Vilazodone does not inhibit sexual behavior in male rats in contrast to paroxetine
Oosting, Ronald S.; Chan, Johnny S W; Olivier, Berend; Banerjee, Pradeep

Published in:
Neuropharmacology

DOI:
10.1016/j.neuropharm.2016.03.045

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2016

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Vilazodone does not inhibit sexual behavior in male rats in contrast to paroxetine: A role for 5-HT₁A receptors?

Ronald S. Oosting, Johnny S.W. Chan, Berend Olivier, Pradeep Banerjee

1. Introduction

Major depressive disorder (MDD) is one of the most common mental disorders worldwide (Bromet et al., 2011), and antidepressants such as selective serotonin reuptake inhibitors (SSRIs) are among the most frequently prescribed drugs (Lindsley, 2012). The clinical efficacy can be limited, however, due to adverse sexual side effects that may affect up to 60% of patients treated with SSRIs (Kennedy and Rizvi, 2009). These SSRI-induced sexual side effects can lead to treatment noncompliance and discontinuation (Ashton et al., 2005), which can lower patient quality of life (Hu et al., 2004) and increase the risk of relapse and recurrence of MDD (Clayton and Montejo, 2006). Therefore, understanding the neurobiology underlying SSRI-induced sexual dysfunction and identifying treatment options with a lower risk of adverse impact on sexual function may help to optimize the management of MDD and improve patient outcomes.

Strategies used to mitigate the adverse sexual side effects of SSRIs include lowering dosage, switching class of antidepressant medication (eg, norepinephrine-dopamine reuptake inhibitor), or adding concomitant medications such as a phosphodiesterase inhibitor type 5 (PDE5; eg, sildenafil) or 5-HT₁A receptor partial agonists (Rizvi and Kennedy, 2013).

Preclinical studies and clinical evidence support a role for 5-HT₁A receptors in modulating sexual behavior. Buspirone and its major active metabolite, 6-OH-buspirone, act as partial agonists at presynaptic 5-HT₁A receptors in the raphe nuclei (higher affinity) and at postsynaptic 5-HT₁A receptors throughout the brain (lower affinity) (Wong et al., 2007). Studies in male rats have shown that 5-HT₁A receptor agonists (8-OH-DPAT, FG-5893, flesinoxan), as well as the partial agonist buspirone, have a facilitating effect on sexual behavior (Bijlsma et al., 2014; Chan et al., 2008). In contrast, the 5-
2. Experimental procedures

2.1. Animals

Male (300–400 g) and female (200–300 g) Wistar rats (Charles River Laboratories, FR) were group housed (4 per cage) with food and water ad libitum. All animal cages were stored in the same room maintained at 21 °C and 55% humidity. Rats were habituated for 1 week to reversed light/dark schedule (lights off 7:00; lights on 19:00). All experiments were reviewed and approved by Utrecht University's animal welfare committee (DEC), in accordance with the European Communities Council Directive of 24 November 1986.

2.2. Drug administrations

Vilazodone hydrochloride was obtained in powder form from Forest Laboratories, Inc. (an Allergan affiliate). Paroxetine hydrochloride and buspirone hydrochloride tablets (Sandoz, France) were purchased from a local pharmacy in generic form. All drugs were dissolved or suspended in vehicle (1% methylcellulose and water) and orally administered (PO) between 9:00 and 15:00 (non-test days) or 1 h before testing. Doses were 10 mg/kg for vilazodone and paroxetine; 3 mg/kg buspirone was co-administered with 10 mg/kg paroxetine.

2.3. Sexual behavior test

The sexual behavior test was performed as previously described (Chan et al., 2010). All assessments were performed in the dark phase of the light/dark-cycle under dim red light conditions.

2.4. Sexual training and selection of male rats

144 male rats were trained (30 min) once weekly for 4 consecutive weeks with an estrus female that was located in an observation cage behind a clear Plexiglas front. At 36 h before the test, the female received a subcutaneous injection of 50 µg estradiol-benzoate dissolved in sesame oil to induce receptivity. Males that exhibited 2–3 ejaculations during the final three 30-min training sessions were classified as normal-performers (Pattij et al., 2005) and were included in the drug testing studies (n = 84).

