Managing time in a changing world

Mizumo Tomotani, Barbara

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2017

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Chapter 9

Taxonomy of the European pied flycatcher *Ficedula hypoleuca* (Aves: Muscicapidae)

Rodrigo B. Salvador, Henk van der Jeugd & Barbara M. Tomotani

Manuscript submitted.
The text is reproduced here with minor formatting alterations and lacking the following sections:

Keywords, References.
Abstract

The convoluted taxonomy of the European pied flycatcher, *Ficedula hypoleuca* ([Pallas], 1764) (Aves: Passeriformes: Muscicapidae) might present a challenge for researchers working in other areas of biology. We present here a historical review of this species’ nomenclature, discuss its generic allocation, type locality, and all its named subspecies. Its purpose is to help to mitigate errors in application of names in other contexts, and also to point out areas in which future work is needed.

Introduction

Birds are the animal group with perhaps the most resolved taxonomy. However, a plethora of unresolved questions remain, many of which can affect other fields of study if species identification and delimitation is imprecise and unreliable (Dick *et al.* 2015). One example of such problems is the European pied flycatcher, currently *Ficedula hypoleuca* ([Pallas], 1764), a migratory passerine of the family Muscicapidae (the so called “Old World flycatchers”). This species is one of the most studied European passeresines and has recently become a high-profile model for ecological studies, especially concerning issues of climate change (*e.g.*, Both & Visser 2001; Both *et al.* 2012). Consequently different populations of this species have been studied separately to resolve different ecological questions (*e.g.*, Both & Visser 2001, in The Netherlands; Laaksonen *et al.* 2006, in Finland; Sanz *et al.* 2003, in the Mediterranean region).

Yet the taxonomy of *F. hypoleuca* is far from settled, which raises the question of whether researchers are referring to the same taxa when they compare works on different populations of pied flycatchers. For instance, are they the same subspecies or even the same species? If not, then different results might actually reflect real differences between populations (rather than the unreliability of previous methodology, for instance). Here we expose problems surrounding the taxonomy of *F. hypoleuca* by: presenting a historical review of its nomenclature; discussing its generic allocation; reviewing its subspecies and their type localities; and pointing to complications that might arise in the many non-taxonomic works dealing with this species. This revision should help to mitigate errors in application of names in other contexts, and also to point out areas in which future work is needed.

The genus *Ficedula*

Ficedula Brisson, 1760 is a genus with a complex taxonomy since its inception (Brisson, 1760). The overall similarity between muscicapid genera, together with a fair amount of variation in finer morphological traits, resulted in many poorly defined genera. As such, the species of *Ficedula* have been classified in more than 20 other genera, some of which
have since been synonymized (e.g., Vaurie 1953; Mayr & Cottrell 1986). This even led to more drastic “lumping” by simply declaring _Ficedula_ a synonym of _Muscicapa_ Brisson, 1760 (e.g., Delacour 1946; Delacour & Mayr 1946; Deignan 1947).

Vaurie (1953) conducted a thorough revision of the flycatchers and more clearly defined the genera and their species; a classification that, with some modifications by Mayr & Cottrell (1986), is still largely accepted today (for an overview, see Outlaw & Voelker 2006). Vaurie (1953) reestablished the genus _Ficedula_ based on differences in proportions of the tarsus and first primary feather, the shape of the wing tip (in migratory species) and the bill, the rictal bristles, the color patterns, occurrence of sexual dimorphism (in some species) and ecological and behavioral traits. This allowed a clearer distinction from _Muscicapa_, the genus that most closely resembles _Ficedula_ (Vaurie 1953).

