Hymenoptera venom allergy
Vos, Byrthe

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date: 2017

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Download date: 29-11-2018
Spiking venom with rVes v 5 improves sensitivity of IgE detection in patients with allergy to Vespula venom

Byrthe J.P.R. Vos1,2, Julian Köhler3, Sabine Müller3, Eva Stretz2, Franziska Ruëff2, Thilo Jakob3

1University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
2Ludwig-Maximilian University, Munich, Germany
3University Medical Center Freiburg, Freiburg, Germany

Journal of Allergy and Clinical Immunology 2013; 131: 1225-7.
To the Editor:

Diagnosis of yellow jacket (Vespula ssp) venom allergy is based on a history of anaphylactic sting reactions, positive skin test responses, and/or detection of specific IgE to yellow jacket venom (YJV). However, positive skin tests or serologic results obtained with conventional venom extracts do not always reflect a primary sensitization but may be caused by antibodies cross-reactive to homologous peptide sequences or to cross-reactive carbohydrate determinants. Additional value of IgE detection to cross-reactive carbohydrate determinant-free, species-specific recombinant (r) Hymenoptera venom allergens, such as rApi m 1, rVes v 1, and rVes v 5, has recently been reported in several studies. In patients with allergy to YJV, the diagnostic sensitivity of a combination of the currently available YJV allergens rVes v 5 and rVes v 1 has been reported to be as high as 92% to 96%, whereas the frequency of sensitization to rApi m 1 in patients with allergy to honeybee venom (HBV) appears to be lower, ranging from 58% to 80%, depending on the patient population studied.

Because a proportion of patients with allergy to insect venom, in particular those allergic to HBV, are missed by the currently available recombinant venom allergens, the use of venom extracts is still recommended as the first line of laboratory investigation. For patients in which the causative insect is uncertain, and/or double-positive results are obtained with conventional venom extracts, the second-line analysis of IgE to available recombinant allergens has been found to be helpful in the identification of the relevant sensitization.

During the routine use of these allergens in the diagnosis of Vespula venom allergy, we frequently observed that IgE reactivity was higher to the major YJV allergen Ves v 5 than to YJV extract and that, in some cases, IgE reactivity was only detectable by rVes v 5 ImmunoCAP, suggesting a shortage of Ves v 5 reactivity in the conventional YJV ImmunoCAP (i3). Here, we address this issue in a large population of patients with allergy to YJV with the use of a YJV ImmunoCAP that has been enhanced by spiking with rVes v 5 (rVes v 5-spiked YJV ImmunoCAP).

Patients with systemic anaphylactic reactions to YJ stings (n = 308; 52% male) were recruited consecutively in 2 German allergy centers. Diagnosis of YJV allergy was based on the patient's history of an anaphylactic reaction to a YJ sting (identification of YJ as the culprit insect by the patient), a positive skin test to YJV and/or detection of IgE to YJV extracts, and, in some patients, on basophil activation or basophil histamine release tests. The skin tests were performed as titrated prick test with the use of 1, 10, and 100 µg/mL YJV extract. In case the prick test was negative, we additionally performed an intradermal test with the use of YJV extract at a test concentration of 1 µg/mL. In 235 patients the diagnosis was based on history, positive skin test, and positive specific IgE (sIgE) to YJV extract (i3), in 22 patients on history and positive sIgE to YJV extract (skin test not done, n = 7; skin test negative, n = 15), in 47 patients on history and positive skin test (negative sIgE to YJV extract i3), in 1 patient on history and on basophil activation test (negative skin test, negative sIgE to YJV extract i3) and in 3 patients the diagnosis was based on history only. These patients had provided a
Spiking venom with rVes v 5 improves sensitivity of IgE detection in patients with allergy to Vespula venom

convincing history of an anaphylactic reaction after a YJ sting but displayed a negative skin test, a negative sIgE to YJV extract, and cellular tests were not performed. Sixty percent of the entire patient group (n = 308) were monosensitized to YJV, whereas the remaining showed concomitant sensitization to HBV extract (n = 122). IgE reactivity was analyzed to YJV extract (ImmunoCAP, i3), rVes v 1 (i211), rVes v 5 (i209), and to a newly developed ImmunoCAP in which the representation of Ves v 5 has been enhanced by spiking with rVes v 5 (rVes v 5-spiked YJV ImmunoCAP; Phadia AB, Uppsala, Sweden).

Sensitization (≥ 0.35 kUA/L) to the conventional YJV extract ImmunoCAP (i3) was detected in 83.4%, to rVes v 1 in 44.2%, to rVes v 5 in 89.9%, and to either rVes v 1 or rVes v 5 or to both in 96.1% of the 308 study subjects (Figure 1A). Among the i3-negative patients, only 1 patient was sensitized to rVes v 1, whereas 84.4% (42/51) tested positive to rVes v 5 (Figure 1B).

