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ABSTRACT
Introduction: Tuberculosis remains a global health problem and pharmacokinetic variability has been
postulated as one of the causes of treatment failure and acquired drug resistance. New developments
enable implementation of therapeutic drug monitoring, a strategy to evaluate drug exposure in order
to tailor the dose to the individual patient, in tuberculosis treatment.
Areas covered: Literature on pharmacokinetics and pharmacodynamics of anti-tuberculosis drugs was
explored to evaluate the effect of drug exposure in relation to drug susceptibility, toxicity and efficacy.
New, down-sized strategies, like dried blood spot analysis and limited sampling strategies are reviewed.
In addition, molecular resistance testing of Mycobacteria tuberculosis, combining a short turn-around
time with relevant information on drug susceptibility of the causative pathogen was explored. Newly
emerging host biomarkers provide information on the response to treatment.
Expert opinion: Therapeutic drug monitoring can minimize toxicity and increase efficacy of tubercu-
losis treatment and prevent the development of resistance. Dried blood spot analysis and limited
sampling strategies, can be combined to provide us with a more patient friendly approach.
Furthermore, rapid information on drug susceptibility by molecular testing, and information from
host biomarkers on the bacteriological response, can be used to further optimize tuberculosis
treatment.
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1. Introduction

Although tuberculosis (TB) mortality has fallen by 47% since
1990, it will remain a huge medical, social, and financial
problem throughout the world for the coming decades. The
World Health Organization (WHO) estimated that in 2014
about 9.6 million children, women, and men fell ill from TB.
Twelve percent of these were human immunodeficiency virus
(HIV) positive and of the 1.5 million who died from TB,
400,000 were HIV positive.[1] One of the problems that facil-
itates ongoing transmission is the lack of early diagnosis.
Only 63% of the new TB cases were diagnosed, and an
even smaller proportion of multidrug-resistant (MDR)-TB dis-
ease is diagnosed. Approximately, 25% of the estimated
annual number of prevalent 480,000 MDR-TB cases are
detected and reported. The notification of MDR-TB and
extensively drug resistant (XDR)-TB has risen in recent years,
while the incidence rates of susceptible TB are slowly
decreasing.[1] Most MDR-TB cases are nowadays detected
by molecular testing of the infecting mycobacteria. There
are no exact data on the prevalence of more extended

resistance profiles in this group. By molecular testing, we
do know there is at least resistance to rifampicin and isonia-
zid, but molecular testing provides no information on to
which alternative drugs the strain is still susceptible.
Therefore, the true magnitude of the problem of drug-resis-
tant TB in the world is in fact unknown. After the start of an
effective drug regime, it was shown that transmission almost
immediately stops.[2] An effective treatment regime for TB,
that prevents relapse after treatment completion, needs to
be based on sufficient effective drugs in an effective dose for
a sufficient duration. The standardized regimen for drug-
susceptible TB was found to lead to treatment success in
85% of the cases.[1] Further optimization by identifying
patients that are over- or undertreated would be expected
to increase treatment success rate further. Therapeutic drug
monitoring (TDM) would help detect patients receiving a too
high or too low drug dose and allow them to be provided
with individualized treatment.[3] TDM for TB includes evalua-
tion of both pharmacokinetics (PK) and pharmacodynamics
(PD) to enable individualized treatment optimization.
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1.1. PK

PK describes what happens with a drug in the body. Generally, the
drug is absorbed (A) into the systemic circulation after oral intake,
after which it is distributed (D) throughout the body including to
the TB infection sites. After metabolism (M) mainly by the liver,
eventually the drugs are eliminated (E) mainly by the kidneys and
released in the urine.[4] Integration of these parameters results in
a PK model that describes these processes (ADME) (Figure 1a).

PK of TB drugs are not only influenced by the physical and
chemical properties of the drug, but are also dependent on
patient characteristics, such as age, gender, or kidney- or liver
function.[4,6] PK variability is a well-known problem affecting
drug exposure and thereby TB treatment.[7,8] For example,
Pranger et al. observed a nine-fold variability in the area under
the time concentration curve between 0 and 24 h (area under
the curve [AUC0–24 h]) of moxifloxacin, possibly due to varia-
tion in protein binding. This led to suboptimal as well as
potential toxic concentrations of moxifloxacin given in the
same dosage of 400 mg.[9] The most relevant measure of
drug exposure is AUC0–24 h. To assess drug exposure, generally
multiple samples are collected.[7]

1.2. PD

PD describes effect of the drug on the target, for the purpose
of this review on, Mycobacterium tuberculosis (Mtb). Anti-TB
drugs can be subdivided in bactericidal and bacteriostatic
drugs. The maximum effect of a drug is described by max-
imum effect (Emax). The EC50 is the concentration at 50% of
Emax and describes the potency of the drug (Figure 1b). To
describe the susceptibility of a pathogen to a drug, generally
the minimal inhibitory concentration (MIC) is used, which
reflects the drug concentration that is associated with >99%
inhibition of growth of the pathogen.[1,10] Not only the effect
of the drug on the pathogen, but also the effect of the drug

Article highlights

● TDM, tailoring the dose to the individual patient based on plasma
concentrations, has the potential to improve therapy, but is not yet
included in the treatment guidelines of TB of WHO.

