Distributed algorithm for controlling scaled-free polygonal formations. *

Hector Garcia de Marina * Bayu Jayawardhana ** Ming Cao**

* University of Toulouse, Ecole Nationale de l’Aviation Civile (ENAC) Toulouse 31000, France (e-mail: hgdemarina@ieee.org).
** Engineering and technology institute Groningen (ENTEG), University of Groningen, the Netherlands (e-mail: {b.jayawardhana, m.cao}@rug.nl)

Abstract: This paper presents a distributed algorithm for controlling the deployment of a team of agents in order to form a broad class of polygons, including regular ones, where each agent occupies a corner of the polygon. The algorithm shares the properties from the popular distance-based rigid formation control but with the advantage of requiring fewer pairs of neighboring agents. Furthermore, the scale of the polygon can be controlled by only one pair of neighboring agents. We also exploit the exponential stability of the system in order to steer the prescribed formation with translations and rotations in a controlled way. We provide both theoretical analysis and illustrative simulations.

Keywords: Formation control, Distributed control, Multi-agent system.

1. INTRODUCTION

The tasks of surveillance and exploration or search and rescue, among others, can be enhanced by the formation control of multi-agent systems (see for instance Oh et al. (2015)). In particular, an appealing formation setup based on rigid frameworks for the above mentioned tasks has recently been proposed in Anderson et al. (2008) and Krick et al. (2009). In such setups the agents can form a desired shape by only controlling the distances between neighbors. It is worth mentioning some of the properties of distance-based rigid formation control. Firstly, the agents do not need to share a common frame of coordinates. Secondly, the system is robust against biases in the sensors of neighboring agents (see Garcia de Marina et al. (2015)). Thirdly, the motion of the formation can be controlled in a rotational, translational and scaling way (we refer to Garcia de Marina et al. (2016a,b)). Forthly, the stability of the desired shape is exponentially stable for agents modelled with first or second order dynamics Sun et al. (2016). On the other hand, the main drawback of this approach is that the formation needs to control at least \(2n - 3 \) distances in 2D, in order to be able to achieve a desired shape. This is not the case for other approaches such as the position-based control Oh et al. (2015), but then one loses many of the above listed advantages.

This paper presents an algorithm for controlling a broad class of polygons, i.e. a plane figure that is bounded by a finite chain of straight line segments closing in a loop to form a closed chain, where each agent occupies a corner of the polygon. We will see that the algorithm shares all the advantages from distance-based rigid setups and at the same time they only need a minimum number of neighboring agents. In particular, the assignment of neighboring agents, e.g. the sensing topology of the team, is based on a daisy chain configuration, i.e. a setup where the agents are connected in series. We will also show that by controlling only the distance between the first and last agent in the sensing topology, then one can control the size or scale of the whole shape.

The algorithm is based on the distance-based control of non-rigid setups as recently studied in Dimarogonas and Johansson (2008). In particular, we exploit the effect derived from having mismatches in the prescribed distances of neighboring agents. Although one cannot define a particular shape by controlling a non-rigid setup, it is reported in Garcia de Marina and Sun (2017) that biases in the range sensors of neighboring agents makes the formation to converge to a collinear configuration for a daisy chain network consisting of three agents. In this work we will employ a slightly different approach than in Garcia de Marina and Sun (2017). In fact, we will strip the resultant matched control law by clearly identifying two terms. The first term is responsible for controlling distances and it is derived from the standard gradient descent technique over the chosen potential function. The second term involving the mismatches has a clear interpretation and it is responsible for the steady-state collinear configuration. Furthermore, the former term is surprisingly the same control law presented in Kvinto and Parsegov (2012) and Proskurnikov and Parsegov (2016) for steering equally-spaced agents to a line.

