Ambulatory assessment of human circadian phase and related sleep disorders from heart rate variability and other non-invasive physiological measurements
Gil Ponce, Enrique
10 LIST OF FIGURES

Figure 1.1 The suprachiasmatic nuclei (SCN) located in the anterior hypothalamus is the master circadian clock. It relies on input from the eyes via the optic nerve and is able to relay timing information to other slave oscillators in the body.

Figure 1.2 Schematic of entrainment and free-run of a circadian rhythm. Black represents the main sleep interval, gray represents wake time. In natural conditions, subjects were entrained to the 24 hours light:dark cycle showing consistent sleep timing. In temporal isolation, subjects began drifting and became delayed every day. When they were returned to natural lighting conditions, the subjects were able to re-entrain to the 24 hour light:dark cycle. The timing of the dark:light cycle plays a major role in the entrainment of the circadian clock to the external clock.

Figure 1.3 Depiction of the normal sleep timing versus delayed sleep phase disorder versus advanced sleep phase disorder. The black bars represent the sleep intervals. The DSPD situation would present an issue when trying to adhere to conventional work schedules, or would result in sleep deprivation and lack of alertness. The ASPD situation could interfere with social or familial interactions or obligations in the evenings. Note that the extent of these misalignments can be larger or smaller than depicted here.

Figure 1.4 Phase response curve (PRC) for short light pulses during constant darkness at different times of the circadian cycle (below) and the corresponding shifts in the circadian clock (above) where black lines represent the subjective night. A pulse at (A) has no shifting effect, at (B) and (C) causes delays of different magnitudes, at (D) and (E) causes advances of different magnitudes. Figure from Moore-Ede et al. [24].

Figure 1.5 Core body temperature (CBT) measured via a rectal thermometer over 30.5 hours. The thick center line shows the mean, while the thinner lines are plus or minus one SE. Adapted from Kräuchi et al. [27].

Figure 1.6 Schematic of typical melatonin profile over one night. Melatonin production starts in the evening and usually reaches a plateau during the night before decreasing by morning. Melatonin, specifically DLMO, is the most commonly used biomarker for circadian phase.

Figure 1.7 During an ultradian sleep-wake cycle protocol, HRV features show circadian variation both during wake (white circles) and nap opportunities (black circles). The y-axis shows the % deviation from the mean, while the x-axis shows the clock time over two circadian cycles (data are double-plotted to emphasize rhythmicity). Circadian variation is seen in HRV features independent of sleep or wake state. Adapted from Boudreau et al. [36].
Figure 1.8 Average phase shifts of the heart rate and HRV rhythms after melatonin or placebo administration. The solid lines show the shift in each of the features, while the dashed lines show the shift in plasma melatonin. The endogenous circadian clock influences the autonomic control of heart rate. Figure from Vandewalle et al. [37]...20

Figure 1.9 Progression of skin temperature (distal, proximal, and distal-proximal gradient), sleepiness, melatonin concentration, core body temperature, and heart rate in a baseline 7.5 hour constant routine and 7.5 hours of sleep. Mean values of 18 subjects are shown in sampling bins of 30 minutes. Adapted from Kräuchi et al. [48]..22

Figure 2.1 Flowchart of ARMAX model...45

Figure 2.2 Flowchart of DLMO prediction model ...47

Figure 2.3 Sample input and output signals, in normalized units.........................48

Figure 2.4 Measured DLMO versus predicted DLMO for each subject using the 7 ARMAX models presented in Table 2.1. Only one of the two sessions is shown. The plot shows the linear fit and the ±95% confidence interval.51

Figure 2.5 Bland-Altman plots of the model with the lowest error and standard deviation of the error. The solid line labeled “Mean Diff” shows the mean difference between the predicted DLMO and the measured DLMO (bias), the dashed lines labeled “Mean Diff ± SD” show the mean plus/minus one standard deviation, and the dashed lines labeled “Mean Diff ± 1.96*SD” show the 95% limits of agreement defined as the mean difference plus/minus 1.96*standard deviation. (a) Shows the results of the model for session 1 with an error of +4±36 minutes. (b) Shows the results of the model for session 2 with an error of 0±42 minutes...52