Nevertheless, diagnostic characters for the genus remained somewhat tenuous and a good deal of variation could be seen among its species. Vaurie (1953) himself acknowledged that _Ficedula_ was defined by its overall generalized morphology and that it might serve as a waste-basket taxon in Muscicapidae. Other muscipapid genera (e.g., _Muscicapa_) were more diagnosable (Vaurie 1953; Glutz von Blotzheim & Bauer 1993; Outlaw & Voelker 2006). As such, the problems within the genus remained unsettled. Some recent works (Outlaw & Voelker 2006; Lei _et al._ 2007; Zuccon & Ericson 2010) claim that _Ficedula_ is not monophyletic (but that _Muscicapa_ perhaps is), but Sangster _et al._ (2010) recovered it as monophyletic. Such works, however, are hardly thorough (for instance, some do not even include the type species of genera) and are far from being definitive, but they do point to some inconsistencies in the classification that need to be further addressed.

If _Ficedula_ is indeed recognized according to Outlaw & Voelker (2006) and Lei _et al._ (2007), _F. hypoleuca_, as its type species, would remain in this genus. When only _F. hypoleuca_ and its closely allied species (_F. semitorquata_ (Homeyer) and _F. albicollis_ (Temminck); see discussion below) are taken together, the genus _Ficedula_ is more easily diagnosable (Mayr & Cottrell 1986; Outlaw & Voelker 2006). Presently, _Ficedula_ counts with 34 species (Clements _et al._ 2016).

**Disentangling the taxonomical history of _Ficedula hypoleuca*_

We present below a historical review of the taxonomy of the European pied flycatcher, with the most important nomenclatural acts, their authors and their reasons.

The European pied flycatcher was described in Linnaeus’s _Fauna Svecica_ (1746), a work that was not binominal and that is therefore unavailable nomenclaturally. Later, in the tenth edition of the _Systema Natuarae_ (Linnaeus 1758) and the next edition of _Fauna Suecica_ (Linnaeus 1761), this flycatcher was confounded with the Eurasian blackcap (currently _Sylvia atricapilla_ Linnaeus) and the whinchat (currently _Saxicola rubetra_
Linnaeus. Linnaeus probably thought that the flycatcher was a seasonal form of these other species (Lundberg & Alatalo 1992). To this point, the European pied flycatcher still lacked a proper valid binominal name.

Eventually, the species was named availably as *Motacilla hypoleuca* by Pallas (1764). Peter Simon Pallas (1741–1811) was a renowned German scientist who worked in The Netherlands (mainly in Leiden and The Hague) from 1763–1767 (Wendland 1992). However, he described (anonymously) this species in the appendix of a sales catalogue of the collection of Adriaan Vroeg; for an explanation of Pallas’s claim to authorship, see Richmond (1905), Stone (1912) and Rookmaaker & Pieters (2000). This appendix is popularly known simply as the “Adumbratiunculae” among ornithologists. It lists 38 bird species supposedly unknown to Linnaeus. Luckily, this extremely rare appendix (only four copies, one of them incomplete, are known; Jansen 2011) was republished in full by Sherborn (1905).

However, as pointed out by van Oort (1911), all 38 names from Pallas’s appendix appear in the main body of the catalogue. As argued by Rookmaaker & Pieters (2000), the catalogue’s author is Arnout Vosmaer (1720–1799). Nevertheless, Rookmaaker & Pieters (2000) conclude that the names given by Pallas (1764) have precedence over those given by Vosmaer (1764). In such circumstances, Recommendation 51D of the International Code of Zoological Nomenclature (1999; hereafter the Code) advocates that Pallas’s name should appear enclosed in square brackets to indicate the original anonymity of the publication and the inferred authorship by external evidence, such that the correct name of the European pied flycatcher is *Ficedula hypoleuca* ([Pallas], 1764).

Nevertheless, Pallas’s (1764) “Adumbratiunculae” had remained unknown until the beginning of the 20th century. Up to that point, the valid name of the European pied flycatcher was the one from the 12th edition of Linnaeus’s *Systema Naturae*, namely *Muscicapa atricapilla* Linnaeus, 1766 (e.g., Sharpe 1879). Still, Pallas’s “hypoleuca” preceded Linnaeus’s “atricapilla” by two years and thus had priority. After Sherborn’s (1905) republication of the “Adumbratiunculae”, Richmond (1905) related Pallas’s new species to Linnaeus’s names, putting *Muscicapa atricapilla* into the synonymy of *Motacilla hypoleuca*. We infer that the auctioned type specimen(s) of *F. hypoleuca* (from Vroeg’s collection) has been lost.