● TDM should ultimately be performed by using PK/PD targets, inte-
grating both concentration and effect of the anti-TB drug in time, but
for most anti-TB drugs these are still unknown.

● Dried blood spots provide us with a more stable and patient friendly
way, for the determination of plasma concentrations of anti-TB drugs
as well as the diagnosis of TB, using IP-10 as a biomarker.

● Limited sampling provides us with a new less expensive and less
time-consuming way to determine the AUC of anti-TB drugs.

● The rise of WGS and novel drug resistance testing methods provide
opportunities to find mutations causing resistance in M. tuberculosis,
that are currently still unknown.

● Measurement of the kinetics of circulating host markers has potential
to monitor treatment for the detection of treatment failures.

This box summarizes key points contained in the article.

Figure 1. Pharmacokinetic/pharmacodynamic integration.
In pharmacokinetic/pharmacodynamic (PK/PD) modeling, both pharmacokinetic (PK) models and pharmacodynamic (PD) models are brought together to provide
information about the time at which the concentration of an anti-tuberculosis (anti-TB) drug is within the therapeutic range A. PK model with on the x-axis the time
in hours after dosage and on the y-axis the concentration of the anti-TB drug. The dark grey area is the area under the curve (AUC). The maximum of the curve is the
peak concentration (Cmax), at a certain time (tmax). B. PD model with on the x-axis the plasma concentration of the anti-TB drug and on the y-axis the response in
percentage of the maximum effect (Emax). The EC50 is the half maximal effective concentration, which is used as a measure of the anti-TB drug’s potency. C. This
graph shows another PD model, but in this case the plasma concentration of the drug at which toxicity occurs is shown. The TD50 is the median toxic dose at which
in 50% of the cases toxicity occurs. D. By combining Figure 1B and 1C, the plasma concentration of the anti-TB drug at which the maximum effect is reached with
the lowest change of toxicity. This is known as the therapeutic range and is marked with the light grey area.[5]
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on the patient, the toxicity, is described by PD (Figure 1c).
When both the efficacy and the toxicity curves of the anti-TB
drug are described in one figure, the therapeutic range can be
derived (Figure 1d). The therapeutic range is the concentration
at which the TB drug has high efficacy with low toxicity.

1.3. PK/PD

PK/PD integrates both concentration and effect of a drug in
time. PK/PD focuses on the efficacy of the drug on Mtb as well
as the toxicity on the patient. The in vitro Hollow Fiber infec-
tion model, in which the exposure to drugs can be varied, has
been used to elucidate PK/PD indices for many anti-TB drugs
(Table 1).[10–12] However, PK/PD indices can also be eluci-
dated in preclinical and clinical studies by dose-fractionation
studies and early bactericidal (EBA) studies. Dose-fractionation
studies in preclinical models are often used to determine
which PK/PD parameter is most important for the anti-TB
drug. EBA studies measure the ability of anti-TB drugs to
reduce the burden of Mtb in sputum to determine the efficacy
of treatment. In contrast to dose-fractionation studies, EBA
studies do not break the collinearity of PK/PD parameters.
[10,13] For most anti-TB drugs, the AUC0–24 h relative to the
MIC has been suggested as the best parameter to predict in
vivo efficacy of drugs against Mtb.[9–11,14] As only unbound
drug is active, the free AUC is often used as a target.[9,11,15]
Other PK/PD parameters are peak concentration (Cmax)/MIC
ratio or the time the concentration exceeds the MIC
(T > MIC) (Table 1).[16] If PK/PD targets are not met, this results
in selection of resistant bacteria.[10,17]

2. Current status

The current programmatic TB treatment regimens use the
principle of ‘One size fits all.’ Due to the PK variability, how-
ever, this carries the risk of hidden monotherapy that may
result in treatment failure and development of drug resistance.
More and more information is becoming available showing
that underdosing is an important factor in the development of
resistance.[34,35] Srivastava stated that pharmacological varia-
bility is also a factor that needs to be taken into consideration
and could be an underlying reason for the occurrence of
resistance.[36] The use of TDM is not yet standard in the
treatment of TB, neither is the way it is performed. No official
guidelines for TDM are available at international (e.g. WHO) or
national health organizations. The WHO recommends the use
of drug susceptibility testing (DST) for (resistant) TB.[1] There
are only a limited number of laboratories in the world provid-
ing reliable and reproducible susceptibility testing on first-line
drugs.[37] Nowadays, most MDR-TB cases are diagnosed by
the detection of mutations related to rifampicin resistance, for
instance by the GeneXpert.[38] This is a fast and relatively
cheap diagnostic tool, but does not yield information on an
alternative and effective treatment regime to be used when
resistance occurs. A phenotypic resistance testing pattern,
based on exact MIC’s and not breakpoints, is needed to enable
PK/PD-guided dosing using TDM.[39] Unfortunately, this is a
time- and money-consuming procedure taking up to 10 weeks
before the definite resistance pattern for second-line and

third-line drugs becomes available. This implicates that in
most cases treatment is started empirically using a standar-
dized programmatic regime or an educated guess. Once drug
susceptibility data have become available, the medication
regime must be revised according to the results.