We will show that with the technique introduced in Garcia de Marina and Sun (2017), the mentioned term responsible for the alignment of the formation can be modified in

\[\text{In the cited paper, the mismatches have been addressed as a biases. Nevertheless, mathematically speaking in the cited paper both concepts are equivalent.} \]
order to control a prescribed angle and a prescribed relative distance, between two pairs of consecutive neighboring agents. Furthermore, the scale of the whole formation can be set by one pair of neighboring agents. The proposed algorithm makes the prescribed shape exponentially stable. This property combined with a non-fixed steady-state orientation, allows us to achieve translations and rotations of the desired shape by following the technique introduced in Garcia de Marina et al. (2016a).

This paper is organized as follows. We introduce some notation and the notion of framework in Section 2. Then in Section 3 we introduce the daisy chain topology for distance-based control. The addition of distance mismatches between neighboring agents in the control terms leads to an algorithm for deploying agents in a collinear fashion and equally (or relatively) spaced. We modify this algorithm by the addition of rotational matrices in Section 4 in order to control the relative angle between two consecutive relative positions in the framework. We prove the exponential stability of the new algorithm for a broad class of polygons, including regular ones. At the end of the Section 4 we exploit such an exponential stability in order to control the scale of the desired shape by only controlling the distance between the first and the last agent of the framework, and to induce rigid body motions, i.e. rotations and translations, to the polygon. We present a numerical simulation in Section 5 in order to validate the theoretical findings and we finish the paper with some conclusions in Section 6.

2. NOTATIONS, GRAPHS AND FRAMEWORKS

For a given matrix $A \in \mathbb{R}^{n \times p}$, define $\overline{A} \triangleq A \otimes I_2 \in \mathbb{R}^{2n \times 2p}$, where the symbol \otimes denotes the Kronecker product and I_2 is the 2×2 identity matrix. We denote by $|\mathcal{X}|$ the cardinality of the set \mathcal{X}.

Consider a formation of $n \geq 3$ autonomous agents whose positions are denoted by $p_i \in \mathbb{R}^2$ with $i \in \{1, \ldots, n\}$. The agents are able to sense the relative positions of its neighboring agents. The neighbor relationships are described by an undirected graph $G = (V, E)$ with the vertex set $V = \{1, \ldots, n\}$ and the ordered edge set $E \subseteq V \times V$. The set \mathcal{N}_i of the neighbors of agent i is defined by $\mathcal{N}_i \triangleq \{j \in V : (i, j) \in E\}$. We define the elements of the incidence matrix $B \in \mathbb{R}^{|V| \times |E|}$ for G by

$$b_{ik} \triangleq \begin{cases} +1 & \text{if } i = \mathcal{E}^{\text{tail}}_{k} \text{ or } i = \mathcal{E}^{\text{head}}_{k} \\ -1 & \text{if } i = \mathcal{E}^{\text{head}}_{k} \text{ or } i = \mathcal{E}^{\text{tail}}_{k} \\ 0 & \text{otherwise} \end{cases}, \quad (1)$$

where $\mathcal{E}^{\text{tail}}_{k}$ and $\mathcal{E}^{\text{head}}_{k}$ denote the tail and head nodes, respectively, of the edge \mathcal{E}_k, i.e., $\mathcal{E}_k = (\mathcal{E}^{\text{tail}}_{k}, \mathcal{E}^{\text{head}}_{k})$.

A framework is defined by the pair (G, p), where p is the stacked vector of the agents’ positions p_i with $i \in \{1, \ldots, n\}$. The stacked vector of the sensed relative positions by the agents can then be described by

$$z = \overline{F}^T p. \quad (2)$$

Note that each vector $z_k = p_i - p_j$ in z corresponds to the relative position associated with the edge $\mathcal{E}_k = (i, j)$.

3. DISTANCE-BASED DAISY CHAIN FRAMEWORKS, MISMATCHES AND THE UNIFORM DEPLOYMENT ON A LINE PROBLEM

We consider that the agent’s dynamics are governed by the first-order model

$$\dot{p} = u, \quad (3)$$

where u is the stacked vector of control inputs $u_i \in \mathbb{R}^m$ for $i = \{1, \ldots, n\}$.