Type locality

The pied flycatcher was expressly described by Pallas (1764) from a specimen or specimens captured in the Netherlands. Therefore, the Netherlands (“Holland”, in the original, meaning either Holland province or the whole country) should be considered
the type locality of the species, in accord with Article 76 of the Code (1999). This takes precedence over the choice of Sweden as type locality by Glutz von Blotzheim & Bauer (1993: 165), which was based on the supposition that the black (rather than brown) male described by Pallas (1764) should have come from the Scandinavian (or Fennoscandian) population, where the males are usually blacker. This act is not valid because the place of capture is the type locality according to the Code (l.c.), regardless of the form of the type.

It is, however, likely that Pallas’s specimens were Fennoscandian migrants, for the following reasons. First, their darker color is consistent with Fennoscandian birds, while the Central European population is brown (e.g., Dunajewski 1938; Glutz von Blotzheim & Bauer 1993). Secondly, although the Netherlands did not have a resident breeding population of *F. hypoleuca* at the time, birds from elsewhere in Europe has always been a common passage migrant in the country (Bijlsma et al. 2001); Fennoscandian birds, in particular, are commonly caught mid-migration in the Netherlands (see the Appendix).

The subspecies

Ficedula hypoleuca has four currently recognized subspecies, which are listed below alongside synonymized names and an unnamed population, with commentary on their taxonomy, type localities and current status. Circumscribing them morphologically is beyond the scope of this paper, but they are diagnosed in del Hoyo et al. (2006). Figure 1 shows a map with the geographic distribution of the currently valid subspecies.

F. h. hypoleuca ([Pallas], 1764)
Motacilla hypoleuca [Pallas], 1764: 3.

Type locality Netherlands. Type material now lost. As explained above, nominate hypoleuca was probably described from migrant Fennoscandian birds. This subspecies, including also muscipeta Bechstein, 1792 (see below), occurs from the British Isles and western France to western Siberia and from Scandinavia to northern Italy, wintering in west and central Africa (del Hoyo et al. 2006; Clements et al. 2015).
Figure 9.1. Map showing the approximate geographic distribution of the currently valid subspecies of *F. hypoleuca* (sensu del Hoyo *et al.* 2006) in their breeding grounds. The likely distribution of the population recognized as *F. h. muscipeta* by some authors is also indicated. It should be noted that the actual border between *F. h. hypoleuca* and *F. h. tomentis* is not clearly known; this is shown on the map by intergrading shades of grey.

F. h. atricapilla (Linnaeus, 1766)

Type locality Europe. Type material (since lost) from the Scandinavian population was described by Linnaeus as *Muscicapa atricapilla*. Its original type locality (Europe) was restricted to Sweden by Hartert (1907). With a type locality within the range of nominate *hypoleuca*, *atricapilla* is a junior subjective synonym of *hypoleuca*.

F. h. muscipeta (Bechstein, 1792)
Muscicapa muscipeta Bechstein, 1792: 530.

Type locality Thuringia, Germany. The type material of Bechstein could not be traced in any of the likely German collections and is thus considered lost (Mey, personal
communication; see also Mey 2003). It is usually considered a synonym of nominate *hypoleuca*, although a few Central European authors (e.g., Dunajewski 1938; Glutz von Blotzheim & Bauer 1993) consider it valid. The latter authors also find that southern Central European populations, to which the type of *muscipeta* would likely belong, are morphologically diagnosable from nominate Fennoscandian *hypoleuca* (e.g., Drost 1936; Dunajewski 1938; Lundberg & Alatalo 1992; Glutz von Blotzheim & Bauer 1993). Hence *muscipeta* might actually be a valid subspecies.

The present Dutch population is of the browner *muscipeta* stock, which expanded from Germany to the Netherlands in the mid-20th century, assisted by artificial nest boxes placed in forests (Haverschmidt 1973; Cramp & Perrins 1993; see also the Appendix).

