Health economics of blood transfusion in Zimbabwe
Mafirakureva, Nyashadzaishhe

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2016

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Chapter 2

Profiles of blood and blood component transfusion recipients in Zimbabwe

Nyashadzaishe Mafirakureva
Star Khoza
Oliver Hassall
Brian E. Faragher
Isaac Kajja
David A. Mvere
Jean C. Emmanuel
Maarten J. Postma
Marinus van Hulst

Adapted from Blood Transfusion. 2015 Oct; 13(4): 600–609.
ABSTRACT

Background: There are limited published data on the characteristics of blood transfusion recipients in sub-Saharan Africa. This study describes the demographic characteristics of blood transfusion recipients, and utilization patterns of blood and blood components in Zimbabwe.

Materials and Methods: Data on the characteristics of the blood transfusion recipients (age, sex, blood group), blood components received (type, quantity), discharge diagnoses and outcomes following transfusion (discharge status, length of stay in hospital), were retrospectively collected from four major hospitals during the period January 1, 2012 through December 31, 2012. Diagnoses were grouped into broad categories according to the disease headings of the International Classification of Diseases, (ICD-10). Surgical procedures were grouped into broad categories according to organ system using ICD-9.

Results: Most of the 1793 transfusion recipients studied were female (63.2%) and in the reproductive age group (65.3%) i.e. in 15 – 49 years. The median age of the recipients was 33 years (range, 0 – 93). The majority of these recipients (n=1642; 91.6%) received a red blood cell transfusion. The majority of the patients were diagnosed with conditions related to pregnancy and childbirth (22.3%), and diseases of blood and blood forming organs (17.7%). The median length of stay in hospital was 8 days (range, 0 – 214) and in-hospital mortality was 15.4%.

Conclusions: Our sample of blood transfusion recipients was fairly young and most of them received red blood cell transfusions. The majority of patients in the reproductive age group received blood transfusion for pregnancy and childbirth-related diagnoses.
INTRODUCTION

Critical review and continuous evaluation on the use of blood and blood components are essential activities aimed at improving transfusion practice\(^1\). These involve studying the demographic characteristics of blood transfusion recipients, the utilization patterns of blood and blood components, the clinical conditions and specialties requiring blood transfusion, and the risks associated with blood transfusion in a population. Monitoring blood utilization is one way of assessing the present and future demands for blood and reducing unnecessary transfusions\(^2\). Data on blood utilization is especially helpful in resource-limited settings where there are always competing needs for the scarce resources. Blood is one such scarce health resource and ensuring its safety and clinical effectiveness requires a great deal of investment, both human and financial. Information on blood utilization will assist in conducting cost-effectiveness analyses\(^3\), establishing clinical practice guidelines, planning efforts for recruitment of new blood donors and streamlining resources for the therapeutic benefit of patients\(^2,4\).

A number of studies on blood and blood component utilization have been carried out in recent years\(^1,3,5-12\). Substantial variations in transfusion practice, arising due to differences in population age structures, prevalence of conditions requiring transfusion, and levels of health care provision, have been reported\(^4,13,14\). However, most of these studies have been conducted in developed countries whose population and disease burden is different from developing countries. Most developed countries are characterized by an ageing population, chronic non-infectious diseases and advanced surgical technology\(^3,6,8,12,15\), all of which may result in different utilization patterns of blood components when compared with developing countries. In contrast, the population in developing countries is predominantly young and blood utilization patterns are likely to be different. There are limited published data on the characteristics of blood transfusion recipients in sub-Saharan Africa (SSA). The few studies reported that most of the limited blood supplies in developing countries are used for complications of pregnancy and childbirth, trauma and severe anaemia in childhood\(^16-18\). It is therefore imperative that blood utilization studies, in these settings, are carried out to establish local use patterns in order to effectively meet patient needs.

In Zimbabwe, the National Blood Service, Zimbabwe (NBSZ), is responsible for ensuring a safe, adequate, accessible and affordable supply of blood and blood components. Currently, NBSZ only has complete information on the number and type of blood and components, issued to hospitals, however, the actual consumption data is not readily available at hospital level. Establishing utilization patterns, especially basic parameters such as the number of patients and components transfused each year, will enable the blood service to dispatch its mandate efficiently and effectively. In this study, the demographic characteristics of patients receiving blood transfusions is described, as is the utilization patterns of blood and blood components, and the discharge diagnoses.
MATERIALS & METHODS

Setting
The study was conducted in four major hospitals, all located in Harare, which had the highest number of units of blood issued nationwide by the NBSZ in 2012; these consisted of three public sector referral hospitals (Parirenyatwa Group of Hospitals, Harare Central Hospital, Chitungwiza Central Hospital) and one private hospital (West End Hospital). The four hospitals have a combined capacity of 2,490 beds, annual admissions of 111,794 patients, annual discharges of 100,774 patients, and provide most of the medical and surgical specialties.