Figure 3.1 ARMAX phase prediction model. Inputs: 24 hours segments of RR intervals and light exposure. Output: DLMO-coded cosine, \(y(t)=\cos(2\pi ft-\theta_{DLMO}) \)..63

Figure 3.2 a) Original activity trace, b) Activity pre-processing emphasizing the rest/wake cycle. The activity-based models in [1] were trained using activity patterns as shown in (a). ..64

Figure 3.3 Measured DLMO vs. predicted DLMO from ARMAX model (N=16) using RR intervals and light exposure, 2±39 minutes (R = 0.712, p < 0.01)........64

Figure 3.4 a) Results using the original activity trace and RR intervals, -27±40 minutes (R=0.654, p=0.01). b) Results using the pre-processing of activity to emphasize the rest/wake cycle and RR intervals, 4±34 minutes (R=0.771, p<0.01). ..65

Figure 4.1 Study protocol. Two consecutive weeks of actigraphy, two ECG and skin temperature recordings for 30 hours each week, and salivary melatonin levels during each of those recording periods. ...70
Figure 4.2 Sensor placement. Nine iButtons were placed as shown here by solid circles. The ECG was measured using the standard configuration shown by striped circles. Activity and light were measured at the wrist.

Figure 4.3 Linear regression of the best performing model using activity and the high frequency HRV feature with an error in minutes of 17±28 (mean±SD) and a Pearson’s R value of 0.847. The heavy solid line shows the linear regression of the phase estimates, the heavy dashed line shows the ideal line, the secondary dashed lines show the 30 minute and 1 hour errors departing from the ideal line.

Figure 5.1 Mio Alpha wrist-worn PPG-based heart rate monitor.

Figure 5.2 Protocol for the second part of the study. Time intervals shown are not representative of the schedule of all participants. On average, the data consisted of 48 hours of actigraphy, 40 hours of PPG, 32 hours of ECG, 2 PSG recordings, and 5 saliva samples for melatonin analysis.

Figure 5.3 RR intervals from an ECG compared to the pulse-to-pulse intervals from a PPG signal. Since the PPG signal is a mechanical signal while the ECG is electrical, there is a delay in the measurement of the pulse in the PPG as it reaches the sensor location at the wrist.

Figure 5.4 Flowchart of circadian phase estimation model. The RR intervals from the 3 separate recordings are first stitched together. All signals are then median filtered with a window of 15 minutes and normalized. Signal combinations are then used as inputs into the ARMAX model which then outputs an estimated cosine wave. The cosine is then fitted using a cosinor fitting. The maximum of the newly created cosine is determined and this is the estimated DLMO surrogate.

Figure 6.1 RR intervals of sleep onset insomnia patients. Error bars show the standard error of the measurements.

Figure 6.2 Spectral HRV features from 24 hour ECG recordings from sleep onset insomnia patients. The vertical line shows the sleep onset time. Error bars represent the standard errors of the measurements.

Figure 6.3 Temporal HRV features from 24 hour ECG recordings from sleep onset insomnia patients. The vertical line shows the sleep onset time. Error bars represent the standard errors of the measurements.

Figure 6.4 Difference in the timing of the SDNN peak in sleep onset insomnia patients. The circles and dark fit correspond to the sleep onset insomnia patients, while the triangles and gray fit correspond to the healthy sleepers. The traces have been shifted and aligned at the sleep onset, represented by the vertical line. Error bars show standard errors of the measurements.
Figure 7.1 Measured ground-truth DLMO versus Estimated DLMO values of sleep onset insomnia patients using an ARMAX model based on RR intervals, activity levels, and light exposure (ARL).