Search for the CP-violating strong decays $\eta \rightarrow \pi^+\pi^-$ and $\eta'\rightarrow \pi^+\pi^-$ and $\eta'(958) \rightarrow \pi^+\pi^-$

The LHCb Collaboration

1. Introduction

The strength of CP violation in weak interactions in the quark sector is well below what would be required to serve as an explanation for the observed imbalance between the amounts of matter and antimatter in the universe. The QCD Lagrangian could contain a term, the θ term [1], that would give rise to CP violation in strong interactions; however, no strong CP violation has been observed. The experimental upper limit on the neutron electric dipole moment (nEDM) implies a limit $\theta \lesssim 10^{-10}$ [2]. The closeness of the value of θ to zero is seen as a fine-tuning problem, the so-called “strong CP problem”. Solutions to the strong CP problem may involve axions [3], extra space–time dimensions [4], massless up quarks [5], string theory [6] or quantum gravity [7].

The decay modes $\eta \rightarrow \pi^+\pi^-$ and $\eta'(958) \rightarrow \pi^+\pi^-$ would both violate CP symmetry. In the Standard Model (SM) these decays could happen via the CP-violating weak interaction, through mediation by a virtual K_L^0 meson, with expected branching fractions $B(\eta \rightarrow \pi^+\pi^-) < 2 \times 10^{-27}$ and $B(\eta' \rightarrow \pi^+\pi^-) < 4 \times 10^{-29}$ [8]. Based on the limit from the nEDM measurements, strong decays mediated by the θ term would have branching fractions below about 3×10^{-17} [8]. Any observation of larger branching fractions would indicate a new source of CP violation in the strong interaction, which could help to solve the problem of the origin of the matter–antimatter asymmetry. The current limit for the $\eta \rightarrow \pi^+\pi^-$ decay mode, $B(\eta \rightarrow \pi^+\pi^-) < 1.3 \times 10^{-5}$ at 90% confidence level (CL), comes from the KLOE experiment [9], which looked for $\eta \rightarrow \pi^+\pi^-$ in the decay $\phi(1020) \rightarrow \eta\gamma$. The limit for η', $B(\eta' \rightarrow \pi^+\pi^-) < 5.5 \times 10^{-5}$ at 90% CL, is from the BESIII experiment [10], based on searches for $\eta' \rightarrow \pi^+\pi^-$ in radiative $J/\psi \rightarrow \eta'\gamma$ decays. In the study presented here, a new method is introduced to search for the decays $\eta \rightarrow \pi^+\pi^-$ and $\eta' \rightarrow \pi^+\pi^-$, exploiting the large sample of charm mesons collected by LHCb.

2. Detector and simulation

The LHCb detector [11,12] is a single-arm forward spectrometer covering the pseudorapidity range $2 < \eta < 5$, designed for the study of particles containing b or c quarks. The detector includes a high-precision tracking system consisting of a silicon-strip vertex detector surrounding the pp interaction region, a large-area silicon-strip detector located upstream of a dipole magnet with a bending power of about 4Tm, and three stations of silicon-strip detectors and straw drift tubes placed downstream of the magnet. The tracking system provides a measurement of momentum, p, of charged particles with a relative uncertainty that varies from 0.5% at low momentum to 1.0% at 200 GeV/c. The minimum distance of a track to a primary pp interaction vertex (PV), the impact parameter, is measured with a resolution of $(15 + 29/p_T)$ µm, where p_T is the component of the momentum transverse to the beam, in GeV/c. Different types of charged hadrons are distinguished using information from two ring-imaging Cherenkov detectors. Photons, electrons and hadrons are identified by a calorimeter system consisting of scintillating-pad and preshower detectors, an electromagnetic calorimeter and a hadronic calorimeter. Muons are identified by a system composed of alternating layers of iron and multwire proportional chambers.

The online event selection is performed by a trigger [13], which consists of a hardware stage, based on information from the calorimeter and muon systems, followed by a software stage, which applies a full event reconstruction. At the hardware trigger stage, events are required to have a muon with high p_T or
a hadron, photon or electron with high transverse energy in the calorimeters.

