National Institute for Subatomic Physics, Amsterdam, The Netherlands)

Also at Universidade Federal do Triângulo Mineiro (UFTM), Uberaba-MG, Brazil.
Also at Laboratoire Leprince-Ringuet, Palaiseau, France.
Also at P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia.
Also at Université di Bari, Bari, Italy.
Also at Università di Bologna, Bologna, Italy.
Also at Università di Cagliari, Cagliari, Italy.
Also at Università di Ferrara, Ferrara, Italy.
Also at Università di Genova, Genova, Italy.
Also at Università di Milano Bicocca, Milano, Italy.
Also at Università di Roma Tor Vergata, Roma, Italy.
Also at Università di Roma La Sapienza, Roma, Italy.
Also at AGH - University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Kraków, Poland.
Also at LIFAELS, La Salle, Universitat Ramon Llull, Barcelona, Spain.
Also at Hanoi University of Science, Hanoi, Viet Nam.
Also at Università di Padova, Padova, Italy.
Also at Università di Pisa, Pisa, Italy.
Also at Università degli Studi di Milano, Milano, Italy.
Also at Università di Urbino, Urbino, Italy.
Also at Università della Basilicata, Potenza, Italy.
Also at Scuola Normale Superiore, Pisa, Italy.
Also at Università di Modena e Reggio Emilia, Modena, Italy.
Also at Iligan Institute of Technology (IIT), Iligan, Philippines.