Using TDM, it is possible to adapt the dose, based on the
drug concentration and thereby increase efficacy or prevent
toxicity. Repeated sampling of blood is often required after a
change of dose. The most frequent used sampling time points
are 2 (C2 h)and 6 h (C6 h) post-drug intake. The C2 h is a
surrogate of the peak plasma concentration (Cmax), which is
linked to a certain time at which this peak concentration
occurs (tmax) (Table 1) [7,40] and the C6 h is often collected
to evaluate potential delayed absorption.[1,40] Moreover,
selected sample time points can be used to estimate the
AUC precisely, referred to as limited sampling.[16]

As already mentioned, to date, TDM is not recommended
by the guidelines.[21] However, to assess its value, the cur-
rently available data on efficacy, toxicity, and drug suscept-
ibility is summarized.

2.1. Efficacy

To determine the efficacy of TB treatment, several measures
are available: sputum smear conversion, sputum culture con-
version, time to positivity, and treatment outcome. Sputum
smear and culture conversion are defined by two consecutive
negative sputum cultures at least 30 days apart.[41,42]
Treatment outcome is either recorded as successful, defined
as cured, treatment completed or still on treatment or
recorded as failure defined as defaulted, relapsed or has dete-
riorated during treatment.[1] Current treatment of drug sus-
ceptible TB with group 1 anti-TB drugs (Table 1) is quite
successful, with a treatment success rate of 85%.[1] However,
even though the treatment success target for MDR-TB was set
on e75% by the WHO, this target has only been reached by a
few countries.[1] A MDR-TB treatment regimen is constructed,
using ethambutol (if proven susceptible) and pyrazinamide in
combination with second-line anti-TB drugs: an injectable in
combination with a fluoroquinolone completed with group 4
drugs (ethionamide, cycloserine, and para-aminosaliciylic acid)
(Table 1).[21] The reference value for Cmax at a normal dose,
which needs to be reached for effective treatment with these
anti-TB drugs, is described in Table 1. There are several studies
that describe the relationship between low drug levels and
treatment failure. For example, a retrospectively evaluated
cohort showing high treatment failure and high rates of
acquired resistance indicated that most of these patients had
low drug levels of rifampicin and isoniazid. After TDM, dose
adjustments were made in 71.8% of the patients in order to
increase plasma concentrations of the drugs, which led to
variable results.[43] The PK/PD index and the relationship
with treatment outcome is difficult to study in ‘real-life.’
Technical complications with respect to drug concentration
measurement and DST, long-term outcome evaluation, and
budget restrains complicate these studies. Gumbo et al. did
link sputum smear and the AUC0–24 h/MIC ratio for ciproflox-
acin, which combines treatment outcome directly with PK/PD.
[17] The EBA is used to evaluate the efficacy of anti-TB drugs

EXPERT OPINION ON DRUG METABOLISM & TOXICOLOGY 511
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in this study. The EBA is based on the rate of decline in the
bacterial density in sputum per day for the first few days of
treatment. This study shows that when a mean MIC of TB
isolates is known, the EBA that is found in human EBA studies
is mediated through an AUC0–24 h/MIC ratio that is achieved in
an in vitro TB model.[13,17]

The AUC0–24 h was also linked to treatment outcome in the
study of Pasipanodya et al. (2013). They showed that the AUC
of pyrazinamide, rifampicin, and isoniazid below a certain
threshold, were predictors of a poor long-term outcome.
They observed that poor outcomes were encountered in 32/
78 patients with the AUC of at least one of these drugs below
the threshold versus 3 out of 64 patients with AUC of all drugs
above threshold.[12] Another parameter that can be used for
TDM is C2 h which has also been found to correlate with
efficacy endpoints. For example, Prahl et al. (2014) found
that patients with therapy failure had significantly lower C2 h

of isoniazid and/or pyrazinamide, despite the fact that they
received a higher dosage per kg of body weight. They also
observed that more patients with both low rifampicin and
isoniazid concentrations experienced therapy failure.[44]
These results, however, can be misinterpreted because C2 h

might not represent the actual peak concentration. Therefore,
a second sample might be necessary to make sure the drug
absorption is assessed more completely.[7] Furthermore,
Chideya et al. found that pyrazinamide plasma concentrations
below 35 µg/ml were a predictor of poor treatment outcome,
which can function as a reference value in TDM.[6] However,
more studies are needed to elucidate PK/PD indices in ‘real
life’ treatment, because the PK/PD index (Table 1) of a drug in
a combination regimen may differ from the index of that
particular drug given as monotherapy in an EBA study.