2.5. Experimental design and testing

Male normal-performers were divided into 7 treatment groups (n = 8 per group) that consisted of 2 distinct successive pharmacological treatments (exception was vehicle-to-vehicle group). The experimental design is shown in Fig. 1. Rats received the first treatment for 14 d and were switched to the second treatment for an additional 7 d.

Male rats were placed in an observation cage (30 × 40 × 60 cm) with an estrous female on Day 1 (acute), Day 8 (subchronic), Day 15 (chronic), and Day 22 (7 d after switch) to score sexual behavior. Evaluations included the frequencies of mounts (no vaginal penetration) and intromissions (vaginal penetration) in the first ejaculation series, latency to the first ejaculation (time between the first mount or intromission to first ejaculation), and ejaculation frequency for the duration of the 30-min test. Copulatory efficiency was defined as: # intromissions/(# intromissions + # mounts) × 100%. All measurements and scoring were performed using Observer® 5.0 (Noldus, Wageningen, The Netherlands).

2.6. Statistical analysis

Data for each sexual behavior test day (acute, subchronic,
chronic, and post-switch) were analyzed using a one-way analysis of variance (ANOVA) to determine the effects of treatment on a particular test day. Each one-way ANOVA included groups that received the same pre-switch treatment (paroxetine, vilazodone, and paroxetine + buspirone) and the vehicle group. When the ANOVA indicated a significant treatment effect, Bonferroni post hoc corrections were performed to investigate differences between the treatments.

Time-by-treatment interactions were analyzed using repeated measure ANOVAs with Greenhouse-Geisser correction. Time was based on the 4 test days representing acute (Day 1), subchronic (Day 8), chronic (Day 15), and post-switch treatment (Day 22); treatment groups were based on pre-switch assignments (eg, paroxetine with a switch to vehicle, vilazodone, or paroxetine + buspirone) as well as the vehicle control group. All significance testing was 2-sided at the $P < 0.05$ level. All data are represented as the mean and standard error of the mean (SEM).

3. Results

Representative tracings of individual rat sexual behaviors (mount, intromission, and ejaculations) during the 30-min sex tests following subchronic (7 d), chronic (14 d), and 7 d post-switch are shown in Supplemental Fig. 1.

3.1. Pre-switch treatments

Ejaculation frequency, first series ejaculation latency, and first series copulatory efficiency following the acute, subchronic, and chronic treatments are shown in Table 1. Following the acute treatments with vehicle, paroxetine, paroxetine + buspirone, or vilazodone there were no significant differences of the sexual behaviors (Table 1, Figs. 2 and 3). However, subchronic and chronic paroxetine treatments resulted in reduced ejaculation frequency, increased latency to first ejaculation, and reduced copulatory efficiency. The paroxetine + buspirone treatment impaired ejaculation frequency (chronic) and copulatory efficiency (subchronic and chronic), but had no effect on latency to first ejaculation. Vilazodone treatment did not result in any differences in sexual behaviors from vehicle treatment. Bonferroni post hoc corrections for comparisons between treatment groups on each test day are described below and shown in Table 1.

3.1.1. Comparisons with paroxetine

Comparisons between treatment groups indicated that paroxetine-treated rats had worse performance on sexual behavior parameters than the other groups (Table 1, Figs. 2 and 3). Rats in the paroxetine group had reduced ejaculation frequency following subchronic and chronic treatment (both time points, $P \leq 0.001$ vs all other groups), increased ejaculation latency following subchronic treatment ($P \leq 0.001$ vs all other groups) and chronic