F. h. speculigera (Bonaparte, 1850)

Muscicapa speculigera Bonaparte, 1850: 317.

Type locality Algiers, Algeria. The type material is expected to be a mount in the Muséum National d’Histoire Naturelle (MNHN, Paris, France), but recent searches there failed to locate it (Fuchs, personal communication). The “Atlas flycatcher”, as it is popularly known, was long considered a subspecies of *F. hypoleuca* (e.g., Mayr & Cottrell 1986; Howard & Moore 1994), but was recently distinguished at species rank by Sætre et al. (2001) (see also Sangster et al. 2004). Nevertheless, since Sætre et al. (2001) did not compare *F. speculigera* with the morphologically and geographically intermediate form *F. h. iberiae*, his assessment was widely rejected (e.g., Dickinson 2003; del Hoyo et al. 2006; Taylor & Christie 2013); few major works accepted it (e.g., Clements et al. 2015). More recently, Corso et al. (2015) and Robb & The Sound Approach (2015) have analyzed, respectively, variation in plumage characters and song, which show that it clearly differs from nominate *hypoleuca*, but not consistently from *iberiae*. Since then, Potti et al. (2016) re-analyzed morphological characters, leading him to conclude that *speculigera* is specifically distinct from *iberiae*.

The “Atlas flycatcher” is distributed across Morocco (south to the middle Atlas Mountains), northern Algeria and northern Tunisia, and winters in western Africa (del Hoyo et al. 2006; Clements et al. 2015). There are also recent unconfirmed reports of it in Italy and Malta (Corso et al. 2015).

F. h. sibirica Khakhlov, 1915

Type locality Tomsk, Russia. The type specimens (ZMMU R-29257, lectotype, female; ZMMU R-29253, paralectotype, female) are deposited at the Zoological Museum of the M. V. Lomonosov Moscow State University (Moscow, Russia). A third female
specimen used in the original description is lost (Pavlinov & Borissenko 2001). This name is invalid as a junior primary homonym of *Muscicapa sibirica* Gmelin, 1789 (Mayr & Cottrell 1986), and the subspecies it denotes is now *Ficedula hypoleuca tomensis* (Johansen, 1916) (see below).

F. h. tomensis (Johansen, 1916)

Type locality and material: as for *sibirica* (see above). The name *tomensis* Johansen, 1916 is a replacement name for *sibirica* Khakhlov, 1915, the latter having been published in *Muscicapa* where it is a junior primary homonym of *Muscicapa sibirica* Gmelin, 1789 and so permanently invalid (Article 57.2 of the Code). This subspecies is considered to be clearly diagnosable from nominate *hypoleuca* (e.g., Johansen 1954), although the location of and circumstances in their contact zone is poorly understood. It occurs in the taiga of west Siberia, from the Ural Mountains to the Yenisey River, wintering in east Africa (Clements *et al.* 2015).

F. h. iberiae (Witherby, 1928)

Type locality Segovia, Spain. The holotype (male; NHMUK 1929.1.15.1) is deposited at the Natural History Museum (Tring, UK). This subspecies is sometimes not recognized because it is geographically and morphologically intermediate between *F. h. hypoleuca* and *F. h. speculigera* (Bonaparte, 1850) (von Jordans & Steinbacher 1942; Vaurie 1954; del Hoyo *et al.* 2006). There is also disagreement as to whether it should be treated as a synonym of *F. h. hypoleuca* (e.g., Vaurie 1954; Mayr & Cottrell 1986) or of *F. h. speculigera* (e.g., Curio 1960). This subspecies breeds in the Iberian Peninsula, wintering in western Africa (Clements *et al.* 2015).

Unnamed population

According to Löhrl (1965), an Alpine (southern Germany and Switzerland) population of *F. hypoleuca* is diagnosable morphologically from the northern German *muscipeta* by darker plumage and eco-physiologically by differences in average clutch size. This matter should be further investigated, although features such as clutch size are often related to altitude (Sanz 1997).
Is *Ficedula hypoleuca* a single species?

