Mechanisms in Ruthenium(II) photochemistry and Iron(III) catalyzed oxidations
Unjaroen, Duenpen

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2017

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
CHAPTER 3

Reversible photochromic switching in a Ru(II) polypyridyl complex

Fully reversible photoswitching of the coordination mode of the ligand MeN4Py \( \text{1,1-di(pyridin-2-yl)-N,N'-bis(pyridin-2-yl-methyl)-ethan-1-amine} \) in its ruthenium(II) complex with visible light is reported. Irradiation with visible light results in dissociation of a pyridyl moiety, which is reversed by irradiation at 355 nm.

This chapter has been published:
3.1 Introduction

The reversible photochemical switching between two distinct molecular states or structures, each having different physical properties, not least their colour, has been a cornerstone of organic photochemistry for over a century.\(^1\)\(^,\)\(^2\) By contrast, with the exception of organic-inorganic hybrid systems,\(^3\) the photochemistry of transition metal complexes has focused almost exclusively on photochemical ligand dissociation reactions, that are reversed thermally over timescales from the picosecond to the hour range.\(^4\) Notable exceptions to this are hapticity changes in arene based complexes,\(^5\) light-induced spin state switching (LIESST) systems\(^6\) and linkage isomerization\(^7,\)\(^8\) (e.g., with NO\(^9\) and DMSO\(^10\) as ligands).\(^3,\)\(^11\)

The distinction between organic and inorganic photochemistry can largely be ascribed to the central role played by metal centred excited states, in which electron density is formally transferred from non-bonding to anti-bonding molecular orbitals (e.g., \(t_{1g} \rightarrow e_g\) in octahedral complexes).\(^12\) For transition metal complexes, ligand exchange involves the breaking of metal-ligand bonds. Although rare, the possibility to switch between two molecular states photochemical in transition metal complexes has been demonstrated, such as by Matsuda and co-workers\(^13\) who demonstrated the reversible photochemical ligand dissociation and re-association in a Ru(II) complex containing a 2,2’-bipyridine and tris(2-pyridylmethyl)amine ligand and by Vos and co-workers\(^14\) in the isomerization of 1,2,4-triazole based Ru(II) complexes, albeit in both cases with limited photostationary states (PSS) achieved.

Hence, the key challenge faced in developing inorganic photoswitchable systems that match contemporary organic photochromes such as dithienylethenes\(^2\) and overcrowded alkene based molecular rotary motors,\(^15\) are (i) to achieve a substantial difference in absorption, preferably with a complete loss of absorbance at a particular wavelength (\(\lambda_1\)) to enable a photostationary state (PSS) of 100% to be achieved, and to be able to revert to the original state as completely as possible by irradiation at a different wavelength (\(\lambda_2\)) (Scheme 1) and (ii) that both forms are thermally stable under the conditions of irradiation to prevent spontaneous reversion.

In this chapter, the reversible photochemical switching of the coordination state of the ligand MeN4Py in its Ru(II) complex (Scheme 1) is revealed. We show that irradiation with visible light (> 420 nm) results in dissociation of one of the pyridine moieties of the MeN4Py ligand and coordination of an acetonitrile ligand to yield a stable complex 2. Unusually complex 2 can be reverted to 1 again by irradiation with near-UV light (e.g., 355 nm) and the process repeated over multiple switching cycles (Figure 1).\(^16\)

![Scheme 1](image1.png)

**Scheme 1.** Reversible photochromic switching of [Ru(CH\(_3\)CN)(MeN4Py)]\(^{2+}\) complex.
3.2 Results and discussion

Complex 1 was prepared from RuCl₃ and the ligand MeN4Py (see in Appendix A). The UV-vis absorption spectrum of 1 in CH₃CN shows absorption bands at 247, 350, 425 and 445 nm (log₁₀ ε₄₄₅ = 3.9). The band at 247 nm is assigned as a π-π* transition of the pyridine units, whereas the three visible absorption bands are assigned to metal to ligand charge transfer (1MLCT) transitions.¹⁷