A new scheme for the LHCb software trigger was introduced for LHC Run 2. Alignment and calibration are performed in near real-
time [14] and updated constants are made available for the trigger. The same alignment and calibration information is propagated to
the offline reconstruction, ensuring high-quality particle identification (PID) and consistent information between the trigger and
offline software. The larger timing budget available in the trigger compared to that available in Run 1 also results in the convergence
of the online and offline track reconstruction, such that offline performance is achieved in the trigger. The identical performance of
the online and offline reconstruction offers the opportunity to per-
form physics analyses directly using candidates reconstructed in
the trigger [15].

In the simulation, pp collisions are generated using PYTHIA [16]
with a specific LHCb configuration [17]. Decays of hadron-
ics are described by EvtGEN [18], in which final-state radiation
is generated using PHOTOS [19]. The interaction of the generated
particles with the detector, and its response, are implemented using
the GEANT4 toolkit [20] as described in Ref. [21].

3. Data samples and outline of analysis method

In the analysis, the decays $D^+ \rightarrow \pi^+\pi^+\pi^−$ and $D^+_s \rightarrow
\pi^+\pi^+\pi^−$ are used to look for the presence of η and η' reso-
nances in the $\pi^+\pi^−$ mass spectra, which could come from the
known decays $D^+_s \rightarrow \pi^+\eta(\pi)$ (inclusion of charge-conjugate modes
is implied throughout). The data samples comprise about 25 mil-
lion each of $D^+ \rightarrow \pi^+\pi^+\pi^−$ and $D^+_s \rightarrow \pi^+\pi^+\pi^−$ decays, from
integrated luminosities of 3.0 fb$^{-1}$ of pp collision data recorded by
LHCb in LHC Run 1 and 0.3 fb$^{-1}$ recorded in 2015 during Run 2.

For $N(\eta^{(0)})$ observed $\eta^{(0)}$ signal decays in the $\pi^+\pi^−$
mass spectrum from a total of $N(D^+_s)$ mesons reconstructed in the
$\pi^+\pi^+\pi^−$ final state, the measured branching fraction would be

$$B(\eta^{(0)} \rightarrow \pi^+\pi^−) = \frac{N(\eta^{(0)})}{N(D^+_s)} \times \frac{B(D^+_s \rightarrow \pi^+\pi^+\pi^−)}{B(D^+_s \rightarrow \pi^+\eta^{(0)})} \times \frac{1}{\epsilon(\eta^{(0)})},$$

where $\epsilon(\eta^{(0)})$ accounts for any variation of efficiency with $\pi^+\pi^−$
mass, as discussed in Sec. 5.2. The values of $N(D^+_s)$ and $N(\eta^{(0)})$
and their uncertainties are obtained from fits to the $\pi^+\pi^+\pi^−$
and $\pi^+\pi^−$ mass spectra of the selected $D^+_s \rightarrow \pi^+\pi^+\pi^−$ can-
didates; the branching fractions $B(D^+_s \rightarrow \pi^+\pi^+\pi^−)$ and $B(D^+_s \rightarrow
\pi^+\eta^{(0)})$ and their uncertainties are taken from Ref. [22]; and
the relative efficiency factors, ϵ, are obtained from simula-
tions. Since the analysis starts from a given number of selected $D^+_s \rightarrow
\pi^+\pi^+\pi^−$ decays, there are no normalisation channels. All selec-
tions are finalised and expected sensitivities are evaluated before the η
and η' signal regions in the $\pi^+\pi^−$ mass spectra are exam-
ined.

4. Event selection

The event selection comprises an initial stage in which rela-
tively loose criteria are applied to select samples of candidate
$D^+_s \rightarrow \pi^+\pi^+\pi^−$ decays. A boosted decision tree (BDT) [23] is
then used to further suppress backgrounds.