![Figure 1](image)

Figure 1 | IgE antibody levels in patients with allergy to YJ sting (n = 308). **A** IgE reactivity to YJV extract (ImmunoCAP i3), rVes v 1 (i211), and rVes v 5 (i209) in the entire population. **B** IgE reactivity to rVes v 1 (i211) and rVes v 5 (i209) in the YJV extract (i3)-negative population.

In most patients, the level of IgE was lower to Ves v 1 than to YJV, indicating that a significant part of the IgE reactivity to YJV is directed against determinants other than Ves v 1 (Figure 2A). In contrast, the measured levels of IgE to rVes v 5 were substantially higher than level to YJV (Figure 2B), with a median rVes v 5/YJV ratio of 2.4 among the Ves v 5-positive patients (n = 277), suggesting that Ves v 5 was underrepresented in the immobilized YJV extract. A number of mechanisms could theoretically explain a reduced Ves v 5 immunoreactivity in the extract compared with the recombinant protein, such as 1) a true shortage of Ves v 5 protein...
in the YJV extract, 2) inefficient coupling of Ves v 5 to the assay’s solid phase, and 3) sterical shielding of Ves v 5 epitopes by endogenous ligands of Ves v 5 or its attachment to the solid phase.

Figure 2 | Comparison of IgE reactivity to conventional YJV extract, recombinant YJ allergens Ves v 1 and Ves v 5, and to Ves v 5-spiked YJV extract in patients with YJV allergy. A) Comparison of IgE levels with YJV ImmunoCAP (i3) and rVes v 1 (i211), all patients (n = 308). B) Comparison of IgE levels with YJV ImmunoCAP (i3) and rVes v 5 (i209), all patients (n = 308). C) Comparison of IgE levels with YJV ImmunoCAP (i3) and rVes v 5-spiked YJV extract in rVes v 5-positive patients (n = 277). D) Comparison of IgE levels with YJV ImmunoCAP (i3) and rVes v 5-spiked YJV extract in rVes v 5-negative patients (n = 31). Hatched horizontal and vertical lines indicate the cutoff of 0.35 kU/L, and the hatched diagonal line represents a 1:1 ratio.
Spiking venom with rVes v 5 improves sensitivity of IgE detection in patients with allergy to Vespula venom

To examine whether this limitation in detection of Ves v 5 reactive IgE antibodies can be overcome by complementation of natural YJV with rVes v 5, we analyzed IgE reactivity to rVes v 5-spiked YJV ImmunoCAP. Compared with the conventional YJV ImmunoCAP i3, the rVes v 5-spiked YJV ImmunoCAP produced substantially higher IgE values in Ves v 5-positive sera (n = 277) (Figure 2C), whereas no relevant difference in reactivity was observed in Ves v 5-negative sera (n = 31) (Figure 2D).

On analysis of all 308 subjects with allergy to YJV with this test, positive results were obtained in 298, compared with 257 with the conventional YJV ImmunoCAP i3. This increase in sensitivity from 83.4% to 96.8% was not accompanied by a change in specificity, as indicated by the analysis of IgE reactivity in 51 consecutive patients with confirmed HBV allergy and no history of YJV allergy (Figure 3). Twenty-four of these patients were monosensitized to HBV (i3 negative), and 27 patients displayed double sensitization to both HBV and YJV extract, 13 of whom displayed IgE reactivity to rVes v 5. Comparison of IgE reactivity to the conventional YJV and the rVes v 5-spiked YJV ImmunoCAP showed an excellent agreement among these patients.

Skin testing was performed in 301 of the 308 patients with allergy to YJV. Titrated skin prick test identified 48.8% (147/301), and a combination of prick and intradermal test identified 93.7% (282/301) of the patients. In skin test-negative patients (n = 19) positive IgE reactivity to Ves v 5-spiked YJV was detected in 18/19. A combination of skin test and IgE detection to Ves v 5-spiked YJV identified 99.7% (300/301) of the patients.

In conclusion, the conventional YJV ImmunoCAP, which is widely used in the diagnosis of insect venom allergy, displayed in our patient population a limited sensitivity of 83.4%, apparently because of incomplete capture of Ves v 5-reactive IgE antibodies. Spiking of the
natural YJV extract with rVes v 5 substantially improved the sensitivity to 96.8%. Thus, the rVes v 5-spiked YJV ImmunoCAP will allow a more reliable detection of YJV sensitization in patients with insect venom allergy.

ACKNOWLEDGEMENT

We thank Andrea Komann, Heike Neumann, and Michaela Rolle for excellent technical assistance and Dr Jonas Lidholm for providing the rVes v 5-spiked YJV ImmunoCAPs.
REFERENCES

