Liquefaction of humins from C6-sugar conversions using heterogeneous catalysts

Wang, Yuehu

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2017

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Liquefaction of Humins from C₆-Sugar Conversions using Heterogeneous Catalysts

YUEHU WANG
Liquefaction of Humins from C₆-Sugar Conversions using Heterogeneous Catalysts

PhD thesis
to obtain the degree of PhD at the University of Groningen on the authority of the Rector Magnificus Prof. E. Sterken and in accordance with the decision by the College of Deans.

This thesis will be defended in public on
Friday 17 March 2017 at 16.15 hours

by

Yuehu Wang
born on 18 April 1980 in Guizhou, China
Table of Contents

1. Introduction .. 9
 1.1. The Biorefinery Concept ... 11
 1.2. Platform Chemicals from Biomass .. 12
 1.3. Biobased chemicals: 5-Hydroxymethylfurfural (HMF) and Levulinic Acid (LA) ... 15
 1.3.1. General .. 15
 1.3.2. Synthesis and production of HMF ... 15
 1.3.2.1. Synthetic procedures .. 15
 1.3.2.2. Commercial status HMF production ... 17
 1.3.3. LA synthesis and production .. 18
 1.3.3.1 Synthetic procedure for LA ... 18
 1.3.4. Humins: molecular structure ... 19
 1.4. Humins: molecular structure ... 19
 1.4.1. General features ... 19
 1.4.2. Soil humins ... 20
 1.4.3. Structural features of humins from sugar conversions 22
 1.4.4. Structural models for HTCs ... 23
 1.4.5. Structural models for humins from acid catalysed sugar conversions 24
 1.4.6. Valorisation of Humins .. 27
 1.5. Scope and Outline of this Thesis ... 30
 1.6. References ... 32
 2.1. Introduction .. 41
 2.2. Results and Discussion .. 49
 2.2.1. Preparation and purification of humin samples 49
 2.2.2. Formation of humin by-products ... 50
 2.2.3. Elemental composition of humin by-products 53
 2.2.4. Morphology of humin by-products .. 54
 2.2.5. Characterisation of liquid phase products .. 56
 2.2.6. Molecular structure: Characterisation by IR and NMR spectroscopy and Pyrolysis/GC-MS .. 58
 2.3. Conclusions .. 67
 2.4. Experimental Section .. 69
 2.5. References .. 71
 2.6. Supporting information .. 74
 3. Exploratory catalyst screening studies on the liquefaction of humins from C6 sugar biorefineries ... 77
 3.1. Introduction .. 79
 3.2. Materials and Methods ... 82
 3.3. Results and Discussion .. 87
 3.3.1. Catalyst characterisation for the metal on carbon catalysts 87
 3.3.2. Exploratory catalyst screening studies for noble metals on a carbon support ... 88
 3.3.2.1. Product phases ... 88
 3.3.2.2. Humin conversion .. 90
 Supervisor
 Prof. H.J. Heeres
 Assessment committee
 Prof. A.A. Broekhuis
 Prof. F. Picchioni
 Prof. K. Seshan
4. Catalytic Liquefaction of Humin Substances from Sugar Biorefineries with Pt/C in 2-propanol

4.1. Introduction
4.2. Materials and Methods
4.3. Results and Discussion
4.3.1. Benchmark experiments
4.3.2. Systematic studies using Pt/C and IPA
4.3.2.1. Humin conversion
4.3.2.2. Liquid yield
4.3.2.3. Alkylphenolics yield
4.4. Conclusions
4.5. References
4.6. Supplementary information

5. Catalytic hydrotreatment of Humins in Formic Acid/2-Propanol mixtures using supported Ru catalysts

5.1. Introduction
5.2. Materials and methods
5.3. Results and Discussion
5.3.1. Screening experiments
5.3.2. Composition of the gas and liquid phase for catalytic hydrotreatments with Ru/C
5.3.2.1. Gas phase composition
5.3.2.2. Liquid phase composition for experiments with Ru/C
5.3.2.2.1. Elemental composition of the humin oils
5.3.2.2.2. Molecular composition of the humin oils
5.3.2.2.3. Catalyst support effects
5.3.3. Reaction pathways
5.4. Conclusions
5.5. References
5.6. Supplementary information

6. Summary

7. Samenvatting (Dutch Summary)

8. Acknowledgements

9. List of Publications