Catalytic Conversion of Levulinic Acid to \(\gamma\)-Valerolactone Using Supported Ru Catalysts: from Molecular to Reactor Level

Anna S. Piskun
Catalytic conversion of levulinic acid to γ-valerolactone using supported Ru catalysts: from molecular to reactor level

Proefschrift

ter verkrijging van de graad van doctor aan de Rijksuniversiteit Groningen
op gezag van de rector magnificus prof. dr. E. Sterken
en volgens besluit van het College voor Promoties.

De openbare verdediging zal plaatsvinden op vrijdag 16 december 2016 om 09.00 uur

door

Anna Sergeevna Piskun

geboren op 22 mei 1988
te Nizhnevartovsk
Rusland
Table of Contents

Chapter 1: Introduction
1. Introduction 11
2. Platform chemicals: Levulinic acid 11
3. Synthesis of levulinic acid 13
 3.1. LA synthesis using homogeneous catalysts 15
 3.2. LA synthesis using heterogeneous catalysts 17
 3.3. Metal salts catalysts 22
 3.4. Commercial status 24
4. LA derivatives 27
5. Platform chemicals: γ-Valerolactone 28
6. Synthesis of GVL from LA 31
 6.1. Hydrogenation of LA using molecular hydrogen 31
 6.2. Hydrogenation of LA using formic acid as the hydrogen donor 57
 6.3. Hydrogenation of LA using alcohols as the hydrogen donor 61
7. Thesis outline 64
References 66

Chapter 2: Support Screening Studies on the Hydrogenation of Levulinic Acid to γ-Valerolactone in Water Using Ru Catalysts
1. Introduction 75
2. Experimental section 79
 2.1. Materials 79
 2.2. Catalysts preparation 80
 2.3. Analysis 81
 2.4. Catalytic hydrogenation experiments of LA 82
 2.5. Determination of the concentrations of LA, GVL and 4-HPA 82
 2.6. Determination of the initial rates 83
 2.7. Definitions 83
3. Results and discussion 84
 3.1. Catalyst characterization 84
 3.2. Catalytic LA hydrogenation experiments 87
 3.3. LA hydrogenation with a bimetallic catalyst 90
 3.4. Comparison of activity of the catalyst with literature data 91
 3.5. Catalyst structure-activity relations 92
 3.6. Catalyst structure-selectivity relations 96
4. Conclusions 96
5. Appendices 98
References 99
Chapter 3: Hydrogenation of Levulinic Acid to γ-Valerolactone over Anatase-Supported Ru Catalysts: Effect of Catalyst Synthesis on Activity

1. Introduction 105
2. Experimental section 109
 2.1. Materials 109
 2.2. Analytical equipment 109
 2.3. Catalysts preparation 110
 2.4. Catalytic hydrogenation experiments of LA 111
 2.5. Determination of the concentrations of LA, GVL and 4-HPA in the liquid phase 112
 2.6. Definitions 113
3. Results and discussion 114
 3.1. Catalyst characterization 114
 3.2. Hydrogenation experiments using the anatase-supported Ru catalysts 119
 3.3. Effect of variation of the Ru-precursor on catalytic activity 120
 3.4. Effect of reduction procedure on catalyst activity 122
 3.5. Effect of an intermediate calcination step on catalyst activity 123
 3.6. Discussion 124
4. Conclusions 127
5. Appendices 129
References 130

Chapter 4: Kinetic Modeling of Levulinic Acid Hydrogenation to γ-Valerolactone in Water Using a Carbon Supported Ru Catalyst

1. Introduction 137
2. Experimental section 140
 2.1. Materials 140
 2.2. Experimental procedure for hydrogenation of levulinic acid 140
 2.3. Concentration calculations from 1H-NMR analysis 141
 2.4. Definitions 142
3. Results and discussion 142
 3.1. Screening experiments 142
 3.2. Mass transfer limitations 144
 3.3. Reactor model development 145
 3.4. Model development for the catalytic hydrogenation reaction 147
 3.5. Modeling of the intermolecular esterification of 4-HPA to GVL 149
 3.6. Modeling of the mass transfer coefficients 150
 3.7. Model solution and parameter optimization 150
 3.8. Model results 151
4. Conclusions 154
5. Appendices 159
References 160

Chapter 5: Hydrogenation of Levulinic Acid to γ-Valerolactone in Water Using Millimeter Sized Supported Ru Catalysts in a Packed Bed Reactor

1. Introduction 179
2. Experimental section 182
 2.1. Materials 182
 2.2. Catalyst characterization 182
 2.3. Description of the hydrogenation set-up 183
 2.4. Experimental procedure for the packed bed set-up 183
 2.5. Analytical procedure 184
 2.6. Mole balance closure 185
 2.7. Definitions 185
3. Results and discussion 186
 3.1. Catalyst characterization 186
 3.2. Initial screening studies with a mm sized Ru/C catalyst 187
 3.3. Effect of pre-reduction of the catalyst 189
 3.4. Effect of LA feed concentration 190
 3.5. Catalyst performance of the Ru/C catalyst (0.5 wt.% Ru) at elevated temperatures 193
 3.6. Mass transfer effects on observed reaction rates 194
 3.7. Experimental verification of mass transfer effects 195
 3.8. Support effects on catalytic performance for Ru based catalysts 196
 3.9. Experimental studies with Ru/C at prolonged runtimes 201
4. Conclusions 204
5. Appendices 205
 5.1. Figures and Tables 205
 5.2. Calculations of intraparticle diffusion of LA and hydrogen 211
References 217

Summary 221
Samenvatting 231
Acknowledgments 242
List of Publications 244
List of Attended Conferences 244