Table 1

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Acute</th>
<th>Subchronic</th>
<th>Chronic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ejaculation frequency, #</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VEH</td>
<td>2.8 ± 0.4</td>
<td>3.1 ± 0.2</td>
<td>3.2 ± 0.2</td>
</tr>
<tr>
<td>PAR</td>
<td>2.6 ± 0.3</td>
<td>$0.8 \pm 0.7^{a,b,c}$</td>
<td>$1.5 \pm 0.3^{a,b,c}$</td>
</tr>
<tr>
<td>PAR + BUS</td>
<td>2.6 ± 0.3</td>
<td>2.3 ± 0.4</td>
<td>$2.0 \pm 0.3^{a,b,c}$</td>
</tr>
<tr>
<td>VLZ</td>
<td>3.0 ± 0.2</td>
<td>3.6 ± 0.2</td>
<td>3.3 ± 0.2</td>
</tr>
<tr>
<td>First series ejaculation latency, sec</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VEH</td>
<td>367 ± 136</td>
<td>333 ± 59^{a}</td>
<td>$269 \pm 62^{a,b,c}$</td>
</tr>
<tr>
<td>PAR</td>
<td>350 ± 99</td>
<td>$1329 \pm 531^{a,b,c}$</td>
<td>$910 \pm 188^{a,b,c}$</td>
</tr>
<tr>
<td>PAR + BUS</td>
<td>281 ± 66</td>
<td>549 ± 189</td>
<td>522 ± 138</td>
</tr>
<tr>
<td>VLZ</td>
<td>280 ± 63</td>
<td>183 ± 31</td>
<td>245 ± 57</td>
</tr>
<tr>
<td>First series copulatory efficiency, %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VEH</td>
<td>60 ± 7.7</td>
<td>58 ± 2.9</td>
<td>62 ± 3.9</td>
</tr>
<tr>
<td>PAR</td>
<td>49 ± 7.2</td>
<td>$21 \pm 2.3^{a,b,c}$</td>
<td>$33 \pm 3.2^{a,b,c}$</td>
</tr>
<tr>
<td>PAR + BUS</td>
<td>51 ± 6.9</td>
<td>$38 \pm 5^{a,b,c}$</td>
<td>$38 \pm 5.0^{a,b,c}$</td>
</tr>
<tr>
<td>VLZ</td>
<td>57 ± 4.9</td>
<td>70 ± 4</td>
<td>62 ± 3.9</td>
</tr>
</tbody>
</table>

All data are shown as the mean ± standard error of the mean for all animals in each pre-switch treatment group: VEH (n = 8); PAR (n = 24); PAR + BUS (n = 8); VLZ (n = 16). Lower values indicate greater impairment for ejaculation frequency and copulatory efficiency; higher values indicate greater impairment for ejaculation latency. Abbreviations: #, number per 30 min; VEH, vehicle (n = 10); PAR, paroxetine (10 mg/kg; n = 34); BUS, buspirone (3 mg/kg; n = 12); VLZ, vilazodone (10 mg/kg; n = 24); sec, seconds.

$^{a} P \leq 0.05$ versus vehicle.

$^{b} P \leq 0.05$ versus paroxetine + buspirone.

$^{c} P \leq 0.05$ versus vilazodone.
treatment ($P/C20 < 0.001$ vs vehicle; $P/C20 < 0.001$ vs vilazodone), reduced copulatory efficiency after subchronic treatment ($P/C20 < 0.001$ vs vehicle and vilazodone; $P/C20 < 0.01$ vs paroxetine + buspirone) and chronic treatment ($P/C20 < 0.001$ vs vehicle and vilazodone; $P/C20 < 0.01$ vs paroxetine + buspirone).

3.1.2. Comparisons with paroxetine + buspirone

Paroxetine + buspirone-treated rats had reduced ejaculation frequency following chronic (but not subchronic) treatment ($P < 0.001$ vs vehicle; $P < 0.001$ vs vehicle and vilazodone; $P < 0.05$ vs paroxetine + buspirone) and chronic treatment ($P < 0.001$ vs vehicle and vilazodone; $P < 0.01$ vs paroxetine + buspirone).

3.1.3. Comparisons with vilazodone

Unlike the paroxetine- and paroxetine + buspirone-treated rats, vilazodone-treated rats did not exhibit impairments in any of the sexual behaviors relative to the vehicle-treated rats (Table 1, Figs. 2 and 3).

Notably, the significant differences between vilazodone and paroxetine + buspirone for ejaculation frequency and copulatory efficiency (Table 1) suggested that these treatments did not have equivalent effects on the sexual behaviors.