2.2. Toxicity

It is well known that second-line anti-TB drugs are more toxic
than first-line anti-TB drugs. The most severe and frequently
observed adverse drug events are hematological changes,
hepatotoxicity, immunological reactions, ototoxicity, nephro-
toxicity, neurotoxicity, and neuromuscular blockade.[45]
Although many studies report on adverse effects of anti-TB
drugs, there are relatively few that take plasma concentration
into account. Ethambutol optical neuropathy, peripheral neu-
ropathy due to isoniazid and pyrazinamide-induced hepato-
toxicity, and QT-interval prolongation due to fluorquinolones
are all dose-dependent,[45] taking plasma concentration into
account could reduce the occurrence of these toxicities.
Satyaraddi et al. have studied the plasma-drug levels of first-
line anti-TB drugs in 110 TB patients, in relation to hepatotoxi-
city. They showed that plasma rifampicin levels were higher in
patients with drug-induced hepatotoxicity (DIH) than in con-
trols. They found that a rifampicin Cmax at day 7 exceeding
12.50 mg/l, was associated with DIH in most patients.[46] TDM
of rifampicin might possibly reduce the occurrence of DIH, or
reverse the toxicity without the need to withdraw the drug for
DIH. Neuropsychiatric symptoms were shown to be associated
with a cycloserine concentration above 40 µg/ml in a study of
Holmes et al. Neuropsychiatric toxicities frequently require
changes in DOTS-Plus regimens, including temporary

suspension.[47] TDM is intended for prevention of toxicity by
individual dosing, neuropsychiatric toxicities could therewith
be prevented. Torün et al. showed in their retrospective
review of 263 patients that in 182 cases (69.2%) at least one
side effect developed, and that in 146 cases (55.5%), one or
more drugs were withdrawn from treatment due to side
effects. These side effects were mostly due to amikacin oto-
toxicity or cycloserine neuropsychiatric toxicity.[48] Other
adverse effects of anti-TB drugs include ocular toxicity, which
is more common with a daily dose of ethambutol above
30 mg/kg.[18] Another study found that ocular toxicity may
be due to overdosing of ethambutol in obese patients.
Overdosing occurred in relation to the calculation of the
dosage on total body weight. Ethambutol does not accumu-
late in fat tissue, which causes the dosage to be too high. They
suggest ethambutol dosing according to lean body weight, for
which more PK studies in obese patients are necessary.[49]
Linezolid is a second-line anti-TB drug that is found to have a
higher degree of safety at a lower dose (�600 mg a day), while
it may still be effective at a dose of 300 mg.[50–52] Moreover,
a dose of 600 mg is found to be safer than 1200 mg daily, with
adverse effects occurring in respectively 14.3% and 54.4% of
the cases, adverse effects mostly representing anemia and
thrombocytopenia.[41] If linezolid has to be used at a higher
dose to maximize its efficacy, the toxic plasma concentrations
should be closely monitored to minimize its toxicity.[53]
However, there is still research needed to determine reference
values for toxic concentrations of most anti-TB drugs for ade-
quate implementation of TDM.

2.3. Drug susceptibility

In order to select a treatment strategy for a TB patient, the
drug susceptibility of the Mtb complex isolate to anti-TB drugs
is determined on basis of growth inhibition in specialized
laboratories. If the causative bacteria are ‘susceptible,’ the
respective drug is included in the regimen; if the bacteria are
considered ‘resistant,’ the drug is excluded.[54]

Nowadays, the vast majority of the DST is performed in the
mycobacteria growth indicator tube (MGIT) device at the ‘cri-
tical concentration.’ However, as recently published by an
expert group in Europe, to adjust the dose of particular
drugs in treatment, especially in complicated cases involving
multidrug resistance and severe side effects, there is a need to
determine the true MIC.[22,55,56] This provides the possibility
to increase the dose of the respective drug to overcome a
reduced susceptibility.[57,58] Nowadays, MIC values of rifam-
picin near the breakpoint are also detected regularly.[59]

In Bangladesh, this appeared to be a risk factor for treat-
ment failure.[60] Recent data showed that a higher dose of
rifampicin is well tolerated;[61] therefore, it may be considered
in complicated cases to increase the dose of rifampicin.
Nevertheless, evidence on long-term outcome supporting
this approach is not yet available.

Another disadvantage of the use of the MGIT method for
DST is that in fact only inhibition of growth of Mtb is measured
and not the killing of bacteria. So this method does not take
into account the survival of bacteria entering a stage of
reduced metabolism to survive the harsh conditions.
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Furthermore, for particular drugs, like ethambutol, the repro-
ducibility is questionable due to the close natural distribution
of the MIC and the critical concentration.[22,55,62]

2.4. Biomarkers

Nonspecific circulating biomarkers, whose kinetics are asso-
ciated with the initiation of effective treatment, have been
identified. Some of these biomarkers have the potential for
point-of-care measurement, notably IP-10.[63,64] The clinical
value for treatment optimization and the predictive power of
these markers needs to be established in larger trials in differ-
ent patient populations. To date, no biomarkers have been
included in treatment evaluation.