Consider the following incidence matrix defining a daisy-chain topology

$$B = \begin{bmatrix} 1 & 0 & \cdots & 0 & 0 \\ -1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & -1 & 1 \\ 0 & 0 & \cdots & 0 & -1 \end{bmatrix}, \quad (4)$$

where the dimensions are $B \in \mathbb{R}^{|V| \times (|V| - 1)}$. The incidence matrix that will help us to control the angles defined by the consecutive vectors z_k and z_{k+1} also follows a daisy chain topology but with dimensions $B_0 \in \mathbb{R}^{|(|V| - 1) \times (|V| - 2)}$, i.e. the first column of B_0 will be related with θ_1 as the angle between z_1 and z_2 and so on.

3.1 Distance-based mismatched gradient-descent control

For the sake of being illustrative, let us consider that our daisy chain framework consists of three agents. We then choose for the distance-based control the following potential function

$$V(z) = \frac{1}{4} (||z_1||^2 - d_1^2)^2 + \frac{1}{4} (||z_2||^2 - d_2^2)^2, \quad (5)$$

where d_1 and d_2 are the desired distances between the corresponding neighboring agents. Taking the gradient-descent of (5) (as used in Garcia de Marina et al. (2016a)) we arrive at the following system

$$\dot{\mu}_k = -e_k c_k, \quad (6)$$

where $e_k = ||z_k||^2 - d_k^2$, $k \in \{1, 2\}$ are the distance error signals. Inspired by Garcia de Marina et al. (2016a), let us now include a distance mismatch $\mu_k \in \mathbb{R}$ in the edge $\mathcal{E}_k = (i, j)$, namely

$$d_k^{\text{tail}} = d_k^{\text{head}} - \mu_k, \quad (7)$$

and we consider that the mismatches are focused on the second agent such that we can arrive to the following expression

$$\dot{\mu}_k = -e_k c_k, \quad (8)$$

One can identify that the system (8) can be derived from a potential function as it has been done for system (6) with the exception of the term $\mu_1z_1 - \mu_2z_2$. In fact, the gradient-descent-derived terms are responsible for the distance control between neighboring agents. If one drops all the terms in (8) involving the control of the d_k’s, then one gets

$$\dot{\mu}_k = 0, \quad (9)$$

\begin{align*}
\dot{\mu}_1 &= -e_1 c_1 \\
\dot{\mu}_2 &= e_1 c_1 - e_2 c_2 + \mu_1 z_1 - \mu_2 z_2 \\
\dot{\mu}_3 &= 0.
\end{align*}
If one considers $\mu_1 = \mu_2 = c$ then the system (9) is precisely the algorithm presented in Kvinto and Parsegov (2012) and in Proskurnikov and Parsegov (2016) for solving the problem of deployment on a line, i.e. two fixed points p_1 and p_n defining a segment and the rest of agents will be deployed on such a segment at spots equally separated. In particular, as we will see in the following section, the algorithm is stable for $c \in \mathbb{R}^+$ and its compatibility with the distance-based gradient-descent control and its relation with biases in range sensors has been studied in Garcia de Marina and Sun (2017).

3.2 Deployment on a line problem

In this section we will prove the stability of the algorithm introduced in system (9) for $\mu_1 = \mu_2 = c$ but for a general daisy chain topology. The stability analysis in this section is different from the one presented in Kvinto and Parsegov (2012) and in Proskurnikov and Parsegov (2016). In particular, in this paper we analyze the derived error signals from the algorithm. This approach serves as a starting point for controlling polygons in the plane, and not only collinear configurations. Let us define the following error vector

$$ e_\theta = \overline{B}_\theta^T \hat{z}, \quad (10) $$

where $e_\theta \in \mathbb{R}^{|V| - 2}$. Then the extension to n agents from system (9) can be generalized as

$$ \begin{bmatrix} \dot{p}_1 \\ \dot{p}_2 \\ \vdots \\ \dot{p}_{n-1} \\ \dot{p}_n \end{bmatrix} = c e_{\theta}, \quad (11) $$

where $c \in \mathbb{R}^+$ is a constant gain. Let us write the dynamics of the signal $e_\theta(t)$. We first derive the dynamics of z from system (11), namely

$$ \dot{z} = B^T \dot{p} = -c \overline{B}_\theta \overline{B}_\theta^T z = -c \overline{B}_\theta e_{\theta}, \quad (12) $$

and noting that $\dot{e}_\theta = \overline{B}_\theta^T \dot{z}$ we have that

$$ \dot{e}_\theta = -c \overline{B}_\theta^T \overline{B}_\theta e_{\theta}. \quad (13) $$