Irradiation (at 457 nm) of 1 in CH₃CN results in a nearly complete loss in visible absorption at 445 nm (photostationary state, PSS > 95%, vide infra) and a change to the absorption band at ca. 350 nm with isosbestic points maintained at 365 and 398 nm (Figure 1a). Notably thermal reversion to 1 does not occur at ambient conditions and prolonged heating above 50 °C is required to recover the initial spectrum. Remarkably subsequent irradiation at 355 nm results in a nearly complete restoration of the original UV-vis absorption spectrum (Figure 1b). The photochromic switching can be repeated over multiple cycles without loss in performance (Figure 1c).¹⁸

That the changes in visible absorption upon irradiation at 457 nm are due to dissociation of one of the pyridyl rings together with coordination of an additional acetonitrile was confirmed by ¹H NMR spectroscopy and ESI mass.

![Figure 1](image.png)

**Figure 1.** Changes to the UV-vis absorption spectrum of 1 in CH₃CN upon irradiation at (a) 457 nm (b) 355 nm and (c) Absorbance at 425 nm after successive irradiation at 457 nm and 355 nm over five cycles.

Irradiation of 1 in CD₃CN at 457 nm results in a complete change in its ¹H NMR spectrum (Figure 2). 1 is a symmetrical complex with a single resonance at 4.37 ppm for the four methylene hydrogens of the MeN4Py ligand.¹⁹ After irradiation four doublets (at 3.31, 3.72, 4.72 and 5.42 ppm, with the former pair corresponding to the methylene unit of the dissociated pyridine unit and the latter pair to the other methylene units; see in Appendix A for DQF-COSY NMR spectra) are observed reflecting the complete loss in symmetry upon pyridyl dissociation together with a doubling in the number of
resonances in the aromatic region. The residual signals of 1 indicate that the photostationary state achieved is > 95% in favour of 3 (Scheme 1).

![Figure 2. 1H NMR spectra of (a) 1 (b) 2 formed by irradiation of 1 at 457 nm in CD3CN.](image)

Notably, although the irradiation was carried out in CD3CN, the signal from the CH3CN ligand (2.72 ppm) undergoes only a partial decrease in integration and a minor downfield shift, indicating that it is slow to exchange. Indeed, while the ESI mass spectrum of a solution of 1 irradiated at 457 nm shows a base peak at m/z 282 corresponding to 2 ([RuII(CH3CN)2(MeN4Py)]2+), when irradiated in CD3CN the base peak is [RuII(CH3CN)(CD3CN)(MeN4Py)]2+ (m/z 285), and subsequent irradiation at 355 nm results in the reappearance of the peak at m/z 262 corresponding to [RuII(CD3CN)(MeN4Py)]2+ as well as at 263.5 corresponding to [RuII(CD3CN)2(MeN4Py)]2+.

The limited exchange of the acetonitrile ligand is confirmed by Raman and FTIR spectroscopies also. The Raman spectrum at λexc 785 nm of 1 in the solid state reveals the vibrational band of CH3CN at 2268 cm⁻¹. After evaporation of solvent of 2 in CD3CN (generated by irradiation at 457 nm), the vibrational band of CH3CN and CD3CN at 2287 cm⁻¹ and 2112 cm⁻¹, respectively, are observed. Likewise, the FTIR spectrum also reveals the corresponding band of CH3CN at 2260 cm⁻¹ (Figure 3a). The bands in region 1600-1200 cm⁻¹ are assigned to pyridine based vibrations by comparison with the Raman spectrum of [FeII(MeN4Py)(CH3CN)](ClO4)2.

The Raman spectrum of 1 shows slight differences with the FTIR spectrum which Raman band at 1378 shift to 1399 cm⁻¹ in FTIR. Upon irradiation at 457 nm, the bands at 1285 and 1340 cm⁻¹ changed to 1297 cm⁻¹ which it is assigned to one of pyridine group un-coordinated with Ru(II) complex. The Raman spectrosopies of 1 in CD3CN (0.1 mM) were monitored at the isosbestic point (λexc 405 nm). The band at 1297 cm⁻¹ confirms the change in ligand denticity and after irradiation at 355 nm the spectrum corresponding to 1 in CD3CN (without irradiation) is recovered (Figure 3b).
Reversible photochromic switching

Figure 3. (a) Raman spectra of 1 in solid state (i) before irradiation at 457 nm (ii) after irradiation at 457 nm (iii) FTIR spectra of 1 before irradiation at 457 nm (iv) after irradiation at 457 nm. (b) Raman spectra of 1 in CD$_3$CN at $\lambda_{\text{exc}}$ 405 nm (i) before irradiation, (ii) after irradiation at 457 (iii) after irradiation at 355 nm.