3. Opportunities

3.1. Dried blood spots

Dried blood spot (DBS) analysis is a method in which a small
amount of blood is collected on filter paper, after which it is
allowed to air dry. At the moment of analysis, a circular punch
is taken from the blood spot and eluted with solvent.
Hereafter, the dried blood sample is ready to be analyzed.
[25] Blood concentrations of anti-TB drugs can be determined
from the DBS using high performance liquid chromatography
techniques coupled to mass spectrometry.[65,66] Allanson and
colleagues were the first to examine the possibility of using
DBS in the determination of the first-line anti-TB drug rifampi-
cin in human plasma and blood spots.[24] Vu and co-workers
thereafter examined the simultaneous determination of rifam-
picin, clarithromycin, and their metabolites on basis of DBS.
[29] Both studies showed promising results for the use of DBS
in TDM of anti-TB drugs. A recent review described which
drugs used for pulmonary infections were potential candi-
dates for the development and application of DBS monitoring
from an analytical and clinical point of view.[66] DBS has
several advantages in comparison to conventional plasma
sampling. First, the sampling is cheap and simple, while the
blood can be directly analyzed from the blood spot and does
not need time-consuming sample preparation. Second, DBS
can be stored for longer time periods as a dried sample. This
improves the stability and hence cooled shipment is unneces-
sary.[28,65] For example, the study of Vu showed that the
second-line TB drug clarithromycin showed no significant
degradation after exposure of the DBS at 50°C for 60 days.
They also showed that rifampicin was stable for 2 months at
ambient temperature.[29] Because DBS improves stability, due
to the use of dried blood, it could provide an answer for
patients in remote areas where the temperature and humidity
are high. Stability of samples under high temperature and
humidity is of the utmost importance, because most of the
new TB cases in 2014 were diagnosed in Southeast Asia and
western Pacific regions (58%) and the African region (29%).
Furthermore, the use of dried blood reduces the biohazard risk
because it reduces contact with liquid blood, making it safe to
use in high HIV prevalence areas. Also, FTA DMPK-A and B DBS
cards have certain characteristics which makes them able to
lyse cells and denature proteins on contact, making sure the

blood is no longer virulent.[66] However, further research
should be performed to determine whether Mtb the DBS is
still viable. Finally, DBS uses smaller blood volumes than con-
ventional plasma sampling and is less invasively collected. This
is especially important in children, because even sparse sam-
pling, taking 3 ml of blood per sample, is often too much in
relation to their limited total blood volume.[67] From the 9.6
million new TB cases in 2014, an estimated 1.0 million were
children.[1] Although it is widely known that the PK of children
is significantly different from that of adults, PK studies are
usually not performed in children. Therefore, TDM of anti-TB
drugs in children is needed. Because of the use of only a
limited amount of blood in DBS, collected in a minimally
invasive way, DBS could provide children with optimal drug
dosing. The advantages of DBS analysis above conventional
sampling make it an attractive analysis method for adults as
well as children.

3.2. Limited sampling

Limited sampling is a strategy that uses a limited number of
optimal sampling time points. In this approach, typically two or
three [11,16,23] samples are used to estimate the exposure.
Optimal sampling times are calculated during limited sampling
studies using PK models and Monte Carlo simulations. When
the optimal sampling points have been obtained, they can be
used to predict the AUC0–24 h, using population PK. For most
anti-TB drugs, the AUC0–24 h/MIC ratio is the best parameter to
predict efficacy.[10,17,68] To determine the AUC0–24 h, conven-
tionally 10–15 sample points are needed to cover 80% of the
total AUC.[11] A significant amount of blood samples are taken
from the patients before- and at several time points after intake
of the anti-TB drug.[11,15,16,23,26,27] However, blood sampling
is invasive, and should be kept to a minimum. Limited sampling
may be of help in minimizing the number of samples. Limited
sampling has several other advantages over conventional blood
sampling. Because it uses less samples, it is less expensive and
less time consuming for the patient as well as for the laboratory
analyzing the samples. Besides these advantages, there still
remain some problems with limited sampling. For example,
there is no qualification available on the laboratories where
TDM should be performed. In contrast, according to the WHO
guidelines, DST should only be performed at current good
laboratory practices (cGLP) certified laboratories. It therefore
seems plausible that TDM should also be performed at a cGLP
laboratory. Not all laboratories in low- and middle-income
countries are GLP licensed, TDM should therefore be performed
at a central laboratory in the country that specializes in TDM. A
central laboratory also has advantages for DBS analysis because
it needs specialized equipment and standardized protocols. In
the ideal situation, in each country DBS is performed at a
central level along with sophisticated diagnostics. Currently,
DBS samples can be sent to international labs, which is much
cheaper compared to plasma samples as shipment on dry ice is
not needed.[66] Second, only few studies describe limited sam-
pling for one of multiple anti-TB drugs. Alsultan et al. (2015)
showed that with limited sampling at 1 and 6 h post dose an
AUC could be estimated of levofloxacin.[15] TDM could help
find an optimal TB treatment by studying general optimal
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dosing and this could be performed in a simpler, less expensive,
and less time consuming manner by using limited sampling.
Limited sampling may be used for an accurate and precise
estimation of the AUC0–24 h of a few anti-TB drugs, which are
marked yes in Table 1. Limited sampling studies have to be
performed for every anti-TB drug separately; therefore, more
research is necessary to determine if limited sampling can be
used for other anti-TB drugs.