Proposition 1. The origin of system (13) is globally exponentially stable. That is, all the agents from system (11) will converge to a fixed point, namely $p(t) \to p^*$ as $t \to \infty$, where all the agents are equally spaced with respect to each other in a collinear fashion.

Proof. Consider the following Lyapunov function $V = \frac{1}{2} ||e_\theta||^2$, whose time derivative is given by

$$ \frac{dV}{dt} = e_{\theta}^T \dot{e}_{\theta} = -c e_{\theta}^T \overline{B}_\theta^T \overline{B}_\theta e_{\theta}, \quad (14) $$

We know that B_θ defines a daisy chain topology, i.e. it does not contain any cycles, therefore the matrix $B_\theta^T B_\theta$ is positive definite (Dimarogonas and Johansson (2008)). Hence the exponential stability of the origin of e_θ follows. Since the signal $e_\theta(t)$ converges exponentially fast to zero, then $\overline{B}_\theta z(t) \to 0$ as $t \to \infty$, i.e. $z_k(t) - z_{k+1}(t) \to 0$ as $t \to \infty$. Thus, by observing system (11), we have that $\dot{p}(t)$ also converges exponentially fast to zero. So we can conclude that $p(t)$ converges to a fixed point p^* where all the agents are equally spaced and collinear.\]

Remark 1. Note that for the case $p_1(0) = p_n(0)$ all the agents will converge to the same point, i.e. $z(t) \to 0$ as $t \to \infty$.

3.3 Controlling relative magnitudes between relative positions

The relative magnitude between two consecutive relative positions z_k and z_{k+1} can be trivially defined as $r_k z_k = r_{k+1} z_{k+1}$, where $r_k, r_{k+1} \in \mathbb{R}^+$ are the scaling factors that determine how the magnitude of one relative position with respect to its next neighboring one. This case encompasses, as in (9), the particular case of having all the agents equally spaced in the steady state, e.g. $r_k = 1, \forall k \in \{1, \ldots, |\mathcal{E}|\}$. In particular, we have that

$$ \dot{z} = D_r z, \quad (15) $$

where $D_r \triangleq \text{diag}(\{r_1 \ldots r_k\})$, with $k \in \{1, \ldots, |\mathcal{E}|\}$. So by redefining

$$ e_\theta = \overline{B}_\theta^T z, \quad (16) $$

we have that the error dynamics derived from (11), as we have done before in Proposition 1, is given by

$$ \dot{e}_\theta = -c B_\theta^T D_r \overline{B}_\theta e_{\theta}, \quad (17) $$

where the matrix $-B_\theta^T D_r \overline{B}_\theta$ is Hurwitz since D_r is a diagonal positive definite matrix. Therefore, the set defined by the origin of the signal (16) is globally exponentially stable for system (11).

4. CONTROLLING POLYGONAL FORMATIONS IN THE PLANE

It is possible to extend the results of Proposition 1 in order to deploy the team of agents on the plane in a more general way. We are going to show that by following the technique introduced in Garcia de Marina and Sun (2017) one is able to control the relative angle θ_k between two consecutive vectors z_k and z_{k+1}. For formations where all these consecutive angles are equal to θ^*, we provide a bound to such an angle in order to assert the (exponential) stability of the system. In particular, we will see that such a bound covers the particular case of controlling regular polygons in the plane.