The photochemistry of 1 is identical in both air equilibrated and argon purged acetonitrile and is unaffected by the presence of 1% water (Figure 4, see Figures S17-20 in ref. 16 for details). Taken together with the absence of emission, suggests that ligand dissociation occurs rapidly following absorption of a photon and does not involve water or oxygen.

Figure 4. Changes in absorbance at $\lambda$ 425 nm of 1 when irradiation at 457 nm and 355 nm in (a) CH$_3$CN (b) 1% H$_2$O in CH$_3$CN (c) in Ar purged CH$_3$CN (d) anhydrous CH$_3$CN.

Indeed in other solvents such as DMSO, acetone and water, complex 1 shows photochemical dissociation of a pyridyl ring upon irradiation at 457 nm, however, the changes are not reversed.
upon irradiation at 355 nm and it is apparent from the absorption spectra that DMSO and water coordinates to the complex followed by loss of the acetonitrile ligand (see ref. 16 for details). Notably however in the case of water, although irradiation results in the formation of \([\text{Ru}^{II}(\text{H}_2\text{O})(\text{MeN4Py})]^2+\), subsequent addition of CH$_3$CN (5% v/v) results in a slow thermal recovery (2.5 h) of complex 1, which is accelerated (15 min) by irradiation at 355 nm (Scheme 2 and Figure 5). These data show that the complex \([\text{Ru}^{II}(\text{H}_2\text{O})(\text{MeN4Py})]^2+\) is also photochemically active towards dissociation of a pyridyl ring but that the CH$_3$CN ligand is needed in order to trap complexes of type 2.

![Scheme 2](image)

**Scheme 2.** Photochemistry of 1 in H$_2$O.

![Figure 5](image)

**Figure 5.** The UV-vis absorption spectra of 1 in H$_2$O upon irradiation at (a) 457 nm (b) 355 nm after addition 5% of CH$_3$CN and (c) addition 5% CH$_3$CN but held in the dark.

### 3.3 Conclusions

In conclusion, we show that bi-directional photoswitching of a coordination complex between two thermally stable states can be achieved and circumvent the need to incorporate organic photoswitches as ligands. The forward reaction involves dissociation of a pyridine moiety of the ligand, while the reverse reaction involves photo-dissociation of the solvent molecule that filled the vacant coordination site. The dissociation of the pyridyl moiety and not the CH$_3$CN ligand is ascribed to a trans-effect of the amine of the MeN4Py ligand. The role of solvent in terms of coordination places an important limitation on the current system in comparison with organic chromophores in regard to solid state applications; however it is envisaged that careful ligand design in which a
coordinating nitrile group is appended to the ligand may broaden the solvent scope and allow for application of this photochromic switching system in a wider range of solvents and in polymer matrices. The ability to switch between two distinct molecular states with visible and UV light opens up opportunities to develop new classes of photoswitches based on coordination complexes.

### 3.4 Acknowledgements
A. van Dam (ERIBA, University of Groningen) is thanked for assistance with recording of ESI mass spectra.

### 3.5 References and notes

(17) The UV-vis absorption, FTIR, Raman, resonance Raman and 1H NMR spectra of complex 1 are very similar to those reported earlier for the corresponding Fe(III) complex. Drakharapu, A.; Li, Q.; Logtenberg, H.; van den Berg, T. A.; Meetsma, A.; Killeen, J. S.; Feringa, B. L.; Hage, R.; Roelfes, G.; Browne, W. R. *Inorg. Chem.* 2012, 51, 900–913.
(18) The quantum yields for the forward and reverse processes have been estimated at 0.1% and 1.5%, respectively based on rate of change of absorbance and fractional absorption of light at the wavelength of irradiation. The ratio is consistent with the photostationary states reached.
(19) It should be noted that the apparent singlet observed for the methylene hydrogens of 1 is due to their accidentally identical chemical shift.