3.3. Molecular testing

Because of the complications in phenotypic resistance testing,
the acceptance of the molecular approach to determine the
presence of resistance mutations of Mtb is increasing.
Moreover, the information of molecular resistance tests is
readily available. Whereas in the last two decades especially
reverse line blot assays [69–71] were applied to detect or
exclude the presence of particular resistance mutations in
the genome of Mtb, nowadays whole genome sequencing
(WGS) provides the possibility to detect all mutations pre-
viously associated with resistance.[72] However, the general
problem faced at the moment is that the predictive value of
resistance mutations is not always clear, especially when they
are rarely encountered.[73] For the frequently observed muta-
tions tested in reverse line blot assays, such as the ones
associated with rifampicin and isoniazid, the positive- and
negative-predictive value is high and this merits direct clinical
use of these test results to steer the treatment.[74] For other
drugs, especially of the second-line category (Table 2), the
predictive value is sometimes somewhat lower and this

confuses the utility of this information. A part of the current
confusion may well be caused by the low reproducibility of
phenotypic resistance testing along with the fact that in
reverse line blot assays only a small subset of the resistance
mutations is revealed.

Nonetheless, with the introduction of WGS and hence the
screening of the entire genome of Mtb for the presence of
resistance mutations, the correlation of resistance indicators
and the level of phenotypic resistance will improve rapidly, if
this information is collected on a large scale, as is being done
in several current initiatives.[72,81] It is conceivable that within
a few years a large part of the phenotypic resistance testing
could be avoided. Ideally also the correlation between the
presence of particular resistance mutations and the level of
resistance against all anti-TB drugs will be established, so the
selection of the treatment regimen can be based solely on
DNA analysis. This will speed up the adjustment of treatment
and also avoid cumbersome, time consuming, and potentially
dangerous, phenotypic resistance testing, requiring a compli-
cated quality assurance. It has become conceivable in recent
years that all information to select the proper treatment of TB
in the majority of cases can be traced in the genome of the
causative bacteria, also regarding the newly emerging drugs.
[82,83] Just the collection of sufficient data to associate the
occurrence of resistance mutations with phenotypic resis-
tance, and eventually treatment outcome separates us from
introducing this major improvement in TB control. If this
becomes reality, most of the laboratory diagnosis for TB
could be based on WGS analysis, that is identification of the
causative agent to (sub)species- and genotype level, as well as

Table 2. Drug susceptibility test methods and critical concentrations for first- and second-line drug susceptibility tests together with molecular tests.

Phenotypic DST

Drug Genotypic DST DST critical concentrations (µg/ml) [54]

Group Drug Molecular test Gene
Genes screened with

WGS [72]
Löwenstein–

Jensen
Middlebook

7H10
Middlebrook

7H11 MGIT960

1 Pyrazinamide pncA [75] panD
[76]

pncA, rpsA – – – 100

Ethambutol MTBDRsl v1a embB [74] embA, embB, embC, iniA, iniC,
manB,rm1D

2 5 7.5 5

Rifabutin MTBDRplusc rpoB [77] 0.5
Isoniazid MTBDRplusc inhA [74] katG [74] ahpC, fabG1, inhA, katG, ndh 0.2 0.2 0.2 0.1
Rifampicin MTBDRplusc, Xpert/

RIFd [38,54]
rpoB [74] rpoB 40 1 1 1

2 Kanamycin MTBDRsl v1a, v2b rrs [74] eis [78] gidB, rrs, tlyA, eis 30 5 6 2.5
Amikacin MTBDRsl v1a, v2b rrs [74] gidB, rrs, tylA 30 4 – 1
Capreomycin MTBDRsl v1a, v2b rrs [74] gidB, rrs, tylA 40 4 – 2.5
Streptomycin MTBDRsl v1a, v2b rrs [79] rpsL, gidB, rrs, tlyA 4 2 2 1

3 Levofloxacin – 1 – 1.5
Moxifloxacin MTBDRsl v1a, v2b gyrA [74] gyrB[78] gyrA, gyrB – 0.5/2 – 0.5/2
Ofloxacin MTBDRsl v1a, v2b gyrA [78] gyrB [78] gyrA, gyrB 4 2 2 2

4 P-aminosalicyclic
acid

1 2 8 4

Cycloserine 30 – – –
Ethionamide MTBDRplusc inhA [80] 40 5 10 5
Protionamide 40 – – 2.5

5 Clofazimine – – – –
Linezolid – – – 1

DST: Drug susceptibility test; MGIT: mycobacterium growth indicator tube; WGS: whole genome sequencing.
aGenoType MTBDRsl version 1 (v1) is for the detection of M. tuberculosis complex and its resistance to fluoroquinolones, aminoglycosides/cyclic peptides, and

ethambutol.
bGenoType MTBDRsl version 2 (v2) is for the detection of M. tuberculosis complex and its resistance to fluoroquinolones, aminoglycosides/cyclic peptides.
cGenoType MTBDRplus is for the detection of M. tuberculosis complex and its resistance to isoniazid and rifampicin.
Xpert/RIF this is a cartridge-based fully automated molecular diagnostic assay for the detection of M. tuberculosis complex and its resistance to rifampicin.
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resistance testing and epidemiological typing. This new
approach may be much easier to implement in high-preva-
lence settings than the conventional approach that is based
on the availability of a Biosafety Level 3 laboratory and many
complicated procedures, which have proven hard to
standardize.