Study design
A retrospective analysis of blood transfusion recipient data, covering all blood and blood components transfused and recorded over a 12-month period, was undertaken. The primary data sources were manually completed blood bank registers, from which a sample of blood transfusion recipients was selected.

A computerized standard discharge summary for each patient is routinely completed, at the end of each hospital stay, by staff in the medical records department of each hospital. Different systems are in place at the four hospitals, however they were all able to provide all the data fields required for this study. These registries were used to obtain demographic and discharge diagnoses for all the transfused recipients. Data collected from the blood banks were linked with each transfusion recipient’s discharge summary, using the recipient’s full name and hospital number.

Data collection
Data were collected retrospectively from the four hospitals for the 12-month period from 1 January to 31 December 2012, covering all blood and blood components recorded in the blood bank registers during this period. A sample size of 600 blood transfusion recipients per hospital, stratified by calendar month was targeted (i.e. 50 blood transfusion recipients were systematically sampled per month for each hospital). The monthly sampling fractions for each hospital were calculated by dividing the target sample size (50) by the actual total number of recipients registered each month. Transfusion recipient and blood component information was extracted from the blood bank registers. Data collected from the blood bank registers included full name, hospital number, component type, number of units of component, recipient blood group, donor blood group, date of issue of component and blood bank identification number for each transfusion recipient. Using the recipient’s full name and hospital number, the discharge summaries were extracted from the computerized registries. The variables included in the final dataset were characteristics of the patient (age, sex, blood group), blood components received (type, quantity), primary discharge diagnoses and outcomes following transfusion (discharge status, length of stay in hospital).
Data evaluation
The data collected were computerized using Epi-Info version 719, then transferred to Microsoft Excel 2010 (Redmond, Washington, USA) and Stata 1220 for cleaning and statistical analysis. Transfused patients were grouped into broad diagnostic categories according to the 21 (I-XXI) chapters of the International Classification of Diseases (ICD-10). Surgical procedures were grouped into broad categories according to organ system using ICD-9.

Statistical analysis
Categorical demographic and clinical variables (e.g. type of components transfused, in-hospital mortality rates, etc.) are summarized using frequency counts and percentages; all continuous measures (e.g. length of hospital stay) followed non-Normal distributions so are summarized using medians and ranges. The age groups were categorised into: 0 – 14, 15 – 24, 25 – 54, 55 – 64 and over 65 years. Data were stratified according to sex, age, and diagnosis of the recipients. Differences between proportions were evaluated using the Fisher exact test; differences between medians were evaluated using the Mann-Whitney U-test (two groups) or the Kruskal-Wallis test (more than two groups). An a priori significance level of $\alpha=0.05$ was set for all analyses.

Ethical considerations
Ethical approval was obtained from the Medical Research Council of Zimbabwe (MRCZ/B/402) and the Joint Parirenyatwa Hospital (Harare) and College of Health Sciences Research Ethics Committee (JREC75/12). Additional approvals were obtained from each of the participating hospitals.

RESULTS

Blood and blood components distributions
A total of 53,803 units of blood were distributed nationally, during the period under study (January – December 2012). More than half of the blood components (n=28,293; 52.6\%) were distributed to the four hospitals included in this study. Of these blood components, 23,970 (84.7\%) were distributed as red blood cells; 3,014 (10.7\%) as fresh frozen plasma; 954 (3.4\%) as platelets; 146 (0.5\%) as paediatric packs; 90 (0.3\%) as cryoprecipitate; and 119 (0.4\%) as whole blood.

Transfusion recipients and blood components
Of the 2400 patients who were systematically selected for the study, discharge summaries were available for 1,793 patients (74.7\%). Of these, 1,642 (91.6\%) received a red blood cell transfusion. The total number of units transfused to patients in the sample during the study period was 4,249, representing 15.0\% of the blood components distributed to the four hospitals. Most
of the transfused components were red blood cells (n=3,660; 86.1%) followed by fresh frozen plasma (n=444; 10.4%), platelets (n=93; 2.2%), cryoprecipitate (n=32; 0.8%) and whole blood (n=20; 0.5%).