Here we follow del Hoyo *et al.* (2006), who accept *hypoleuca, iberiae, tomentsis* (as *sibirica*) and *speculigera* as valid subspecies. Despite some populations being seemingly easy to diagnose on plumage coloration, taxon identification is complicated by hybridization. All subspecies hybridize with the nominate *F. h. hypoleuca* (including Central European *muscipeta*) where their geographical ranges meet (del Hoyo *et al.* 2006; Taylor & Christie 2013).

Furthermore, *F. h. iberiae* is considered an intermediate between nominate *hypoleuca* and *speculigera*. Some recent works treat *speculigera* as a separate species, but without confronting the problem with *iberiae* (e.g., Sætre *et al.* 2001; Corso *et al.* 2015). Potti *et al.* (2016) distinguished *speculigera* and *iberiae* as species based on statistical differences in morphological traits, but without a comparison with type material and topotypes, and no deposition of vouchers nor the required comparison with nominate *hypoleuca*. Moreover, these authors, echoing Curio (1960), suggested that *speculigera* and *iberiae* were more closely related to each other than to *hypoleuca*, but did not expressly compare them to the latter.

Further factors, still partly related to hybridization, might also come into play. First, these birds are migrants, implying that their populations are philopatric in their breeding. This may drive differentiation between the nuclei of the populations, even if the populations hybridize at the periphery. Secondly, despite males being morphologically diagnosable, females are not. Accordingly, song and behavior, which are less studied characters than plumage, might have a more prominent role in delimiting subspecies. For instance, Robb & The Sound Approach (2015) attempted differentiating nominate *hypoleuca* from *iberiae* and *speculigera* by song, with a reasonable degree of success.

There are two species considered to be closely related to *F. hypoleuca*, namely the collared flycatcher *F. albicollis* (Temminck), known to hybridize with *F. hypoleuca* (e.g., Qvarnström *et al.* 2010; Sætre & Sæther 2010), and the semicollared flycatcher *F. semitorquata* (Homeyer); the latter is often considered a subspecies of the former in the literature (e.g., Mayr & Cottrell 1986; Cramp & Perrins 1993). These three species have an as yet-unresolved evolutionary history, having diverged around 1–2 Ma ago (Lundberg & Alatalo 1992; Nadachowska-Brzyska *et al.* 2016). Both *F. albicollis* and *F. semitorquata* have long been accepted as distinct species from *F. hypoleuca* (e.g., Dunajewski 1938; del Hoyo *et al.* 2006; Uebbing *et al.* 2016). However, some authors consider *F. semitorquata* a subspecies of *F. hypoleuca* (e.g., Hartert 1907; Lundberg & Alatalo 1992) and *F. h. speculigera* an intermediate between *F. h. hypoleuca* and *F. albicollis* (e.g., Corso *et al.* 2015). Consequently, any thorough systematic work dealing with the circumscription of *F. hypoleuca* should include the relationships and status of these taxa as well.
Prospects for future research

Species (or subspecies) delimitation in cases such as this is best conducted using the full potential of phenotypic characters, i.e., not only morphometric and plumage coloration characters, but also vocal and ecological/behavioral characters (Tobias et al. 2010). For instance, differences in migratory patterns have been reported as key characters for the taxonomy of some bird species (e.g., Rolshausen et al. 2009), further corroborated by the unviability of hybrids between distinct migratory types (Price 2008, and references therein). Different populations of F. hypoleuca (from Fennoscandia, the Netherlands and UK) were recent found to consistently have distinct migration patterns and wintering grounds (Ouwehand et al. 2015). Molecular studies should also be used in defining population groups and their divergence (and gene flow in hybrid zones), but need to be conducted in conjunction with analyses of phenotypic characters (e.g., Qvarnström et al. 2010 for F. hypoleuca and F. albicollis) and not as a self-sufficient methodology, as it is often the case.