Candidate $D^+_s \rightarrow \pi^+\pi^+\pi^−$ decays are required to have three
good quality tracks, each with p_T greater than 250 MeV/c, con-
sistent with coming from a vertex that is displaced from any PV
in the event. Loose particle identification criteria are applied, re-
quiring the tracks to be consistent with the pion hypothesis. The

![Fig. 1](https://example.com/fig1.png)

Fig. 1. Mass spectra of selected $D^+_s \rightarrow \pi^+\pi^+\pi^−$ candidates, after the BDT sele-
cions, for (top) Run 1 and (bottom) Run 2 data, with the results from the fits
superimposed. The dot-dashed lines show the total fitted backgrounds, and the ver-
tical lines indicate the optimised D^+_s signal regions. The discontinuity in the Run 2
spectrum comes from the fact that the trigger has two separate output streams and
there are different BDT selections for D^+ and D^+_s. The

three-track system is required to have total charge $\pm e$, its invariant
mass must be in the range 1820–2020 MeV/c2, and its combined
momentum vector must be consistent with the direction from a
PV to the decay vertex. The invariant mass of opposite-sign candidate
pion pairs is required to be in the range 300–1650 MeV/c2; this removes
backgrounds where a random pion is associated with a vertex from either a $\gamma \rightarrow e^+e^−$
conversion, in which both electrons are misidentified as pions, or from a $D^0 \rightarrow K^−\pi^+$
decay, where the kaon is misidentified as a pion.

The BDT has six input variables for each of the tracks, to-
gether with three variables related to the quality of the decay
vertex and the association of the D^+_s candidate with the PV.
The track variables are related to track fit quality, particle iden-
}
yield per fb\(^{-1}\) is larger in Run 2 than in Run 1 by a factor 3.3, arising from the larger cross-section [24], and from a higher trigger efficiency for charm. The curves in Fig. 1 show the results of fits to the spectra in which each peak is parameterised by the sum of a double-sided Crystal Ball function [25] and a Gaussian function, while a fourth-order polynomial is used for the combinatorial background. All shape and yield parameters are allowed to vary in the fits. The fits also include components for contributions from \(D^+_c \rightarrow K^+\pi^+\pi^-\) decays, where the kaon is misidentified as a pion, and from \(D^+_c \rightarrow \pi^+\pi^0\pi^-\) and \(D^+_c \rightarrow \pi^+\eta^{(0)}\) with \(\eta^{(0)} \rightarrow \pi^+\pi^-\gamma\). The yields for these last components, the shapes for which are obtained from simulation, are found to be small. The total \(D^{+}_{(s)} \rightarrow \pi^+\pi^+\pi^-\) signal yields in the optimised mass windows, summed over Run 1 and Run 2 data, are \(2.49 \times 10^3\) for \(D^+\) and \(2.37 \times 10^7\) for \(D^+_c\), with backgrounds of \(1.38 \times 10^2\) and \(1.08 \times 10^7\), respectively, within the same mass windows. Uncertainties of \(\pm 2\%\), corresponding to the maximum values of the fit residuals, are assigned to each total yield to account for imperfections in the fits to the mass spectra. To improve the \(\pi^+\pi^-\) mass resolution, a kinematic fit [26] is performed on the selected \(D^{+}_{(s)}\) candidates, with the three tracks constrained to a common vertex, the \(\pi^+\pi^-\pi^-\) mass constrained to the known \(D^{+}_{(s)}\) mass, and the \(D^+_c\) candidate constrained to come from the PV.

5. Limits on the \(\eta^{(0)} \rightarrow \pi^+\pi^-\) branching fractions

5.1. Mass spectra for \(\pi^+\pi^-\)

For each of the \(\eta\) and \(\eta'\) resonances there are four separate \(\pi^+\pi^-\) mass spectra, from the \(D^+\) and the \(D^+_c\) for each of Runs 1 and 2. Figs. 2 and 3 show the sums of the four \(\pi^+\pi^-\) mass spectra for the \(\eta\) and \(\eta'\) mass fitting ranges, which are chosen to avoid the peaks from the \(K_S^0, \rho(770)^0\) and \(J_0(980)\) mesons. The fitting ranges are \(515–630\,\text{MeV}/c^2\) for the \(\eta\) and \(920–964\,\text{MeV}/c^2\) for the \(\eta'\). The vertical dashed lines indicate the signal regions, which cover the intervals \(544–552\,\text{MeV}/c^2\) for the \(\eta\) and \(952–964\,\text{MeV}/c^2\) for the \(\eta'\), in each case approximately \(\pm 2\) times the \(\pi^+\pi^-\) mass resolution. Simulation studies of the decays \(\eta^{(0)} \rightarrow \pi^+\pi^-\gamma\), using the matrix element given in Ref. [27], show that the contributions from these channels are small and do not peak in the fitting ranges. They are therefore considered as part of the background, which is parametrised by a polynomial function (see Sect. 5.3).