Demographic characteristics
The demographic characteristics and patient blood groups of the recipients are shown in Table 1. Most transfusion recipients were female (1,126; 63.2%), of whom 851 (75.6%) were in the reproductive age group (15 – 49 years). The median age for the recipients was 33 (range; 0 – 93) years. The mean age was 35 (SD; 20) years. Approximately 10% of transfusion recipients were at least 65 years old, while 13.4% recipients were under the age of 15 years. The most common blood group type was O Rhesus positive (531, 45.7%). The distribution of blood transfusion recipients according to sex and age is shown in Figure 1.
Distribution of transfusion recipients by age, component transfused and primary discharge diagnosis

Figure 2 shows recipient age and sex distributions per blood component transfused. Of all the blood components transfused, the majority were transfused to women. Transfusion recipients in the reproductive age group (15 – 49 years) received 2560 (69.9%) units of red blood cells, 372 (83.8%) units of fresh frozen plasma, 62 (66.7%) units of platelets, 9 (45.0%) units of whole blood and 30 (93.8%) units of cryoprecipitate. Paediatric patients below the age of 5 years received 155 (4.2%) units of red blood cells; 13 (2.9%) units of fresh frozen plasma; 15 (16.1%) units of platelets; and 6 (30.0%) units of whole blood. Transfusion recipients aged 65 years or older received the following units; red blood cells (n=394; 10.8%); fresh frozen plasma (n=16; 3.6%) and whole blood (n=2; 10.0%).
Discharge diagnoses were available for 91.6% of the blood transfusion recipients, with the rest of the recipients reported as having undergone surgical procedures. The distribution of blood transfusion recipients and blood components transfused over the broad ICD-10 discharge diagnosis categories are shown in Table 2. The top five broad ICD-10 diagnostic categories accounting for most blood transfusion recipients were pregnancy and childbirth (n=363; 22.4%); diseases of blood and blood forming organs (n=287; 17.5%); neoplasms (165; 10.1%); infectious and parasitic diseases (n=146; 9.0%); and diseases of the digestive system (8.2%). Most red blood cells (n=783; 23.9%) and fresh frozen plasma (205; 46.4%) were used in the pregnancy and childbirth diagnosis category. The blood and blood forming organs category used most of the platelets (n=24; 25.8%) and cryoprecipitate (n=28; 87.5%), while most whole blood (n=7; 35.0%) was used in the injury and poisoning category. The median number of blood components transfused was 2 for red blood cells, platelets, whole blood and cryoprecipitate; and 4 for fresh frozen plasma. The principal diagnoses (four character subcategories) associated with high usage of red blood cells, fresh frozen plasma, platelets, whole blood and cryoprecipitate were unspecified anaemia, false labour (as reported, see discussion), aplastic anaemia, burns, and hereditary factor VIII deficiency, respectively. The 25 most frequently encountered principal diagnoses are shown in Table 3.
Table 2 | Distributions of blood components transfused over the broad ICD-10 discharge diagnosis categories