3.2. Post-switch treatments

3.2.1. From paroxetine to paroxetine + buspirone or vilazodone

Paroxetine-treated rats that had previously exhibited ejaculatory and copulatory sexual dysfunction returned to control (ie,
vehicle-vehicle) levels following 7 d treatment with vehicle, paroxetine + buspirone, or vilazodone (Figs. 2 and 3A).

3.2.2. From paroxetine + buspirone to paroxetine

Rats that were switched from paroxetine + buspirone to paroxetine only treatment exhibited decreased ejaculation frequency, increased latency to first ejaculation, and reduced copulatory efficiency compared with vehicle (all P ≤ 0.01; Fig. 2A, B and 3B).

3.2.3. From vilazodone to paroxetine

There were no differences in sexual behaviors of vilazodone-treated rats that were switched to vehicle compared with vehicle-vehicle controls (Figs. 2 and 3C). Vilazodone-treated rats that were switched to paroxetine exhibited decreased ejaculation frequency, increased latency to first ejaculation, and decreased copulatory efficiency compared with vehicle-vehicle controls (all P ≤ 0.05; Figs. 2A, B and 3C).

3.2.4. Time-by-treatment interactions

All time-by-treatment interactions were significant (P ≤ 0.005) except for the model that analyzed copulatory efficiency in the group that switched from paroxetine + buspirone to paroxetine alone and the vehicle control group (Fig. 3B).

4. Discussion

The current study investigated the role of combined 5-HTT inhibition and 5-HT1A receptor partial agonism on male rat sexual behaviors. In general, the results suggest that SSRI-induced sexual dysfunction was normalized when treatments included both SSRI and partial 5-HT1A receptor agonism (ie, vilazodone or paroxetine + buspirone).

SSRI treatment can cause sexual dysfunction in all 3 phases of the human sexual response cycle, which includes desire, arousal, and orgasm (Serretti and Chiesa, 2009; Waldinger et al., 2001). Male rats exhibit a similar sexual response cycle that includes the behaviors of approaching and sniffing (precopulatory), repeated intromissions and mounting (copulatory), and ejaculation (Snoeren et al., 2014). In the current study, male rat sexual behavior was not affected by acute treatment with paroxetine alone, as was expected from previous studies that showed no sexual side effects after acute SSRI administration in rats (Olivier et al., 2011; Waldinger et al., 2002) or humans (Waldinger et al., 2001). The most robust inhibitory effects were seen after subchronic paroxetine treatment, with some recovery after longer (chronic) exposure. The reason for this trend is not clear, but we have occasionally observed a tendency towards recovery in previous studies with similar treatment paradigms that also used paroxetine as the reference compound (Bijlsma et al., 2014; Chan et al., 2008; Olivier et al., 2011).

Based on previous evidence showing that administration of 5-HT1A Receptor agonists and partial agonists enhanced male sexual behaviors in rodents (Arnone et al., 1995; De Jong et al., 2005; Snoeren et al., 2014) and improved sexual functioning in depressed patients taking SSRIs (Landen et al., 1999), it was hypothesized that addition of a 5-HT1A receptor partial agonist to SSRI treatment would mitigate SSRI-associated sexual side effects. The pre-switch (subchronic, chronic) and post-switch results of the current study were consistent with this hypothesis, although the results with vilazodone are perhaps more persuasive than those with paroxetine + buspirone (especially after chronic treatment).

Several mechanisms may be involved in SSRI-induced sexual dysfunction. First, SSRIs such as paroxetine lead to chronic elevation of extracellular 5-HT, which increases inhibitory tone on sexual behaviors (Snoeren et al., 2014) and activates negative feedback mechanisms that reduce the tone of 5-HT neuronal activity via various inhibitory autoreceptors (5-HT1A, 5-HT1B, 5-HT1D, 5-HT5A) located in the raphe nuclei (Barnes and Sharp, 1999; Chan et al., 2008; Snoeren et al., 2014). 5-HT1A autoreceptors have been shown to desensitize following chronic pharmacological elevation (Le Poul et al., 1995; Li et al., 1997) and gene-mediated (5-HT1 knockout rat) elevation (Chan et al., 2011) of extracellular 5-HT levels, which may partially dampen the feedback mechanism. Second, neurochemical adaptations related to postsynaptic 5-HT heteroreceptors (5-HT1A, 5-HT2A, and 5-HT2C receptors) may also play a role in sexual function (Clayton et al., 2013a; Olivier et al., 2011). These heteroreceptors are located on GABAergic and glutamatergic cell bodies in brain areas that are involved in sexual behaviors (eg, hippocampus, septum, amygdala, hypothalamus, and entorhinal cortex), but the functions of these inhibitory and excitatory systems, respectively, on sexual behavior are not well understood (Sharp et al., 2007). Finally, sexual behavior may also be regulated by interactions between the 5-HT system and other systems that involve dopamine, noradrenaline, or oxytocin (Bijlsma et al., 2014; Rosen et al., 1999; Silverstone et al., 2012; Snoeren, 2015; Snoeren et al., 2014).