3.4. Biomarkers

Established methods to measure bacterial killing include
microscopy and culture performed at diagnosis and at
month 2, and thereafter monthly until repeatedly negative.
This is mostly referred to as AFB and culture conversion,
respectively. Thus, these methods can only detect the effect
of treatment after 2 months at the earliest. The currently
available automated polymerase chain reaction assays are
also unsuitable for tracking early bacterial killing, although
adaptations to address this weakness have been proposed.
[84,85] Innovations in microscopy, able to discriminate
between viable and non-viable bacilli, are also under develop-
ment.[86,87] Detection of mutations associated with resistance
as a form of direct susceptibility testing also provides the
possibility of predicting a failure to respond to certain drugs,
[88] as mentioned above. Interestingly, the possibility of objec-
tively measuring host response by monitoring the kinetics of
circulating host markers has recently received increased atten-
tion.[89,90] Measuring such markers in parallel with drug
levels have the potential to facilitate and simplify personalized
therapy. When biomarkers are measured in possibly infected
plasma, appropriate measures for the protection of health care
and laboratory workers must be implemented.

Here, we will briefly discuss the recent progression in iden-
tifying and validating host markers for treatment monitoring.
These host markers used are not specific for TB but their
potential for simple detection allows measurement of their
kinetics in response to therapy, which may provide informa-
tion to guide treatment and allow more complex specific
laboratory-based assays to be targeted at the patients who
are failing to respond to the therapy prescribed. Candidate
biomarker selections have been based on systematic protein
and mRNA profiling and on selection of cytokines/chemokines
known to be associated with or involved in the immune
response to TB infection.[91–93] It should be noted that for
treatment monitoring circulating markers are of primary inter-
est. The stimulated in vitro secretion of cytokines by white
blood cells in response to challenge with TB antigens has also
received considerable attention, but this is more suited to
detecting previous exposure to and infection with TB.[94]

From these studies a number of promising markers have
been selected, a notable example is IP-10/CXCL-10, a chemo-
kine involved in the establishment of a proinflammatory Th1
response. TB is associated with increased serum IP-10 levels
[93,95–97], and at completion of therapy, levels are signifi-
cantly lower than before treatment/at diagnosis.[64,98,99]
This decrease is also measurable in the first weeks of ther-
apy,[63,93] and therefore measurement of the kinetics of this
cytokine during treatment may provide useful information on
whether patients are responding to the prescribed drugs. It is
also notable that host markers are present and detectable in

all individuals. Unlike bacterial-derived markers such as LAM,
which is one of the most promising bacterial derived biomar-
kers, which are still undetectable in most infected patients.
[100,101] In fact, IP-10 is a particularly interesting treatment
response biomarker as it has been shown to be stable in dried
plasma spots [64] and is present at high levels that are mea-
surable with the new generation of simple near patient assays,
[102] which should facilitate rapid repeated costs effective
measurement. IP10, however, measured at a single-time
point cannot specifically identify TB, nor distinguish between
TB and latent-TB infection. It is possible that combinations of
biomarkers may be more informative,[97,99] or for example
the kinetics of osteopontin combined with IP-10,[103] which
both appear to be associated with microscopic conversion.

The clinical value for treatment optimization and the pre-
dictive power of these markers for treatment monitoring need
to be established in larger trials with different patient popula-
tions. To date, no biomarkers have been included in routine
treatment evaluation.

3.5. Conclusion

TDM is currently not included in the management of TB treat-
ment. To date, no randomized controlled trial has evaluated
the potential benefits of this strategy for optimization of TB
treatment. However, in current literature a lot of supportive
evidence can be found. For example, in vitro studies have
shown a relation between drug exposure and efficacy of
treatment. In addition, acquired drug resistance could be pre-
dicted by these models. Furthermore, in actual patients a high
variability in drug exposure has been shown for several drugs
supporting the idea that drug exposure could play a signifi-
cant role in treatment outcome. To overcome current hurdles
to implement TDM in TB treatment, many new techniques
have become available over the recent years. DBS analysis in
combination with limited sampling strategies will enable more
simple collection of patients’ samples to adequately assess
drug exposure. Rapid diagnosis of bacterial resistance, using
molecular tests (Table 2), will be enable to start the most
appropriate drug regimen up front, preventing treatment
with drugs that show resistance once results from classical
drug susceptibility tests have become available. Biomarker
kinetics linked to clinical response, is potentially easily measur-
able and may also help to optimize treatment.