We introduce the consecutive angles θ_k to be controlled in the redefinition of the error signal e_θ as follows

$$ e_{\theta_k} = W \left(\frac{\theta_k}{2} \right) z_k - W \left(\frac{\theta_k}{2} \right) z_{k+1}, \quad \forall k \in \{1, \ldots, |\mathcal{V}| - 2\}, \quad (18) $$

where $\theta_k \in (-\pi, \pi]$ and $W(\alpha)$ is the rotational matrix

$$ W(\alpha) = \begin{bmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{bmatrix}. \quad (19) $$

Note that in (18) we are comparing the clockwise rotated z_k with the counterclockwise rotated z_{k+1}.

We now write in compact form the stacked vector of errors in (18) as

$$ e_\theta = B_W z, \quad (20) $$

where
Note that trivially B_W is equal to B_θ, as defined at the end of Section 2, if we set $\theta_k = 0, \forall k \in \{1, \ldots, |V| - 2\}$. Therefore the deployment on a line problem is a particular case of the problem considered in this section.

Let us write the dynamics of z derived from system (11) by employing the error signal (18)

$$\dot{z} = -cB_\theta B_W^T z,$$

so it allows us to derive the new error (linear) system dynamics given by

$$\dot{e}_\theta = -cB_\theta^T B_\theta e_\theta = -A(\theta)e_\theta,$$

where $\theta \in \mathbb{R}^{|V| - 2}$ is the stacked vector of all θ_k and $A(\theta)$ is shown in (24) in the next page. Note that now $A(\theta)$ is not positive definite in general. Therefore in order to check the stability of the origin of e_θ in (23) one has to do an eigenvalue analysis for $A(\theta)$.

Our numerical simulations have shown that not for all the values of θ the origin of (23) is stable. In fact, the team of agents might converge to a different shape at the same time that they describe a steady-state motion. This effect has not been only shown for rigid formations with distance mismatches (see Mou et al. (2016)), but also in flexible formations (as in Garcia de Marina and Sun (2017)) as the daisy chain setup described in this paper. Nevertheless, we can provide an analytical result for the stability of a broad class of polygons where $\theta_k = \theta^*$. In particular we provide a bound for θ^* such that the formation is stable. Fortunately, this bound also covers the set of regular polygons, which can provide an analytical result for the stability of a broad class of polygons (as in Garcia de Marina and Sun (2017)) as the formations (as in Garcia de Marina and Sun (2017)) as the second property is easy to check, for the sake of brevity we refer to Oh et al. (2015) in order to check how to verify the first property.

4.1 Controlling the scale of the prescribed shape

Consider the example where six agents want to form an hexagon, so the four agents in the middle of the chain would control the inter-angles $\theta_1, \ldots, \theta_4 = \pi - \frac{2\pi}{n}$ and by looking at (11) we notice that agents 1 and 6 are stopped. The idea is to apply the distance-based control to these two agents at the tips of the daisy chain, and therefore closing the chain. For example, if we are controlling a regular polygon, then all the side-lengths are equal, i.e. D_r is the identity matrix in (15). Therefore, we can control the distance d between the first and the last agent, then the rest of distances between neighboring agents will also be equal to d.

For controlling the scale we assign the following control law, derived from a potential function like in (5), to agents 1 and n

$$\begin{align*}
\dot{p}_1 &= - (p_n - p_1)(||p_n - p_1||^2 - d^2) \\
\dot{p}_n &= (p_n - p_1)(||p_n - p_1||^2 - d^2)
\end{align*}$$

We have already noted that the convergence to the desired distance between agents 1 and n in the nonlinear system (27) is exponential (Sun et al. (2016)). One can treat the terms (27) as a disturbance that vanishes exponentially fast when they are into the dynamics of (11), hence the stability result in Theorem 2 is not compromised and the scale of the formation can be controlled by only two agents. In fact, only one agent is needed if we set $p_n = 0$ in (27).
In case that one also desires to control the steady-state orientation of the formation, then a position-based control (with an exponential equilibrium) can be applied to agents 1 and n. **Remark 4.** Regarding the three agents example, the main difference of system (11) with respect to the one presented in Garcia de Marina and Sun (2017) is that in the latter the sensing of \(p_3-p_1\) is not necessary for determining the scale of the triangular formation. In Garcia de Marina and Sun (2017), the agents are also controlling the size of \(z_k\) as in system (8) where the gradient descent terms have not been dropped out.