Expected signal \(\pi^+\pi^-\) mass line shapes for \(\eta \rightarrow \pi^+\pi^-\) and \(\eta' \rightarrow \pi^+\pi^-\) are obtained from simulations. In both cases a double Gaussian shape is found to describe the signal well, with mass resolutions of 2.3 MeV/c\(^2\) for the \(\eta\) mass region and 3.2 MeV/c\(^2\) for the \(\eta'\) region. These results are calibrated by comparing the \(\eta\) mass resolution from the simulation with that for reconstructed \(K^0\rightarrow \pi^+\pi^-\) decays from background \(D^+_c \rightarrow K^0\pi^+\pi^-\) events in the data, before the kinematic fits to the \(D^{+}_{(s)}\) candidates. The differences, which are 5% in Run 1 and 10% in Run 2, are taken as the systematic uncertainties on the \(\pi^+\pi^-\) mass resolution for both the \(\eta\) and \(\eta'\) mass ranges.

5.2. Relative efficiency as a function of \(\pi^+\pi^-\) mass

The relative efficiency factors in Eq. (1) are obtained from simulation. Fully simulated \(\pi^+\pi^-\) mass spectra from \(D^+ \rightarrow \pi^+\pi^+\pi^-\) decays for Run 1 are divided by the generated spectra to give the relative efficiency as a function of the \(\pi^+\pi^-\) mass. The efficiency is highest at large \(\pi^+\pi^-\) masses, mainly due to the effects of the hardware and software triggers. The relative efficiencies in Run 1 data are found to be \(\epsilon(\eta) = 0.85 \pm 0.01\) and \(\epsilon(\eta') = 1.01 \pm 0.01\), where the uncertainties come from the simulation sample size. The relative efficiencies for Run 2 are found to be statistically compatible with those for Run 1, through a comparison of the \(\pi^+\pi^-\) mass spectra from the \(D^+\) and \(D^+_c\) signal candidates in the data. An additional systematic uncertainty of 2% is assigned to the Run 2 relative efficiencies, corresponding to the maximum difference between the mass spectra.

5.3. Sensitivity studies

In order to measure the sensitivity of the analysis, each \(\pi^+\pi^-\) mass spectrum is fitted with a fourth-order polynomial, initially with the signal regions excluded. The signal regions are then populated with pseudo data, generated according to the fitted polynomial functions, with Gaussian fluctuations. Each spectrum is then fitted again with the sum of a fourth-order polynomial plus the \(\eta^{(0)}\) signal function, and Eq. (1) is then used to obtain branching fractions measured with the pseudo data. As expected, these branching fractions are consistent with the results obtained from the data. Expected limits on the branching fractions are obtained using the CL\(_S\) method [28]. In each case, CL\(_S\) values are obtained using the products of the likelihood functions for the four individual spectra. Systematic uncertainties are included, but have no effect on the results, which are shown in Fig. 4 for the \(\eta\) and in Fig. 5 for the \(\eta'\). Expected limits at 90% CL are \(\mathcal{B}(\eta \rightarrow \pi^+\pi^-) < 2.0 \times 10^{-5}\) and \(\mathcal{B}(\eta' \rightarrow \pi^+\pi^-) < 1.8 \times 10^{-5}\).
as more data are collected at the LHC. With the LHC Run 1 data and data from the first year of Run 2, the limit obtained on the branching fraction for the decay $\eta \to \pi^+ \pi^-$ is comparable to the existing limit, while that for $\eta' \to \pi^+ \pi^-$ is a factor three better than the previous limit.