4. Expert opinion

4.1. DBS

DBS shows promising results for application for TDM of anti-TB
drugs in developed countries and less developed countries.
[29] However, some issues need to be addressed before DBS
can be implemented for TDM. DBS has only been validated for
a few drugs, which have been marked with yes in Table 1. The
remaining anti-TB drugs must be individually validated for
application of DBS.[104] The validation process of DBS is
more extensive than a normal method validation, while for
example hematocrit variation has to be taken into account.
Another problem is the blood spot sampling, while the blood
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spot has to satisfy certain requirements, such as filling the
predefined 3 mm diameter circle with only one drop of
blood. When these requirements are not met, analysis of the
DBS sample cannot be performed. To make sure DBS is per-
formed accurately, training of personnel is necessary. A future
opportunity would be a combined LC–MS/MS method, where
multiple anti-TB drug concentrations are determined from one
DBS sample.[105] This would reduce analyzing time and would
provide an easier method. This seems to be a possibility
looking at the study of Han et al.,[106] but this need to be
validated for DBS.

4.2. Limited sampling

Because PK/PD guided TDM requires an AUC for most of the
anti-TB drugs, which is costly and time consuming, limited
sampling could provide a long-awaited solution. Limited sam-
pling time points need to be evaluated for each anti-TB drug
individually. In order to obtain these, population PK studies
are necessary, which are not readily available for all anti-TB
drugs. To obtain this information, several studies remain to be
conducted. In addition, it would be very helpful and an asset
to TDM to have a limited sampling strategy that is suitable for
more than one drug. Such a strategy is available for first-line
drugs (Table 1), but has not been established for second-line
drugs (Table 1).[16] Furthermore, it is likely that limited sam-
pling strategies need to be confirmed in different populations
due to variability caused by pharmacogenetic differences.
However, hopefully in the future this information is readily
available for limited sampling to be performed routinely,
because of the many advantages of limited sampling to con-
ventional blood sampling.

4.3. Biomarkers and molecular testing

Using culture conversion and AFB conversion as indicators of
treatment, response in the era of molecular diagnostics is too
slow. A simple point of care test to objectively monitor clinical
response would be highly valuable, especially if data on drug
levels and bacterial genetic resistance markers are also avail-
able. This is a rapidly developing field, and initial combined
results of multiple groups suggest measurement of circulating
host markers contain highly valuable information on response
within 14 days. However, monitoring of large cohorts of
patients with- and without drug resistance and follow-up on
treatment outcome is required for reliable validation. Much
more focus is needed on treatment outcome and strategies to
optimize the treatment of individual patients on the basis of
clinical, bacteriological, and PK data. Drug susceptibility and
resistance testing, including conventional DST and the detec-
tion of bacteriological genetic markers of resistance, could
both serve as surrogate markers for patient response. If
patient response could be measured directly and linked to
blood drug levels and genotypic mutations, personalized
treatment could be realized on a large scale. More data are
expected on the impact of drug resistance and bacteriological
factors (genotype and resistance profile) on host response and
the link with successful outcome. But the ultimate challenge is
to find predictors of cure or measure of relapse early in

treatment. Therefore, much more effort should be put in the
exploration and validation of host biomarker kinetics.

4.4. Integrated TDM approach to optimize TB treatment

To truly optimize TB treatment, an integrated approach a
combination of all next generation tools is needed. The most
appropriate drugs are selected, based on molecular resistance
tests (Table 2) and a combination of information on drug
exposure and biomarker response with clinical expertise is
employed to further tailor treatment to the individual patients’
needs (Figure 2).

A new strategy, in which slow phenotypic evaluation of
bacterial cultures can be avoided, will allow effective treatment
to be much more rapidly identified and will allow failing patients
to be provided with effective drugs. In addition, biomarker and
drug exposure evaluation will avoid the need to wait for classical
evaluation based on sputum culture conversion. However, also
with these new markers, a rapid turnaround time of results and
integration of all next generation tools is key to meeting the
expectations of the clinician and the patient.

Although implementing TDM will increase the direct
costs of TB treatment, it can prevent hospitalization due to
toxicity and it can prevent development of drug resistance
leading to MDR-TB treatment, which is even more expen-
sive. To date, no randomized controlled trials have been
performed comparing TDM with standard of care.
Therefore a cost-effectiveness analysis is difficult to perform.
This may hinder implementation of TDM in TB treatment.
[105,107] TDM using limited sampling and available AUC/
MIC indices, should be performed for isoniazid and rifampi-
cin in selected patients to prevent the occurrence of MDR-
TB. TDM has already been applied for second-line anti TB
drugs to reduce toxicity and increase efficacy. However, due
to lacking target values for some second-line anti-TB drugs

Figure 2. Next generation approach of integrated therapeutic drug monitoring
approach including molecular testing and biomarker evaluation.
First, TB is diagnosed, where after drugs are selected based on molecular
resistance tests. A baseline biomarker is then selected, which can be followed
throughout treatment. The biomarker can help to determine whether the
treatment is effective and if changes in the regimen need to be made. TDM is
done during the entire course of treatment using the dried blood spot (DBS)
approach. TB: tuberculosis; TDM: Therapeutic Drug Monitoring; DBS: Dried Blood
Spots.
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and randomized clinical trials it has not yet been included in
WHO treatment guidelines. In the ideal situation, TDM will
be integrated in TB treatment to optimize care in individual
patients.
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