4.2 Steering the prescribed shape in the plane

The exponential stability in Theorem 2 can be further exploited. For example, one can employ the technique in Garcia de Marina et al. (2016a) in order to steer the whole group with rotational and translational motions. It is obvious that a vector in the plane can be constructed as a linear combination of two non-parallel vectors. Therefore, agent i can construct a velocity vector \(\dot{p}_i^*\) by just combining two relative positions (available for the agent) from the formation. We note that this is indeed possible for agent 1 from the system (11) in combination with (27). The main idea is to design a collection of steady-state velocities \(\dot{p}_i^*\) by employing the relative positions in the set \(p \in \{z : (e_0 = 0) \land (||p_1 - p_n|| = d)\}\) such that the desired shape is not destroyed, i.e. rigid body motions. For example, the control law introducing such an idea is given by

\[
\dot{p}_1 = -((p_n - p_1)(||p_n - p_1||^2 - d^2) + \mu_{11}(p_n - p_1) + \mu_{12}z_1 \\
\vdots \\
\dot{p}_i = c_0\theta_{i+1} + \mu_{i1}z_{i-1} + \mu_{i2}z_i \\
\vdots \\
p_n = (p_n - p_1)(||p_n - p_1||^2 - d^2) + \mu_{n1}p_n - p_1 + \mu_{n2}z_{n-1},
\]

\[\text{with } i \in \{2, \ldots, (n-1)\} \text{ and } \mu_{n1,2} \text{ are the motion parameters responsible for the design of the velocities } \dot{p}_i^*.\]

We illustrate the physical meaning of (28) in Figure 1.

An algorithm describing how to compute these motion parameters such that they define rigid motions for generic shapes can be found in Garcia de Marina et al. (2016a). In fact, these motion parameters can be considered as a parametric disturbances for the system (11) considered in Theorem 2. In particular, it has been introduced in Garcia de Marina and Sun (2017), inspired by the work in Mou et al. (2016), that the error-distance system defined by a rigid framework, whose equilibrium is the desired shape described by \(\theta\), is autonomous and exponentially stable. Therefore, the stability of the error-distance system will not be compromised for small \(\mu_{n1,2}\)'s (Mou et al. (2016)), or for big control gains (Garcia de Marina et al. (2016a)). This fact can be employed for giving bounds to the parameters \(\mu_{n1,2}\)'s and the gain \(c\) in (28) in order to guarantee the exponential stability of the system for a set of desired velocities \(\dot{p}_i^*\) (Garcia de Marina et al. (2016a)). **Remark 5.** It is important to note that by the addition of the motion parameters in (28) we might add undesired equilibria in the system, therefore the desired shape with the desired motion is not global stable in general anymore as it is the case in system (11) in Theorem 2.

5. SIMULATIONS

In this section we are going to validate the result of Theorem 2 together with the system (28). We consider a team of six agents for achieving a regular hexagon, so \(D_6\) is the identity matrix in (15). Since the inner angles of the hexagon are \(\frac{2\pi}{3}\), we then set \(\theta = \frac{\pi}{3}\) which is lower than the bound \(\frac{2\pi}{3}\) given in Theorem 2. We define the error distance to be controlled by the agents 1 and 6 as \(e_d \triangleq ||p_1 - p_6|| - d\) and we set \(d = 10\) in (28). After time \(t = 150\) we set \(d = 30\). In addition we want
EXPERIMENTAL RESULTS

One can add a series of useful properties to the formation. Firstly, one can control the relative size of consecutive relative positions in the framework. Secondly, the scale of the whole shape can be achieved by only controlling the distance between the first and the last agent of the framework. Thirdly, motion parameters can be employed in order to steer the formation as a combination of translations and rotations.

REFERENCES