The subspecies concept, when properly applied, is a valuable tool for all fields in ornithology (Mayr & Ashlock 1991; Patten & Unitt 2002). It identifies populations with incipiently divergent gene pools, which are the building blocks of evolution, and it allows for synthesis of information and study of questions involving distinct populations, their local selection pressures, and behaviors. Populations with subspecific or specific status are seen differently by conservation policy, a concern that might become urgent in the near future, as some flycatcher populations have been declining recently (Both et al. 2006; BirdLife International 2012). Geographical ranges also play important roles, since taxon range size is a major factor in deciding their conservation status (BirdLife International 2012).

Despite “internal” issues of relationship and status, the hypoleuca/albicollis group of Ficedula seems to form a cohesive taxonomic grouping. Nevertheless, its relationships with other species currently classified in this genus remain problematic. The genus clearly needs to be better defined, as many studies have recovered it as para- or even polyphyletic. These studies are all molecular using only a handful of loci, which, besides the usual problems (see, for instance, Tobias et al. 2010; Wilkins & Ebach 2014), have largely disregarded the importance of geographical representation in their sampling. In the studies dealing more specifically with the hypoleuca/albicollis group or with the genus Ficedula, none examined specimens from all populations, nor did they include specimens from many type localities, even when comparing subspecies. For instance, Sætre et al. (2001) used hypoleuca specimens only from Norway; Outlaw & Voelker (2006) from Russia and Norway; Sangster et al. (2010) from Sweden; Barve & Mason (2015) from Sweden, Norway, Czech Republic and a few without provenance; Nadachowska-Brzyska et al. (2016) from Sweden, Czech Republic and Spain; Dong et al. (2015) from
Russia; and specimens used by Ellegren et al. (2012) lack geographical data altogether. More problematically, Zucon & Ericson (2010), in their phylogeny of the whole chat/flycatcher complex, did not include *F. hypoleuca*, which is the type species of the genus.

The majority of these works included GenBank/NCBI data in their species sampling without regard for geographical source (if any) and subspecies rank. Moreover, the identification of the samples and their vouchers are often also questionable (Vilgalys 2003). Such disregard might not be so problematic in a very broad phylogeny (e.g., Barve & Mason 2015), but they greatly diminish the value of studies focused on species-subspecies relationships, such as those on *Ficedula hypoleuca* and related species (e.g., Ellegren et al. 2012).

To conclude, studies in areas other than systematics, especially physiology and ecology (and often also molecular systematics) rarely observe two other very important practices. The first is to state clearly which taxic classification they are following (Hyam 2015). Since different checklists and systematists can apply different circumscriptions in a given species complex, disclosing which definition one is using is crucial for sound comparison among published studies (Hyam 2015). The second practice concerns the deposition of voucher material. Every study should deposit voucher material – the whole specimen, not only tissue samples – in museum collections, which allows future researchers to check and re-analyze the material used (Huber 1998; Funk et al. 2005). Such voucher material should be accompanied by standard, comprehensive label data, including locality, collection date, sex, age, etc. This is critical, since the specimens themselves are the primary data (Schilthuizen et al. 2015), and failure to retain them makes research unverifiable, a serious flaw in any scientific endeavor (Turney et al. 2015).

Acknowledgements

We are very grateful to Marianne van der Heijden (NIOO-KNAW), Carlo M. Cunha (Unisanta, Santos) and Luis F. Silveira (MZSP, São Paulo) for help in procuring some old literature; to Pavel Tomkovic (ZMMU, Moscow) for data on the type specimens of *sibirica*; to Sylke Frahnert (ZMB, Berlin) and Eberhard Mey (TLHR, Rudolstadt) for help in tracking down the type material of *muscipeta*; to Jerome Fuchs (MNHN) for help in searching for the type material of *speculigera*; to the IUCN Red List Unit for data on the distribution of *F. hypoleuca*; to Marcel E. Visser and Arie van Noordwijk (NIOO-KNAW) for discussions on the origins of the Dutch pied flycatcher population; to Richard Schodde and Ricardo Palma (WGAN) and the anonymous reviewers for comments and suggestions that greatly improved this paper. Authors received doctoral grants from CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil): R.B.S., proc. #245575/2012-0; B.M.T., proc. # 237790/2012-2.
Appendix. Composition and exchanges in the Dutch pied flycatcher population