Acknowledgements

We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies: CAPES, CNPq, FAPERJ and Finep (Brazil); NSFC (China); CNRS/IN2P3 (France); BMBF, DFG and MPG (Germany); INFN (Italy); FOM and NWO (The Netherlands); MNiSW and NCN (Poland); MEN/IFA (Romania); MinES and PASO (Russia); MINECO (Spain); SNSF and SER (Switzerland); NASU (Ukraine); STFC (United Kingdom); NSF (USA). We acknowledge the computing resources that are provided by CERN, IN2P3 (France), KIT and DESY (Germany), INFN (Italy), SURF (The Netherlands), PIC (Spain), GridPP (United Kingdom), RRCCK and Yandex LLC (Russia); CSCS (Switzerland), IFIN-HH (Romania), CBPF (Brazil), PL-GRID (Poland) and OSC (USA). We are indebted to the communities behind the multiple open source software packages on which we depend. Individual groups or members have received support from AvH Foundation (Germany), EPLANET, Marie Skłodowska-Curie Actions and ERC (European Union), Conseil Général de Haute-Savoie, Labex ENIGMASS and OCEVU, Région Auvergne (France), RFBR and Yandex LLC (Russia), GVA, XuntaGal and GENCAT (Spain), Herchel Smith Fund, The Royal Society, Royal Commission for the Exhibition of 1851 and the Leverhulme Trust (United Kingdom).

References

[8] C. Jarlskog, E. Shahabian, How large are the rates of the CP violating $\eta, \eta' \to \pi \pi$ decays?, Phys. Rev. D 52 (1995) 248.
The LHCb Collaboration

240

European Organization for Nuclear Research (CERN), Geneva, Switzerland

Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

Physik-Institut, Universität Zürich, Zürich, Switzerland

Nikhef National Institute for Subatomic Physics, Amsterdam, The Netherlands

Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, The Netherlands

NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine

Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine

University of Birmingham, Birmingham, United Kingdom

H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom

Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom

Department of Physics, University of Warwick, Coventry, United Kingdom

STFC Rutherford Appleton Laboratory, Didcot, United Kingdom

School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom

School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom

Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom

Imperial College London, London, United Kingdom

School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom

Department of Physics, University of Oxford, Oxford, United Kingdom

Massachusetts Institute of Technology, Cambridge, MA, United States

University of Cincinnati, Cincinnati, OH, United States

University of Maryland, College Park, MD, United States

Syracuse University, Syracuse, NY, United States

Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil

University of Chinese Academy of Sciences, Beijing, China

Institute of Particle Physics, Central China Normal University, Wuhan, Hubei, China

Departamento de Física, Universidad Nacional de Colombia, Bogota, Colombia

Institut für Physik, Universität Rostock, Rostock, Germany

National Research Centre Kurchatov Institute, Moscow, Russia

Instituto de Física Corpuscular (IFIC), Universitat de Valencia-CSIC, Valencia, Spain

Van Swinderen Institute, University of Groningen, Groningen, The Netherlands

Corresponding author.
E-mail address: lorenzo.capriotti@postgrad.manchester.ac.uk (L. Capriotti).

Universidade Federal do Triângulo Mineiro (UFTM), Uberaba-MG, Brazil.

Laboratoire Leprince-Ringuet, Palaiseau, France.

P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia.

Università di Bari, Bari, Italy.

Università di Bologna, Bologna, Italy.

Università di Cagliari, Cagliari, Italy.

Università di Ferrara, Ferrara, Italy.

Università di Genova, Genova, Italy.

Università di Milano Bicocca, Milano, Italy.

Università di Roma Tor Vergata, Roma, Italy.

Università di Roma La Sapienza, Roma, Italy.

AGH – University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Kraków, Poland.

LIFAELS, La Salle, Universitat Ramon Llull, Barcelona, Spain.

Hanoi University of Science, Hanoi, Viet Nam.

Università di Padova, Padova, Italy.

Università di Pisa, Pisa, Italy.

Università degli Studi di Milano, Milano, Italy.

Università di Urbino, Urbino, Italy.

Università della Basilicata, Potenza, Italy.

Scuola Normale Superiore, Pisa, Italy.

Università di Modena e Reggio Emilia, Modena, Italy.

Iligan Institute of Technology (IIT), Iligan, Philippines.

Novosibirsk State University, Novosibirsk, Russia.

Associated to Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.

Associated to Center for High Energy Physics, Tsinghua University, Beijing, China.

Associated to LPNHE, Université Pierre et Marie Curie, Université Paris Diderot, CNRS/IN2P3, Paris, France.

Associated to Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany.

Associated to Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia.

Associated to ICCUB, Universitat de Barcelona, Barcelona, Spain.

Associated to Nikhef National Institute for Subatomic Physics, Amsterdam, The Netherlands.

Deceased.