The generally comparable effects of vilazodone and paroxetine + buspirone on sexual behavior that were seen in this study may be due to the involvement of presynaptic 5-HT1A autoreceptors (Ashby et al., 2013; Wong et al., 2007) and postsynaptic 5-HT1A heteroreceptors (Hughes et al., 2005; Wong et al., 2007). 5-HT1A receptor partial agonists stimulate inhibitory autoreceptors in the raphe nuclei, which decrease extracellular 5-HT release globally and thereby reduce inhibitory tone on sexual behavior. 5-HT1A receptor partial agonists also directly stimulate postsynaptic 5-HT1A heteroreceptors in brain regions that are involved in sexual behaviors (Blier and Ward, 2003; Snoeren et al., 2014); moreover, these heteroreceptors may play a role in negative feedback loops that inhibit 5-HT transmission (Casanova et al., 1999; Hajos et al, 1999; Snoeren et al, 2014).

Although both buspirone and vilazodone are partial 5-HT1A receptor agonists, buspironore is also a dopamine D2 receptor antagonist; additionally, buspirone has an active metabolite, 6-hydroxybuspirone, that may affect its 5-HT1A receptor occupancy (Wong et al., 2007). It is important to note, however, that differences in 5-HT1A occupancy between vilazodone and buspironore remain unclear since it is a challenge to demonstrate vilazodone’s in vivo 5-HT1A binding affinity due to competition with the endogenous ligand (5-HT) (van Amsterdam and Seyfried, 2014). However, in a small clinical study of healthy volunteers, positron-emission tomography scans showed preferential occupancy for the presynaptic versus the postsynaptic 5-HT1A receptor with vilazodone but not with buspironore (Rabiner et al., 2000). Further research would be needed to better understand the differential effects of buspironore and vilazodone on human sexual functioning.

In summary, daily vilazodone treatment was not associated with sexual dysfunction in male rats, and switching to daily vilazodone treatment for 1 week normalized sexual function in rats that had previously exhibited paroxetine-induced sexual dysfunction. Vilazodone treatment may not result in sexual dysfunction in male rats due to its molecular actions as both an SSRI and 5-HT1A partial agonist; any effects on male rat sexual behaviors were found to be less severe than the coadministration of paroxetine + buspironore. In addition, switching to vilazodone treatment was more effective than the addition of buspironore in normalizing SSRI-induced sexual side effects, which may have clinical implications. Combination therapy of SSRIs with 5-HT1A agonists and partial agonists has been shown to improve SSRI-related sexual dysfunction (Clayton and Montejo, 2006; Landen et al., 1999) and is therefore a common strategy to manage treatment in MDD patients experiencing sexual side effects (Rizvi and...

Silverstone, PH., Laidis, M.D., Hudson, A., 2012. Quetiapine and buspirone both elevate cortical levels of noradrenaline and dopamine in vivo, but do not have synergistic effects. Front. Psychiatry 3, 82.
Wong, H., Dockens, R.C., Pajor, L., Yoola, S., Grace, J.E., Stark, A.D., Taub, R.A., Yocca, F.D., Zaczek, R.C., Li, Y.-W., 2007. 6-Hydroxybuspirone is a major active metabolite of buspirone: assessment of pharmacokinetics and 5-hydroxytryptamine1A receptor occupancy in rats. Drug Metab. Dispos. 35, 1387–1392.