The Dutch Flycatcher population
European pied flycatchers did not breed in the Netherlands until very recently, although there are anecdotal information of possible occasional nests found there from the end of the 19th to the beginning of the 20th century (Dunajewski 1938; Haverschmidt 1973). The first actual breeding pair observed and recorded in The Netherlands was found in 1903, in the town of Denekamp, very close to the German border (Knolle et al. 1998). The population only really became established in the country in the mid-20th century (Haverschmidt 1973; Cramp & Perrins 1993; Bijlsma et al. 2001).

Before that, flycatchers caught in the Netherlands (such as Pallas’s types) would have been caught during their migration. Fennoscandian birds, in particular, are presently commonly caught mid-migration in the Netherlands, as shown below.

Ringing data
Based on roughly 60 years of ringing data (from the Dutch Centre for Avian Migration and Demography), 306031 individuals ringed in the Netherlands and individuals ringed elsewhere (14 in the UK and 48 in Fennoscandia) and then recaptured in the Netherlands, it was possible to assess the composition (Table 1) and exchanges between the Dutch and other pied flycatcher populations (Table 2). This data support the idea that birds ringed in Fennoscandia rarely breed in the Netherlands and that birds born in the Netherlands rarely disperse to Fennoscandia. The majority of dispersal of birds born in the Netherlands happens within the “F. h. muscipeta” distribution: either Germany or Belgium (but not Poland). This information gives further support to the classification of the present Dutch flycatcher population in the “F. h. muscipeta” stock, consisting of an expansion of the German population. Also, as explained in the main text of the body, the type material of nominate F. hypoleuca caught in the Netherlands very likely was composed of Fennoscandian individuals caught mid-migration.
Table 9.1. Population of destination of birds born in the Netherlands but recovered breeding in other countries. These numbers were based on 74 ring recoveries and do not include birds breeding in the Netherlands that correspond to the majority (99.63%, 19975 recoveries) of all flycatchers ringed as nestlings in the Netherlands and subsequently caught as breeding birds.

<table>
<thead>
<tr>
<th>Breeding population</th>
<th>Countries with recoveries from NL</th>
<th>Proportion of recoveries</th>
</tr>
</thead>
<tbody>
<tr>
<td>F. h. hypoleuca</td>
<td>UK, Ireland, Norway, Sweden, Finland</td>
<td>0.00</td>
</tr>
<tr>
<td>F. h. ibereae</td>
<td>Portugal, Spain</td>
<td>0.00</td>
</tr>
<tr>
<td>“F. h. muscipeta”</td>
<td>Belgium, Germany, Poland</td>
<td>93.24</td>
</tr>
<tr>
<td>F. h. speculigera</td>
<td>Tunisia, Algeria, Morocco</td>
<td>1.35</td>
</tr>
<tr>
<td>not defined</td>
<td>Hungary, Italy, France, Turkey</td>
<td>5.41</td>
</tr>
</tbody>
</table>

Table 9.2. Origin and situation of *F. h. hypoleuca* caught in the Netherlands; birds of foreign origin caught in the Netherlands can be either breeding there or simply be passing through during migration. Here are shown the individuals of *F. h. hypoleuca*, which stem from either the United Kingdom (total = 14 birds) or Fennoscandia (total = 48).

<table>
<thead>
<tr>
<th>Country of origin</th>
<th>Proportion breeding in NL</th>
<th>Proportion caught during migration</th>
</tr>
</thead>
<tbody>
<tr>
<td>United Kingdom</td>
<td>57.14</td>
<td>42.86</td>
</tr>
<tr>
<td>Fennoscandia</td>
<td>2.08</td>
<td>97.92</td>
</tr>
</tbody>
</table>