<table>
<thead>
<tr>
<th>Diagnostic category (ICD-10 codes)</th>
<th>Recipients Transfused components</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>%</td>
<td>RBC</td>
<td>%</td>
<td>FFP</td>
<td>%</td>
<td>PLT</td>
<td>%</td>
</tr>
<tr>
<td>Pregnancy, childbirth and the puerperium</td>
<td>363</td>
<td>22.4</td>
<td>783</td>
<td>23.9</td>
<td>205</td>
<td>46.4</td>
<td>14</td>
<td>15.1</td>
</tr>
<tr>
<td>Blood and blood forming organs</td>
<td>287</td>
<td>17.5</td>
<td>610</td>
<td>18.3</td>
<td>30</td>
<td>6.7</td>
<td>24</td>
<td>25.8</td>
</tr>
<tr>
<td>Neoplasms</td>
<td>165</td>
<td>10.1</td>
<td>378</td>
<td>11.4</td>
<td>19</td>
<td>4.3</td>
<td>18</td>
<td>19.4</td>
</tr>
<tr>
<td>Genitourinary system</td>
<td>130</td>
<td>7.9</td>
<td>297</td>
<td>8.9</td>
<td>42</td>
<td>9.4</td>
<td>1</td>
<td>1.1</td>
</tr>
<tr>
<td>Digestive system</td>
<td>133</td>
<td>8.2</td>
<td>276</td>
<td>8.4</td>
<td>27</td>
<td>6.1</td>
<td>5</td>
<td>5.4</td>
</tr>
<tr>
<td>Infectious and parasitic diseases</td>
<td>146</td>
<td>9.0</td>
<td>257</td>
<td>7.8</td>
<td>35</td>
<td>7.8</td>
<td>8</td>
<td>8.6</td>
</tr>
<tr>
<td>Injury and poisoning</td>
<td>93</td>
<td>5.7</td>
<td>163</td>
<td>4.9</td>
<td>15</td>
<td>3.4</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Circulatory system</td>
<td>63</td>
<td>3.8</td>
<td>128</td>
<td>3.8</td>
<td>8</td>
<td>1.8</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Respiratory system</td>
<td>60</td>
<td>3.7</td>
<td>105</td>
<td>3.2</td>
<td>11</td>
<td>2.5</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Endocrine, nutritional and metabolic diseases</td>
<td>41</td>
<td>2.6</td>
<td>68</td>
<td>2.1</td>
<td>12</td>
<td>2.7</td>
<td>1</td>
<td>1.1</td>
</tr>
<tr>
<td>Nervous system</td>
<td>30</td>
<td>1.8</td>
<td>67</td>
<td>2.0</td>
<td>5</td>
<td>1.1</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Symptoms, signs and abnormal clinical and lab findings</td>
<td>32</td>
<td>2.1</td>
<td>60</td>
<td>2.0</td>
<td>0</td>
<td>0.0</td>
<td>4</td>
<td>4.3</td>
</tr>
<tr>
<td>Conditions originating in the perinatal period</td>
<td>37</td>
<td>2.5</td>
<td>33</td>
<td>1.1</td>
<td>27</td>
<td>6.1</td>
<td>4</td>
<td>4.3</td>
</tr>
<tr>
<td>Skin and subcutaneous tissue</td>
<td>20</td>
<td>1.3</td>
<td>31</td>
<td>1.1</td>
<td>6</td>
<td>1.3</td>
<td>6</td>
<td>6.5</td>
</tr>
<tr>
<td>Musculoskeletal system and connective tissue</td>
<td>12</td>
<td>0.7</td>
<td>15</td>
<td>0.5</td>
<td>0</td>
<td>0.0</td>
<td>5</td>
<td>5.4</td>
</tr>
<tr>
<td>Mental and behavioural disorders</td>
<td>2</td>
<td>0.1</td>
<td>6</td>
<td>0.2</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Factors influencing health status</td>
<td>2</td>
<td>0.1</td>
<td>5</td>
<td>0.2</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Congenital malformations</td>
<td>6</td>
<td>0.4</td>
<td>3</td>
<td>0.1</td>
<td>2</td>
<td>0.4</td>
<td>3</td>
<td>3.2</td>
</tr>
<tr>
<td>External causes of morbidity and mortality</td>
<td>1</td>
<td>0.1</td>
<td>2</td>
<td>0.1</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Ear and mastoid process</td>
<td>1</td>
<td>0.1</td>
<td>1</td>
<td>0.0</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Total percentages may not add up to 100% due to rounding. RBC = red blood cells, FFP = fresh frozen plasma, PLT = platelets, WB = whole blood, CRY = cryoprecipitate.
Table 3 | Twenty-five most frequent ICD-10 diagnoses

<table>
<thead>
<tr>
<th>Broad diagnostic category</th>
<th>Four character subcategories</th>
<th>Number of recipients</th>
<th>%</th>
<th>Number of RBC units</th>
<th>RBC%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pregnancy, childbirth and the puerperium</td>
<td>Spontaneous abortion</td>
<td>53</td>
<td>3.3</td>
<td>127</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td>Postpartum haemorrhage</td>
<td>54</td>
<td>3.3</td>
<td>116</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>Ectopic pregnancy, unspecified</td>
<td>29</td>
<td>1.8</td>
<td>76</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td>False labour, unspecified</td>
<td>35</td>
<td>2.2</td>
<td>52</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td>Single spontaneous delivery, unspecified</td>
<td>24</td>
<td>1.5</td>
<td>47</td>
<td>1.4</td>
</tr>
<tr>
<td>Blood and blood forming organs</td>
<td>Anaemia, unspecified</td>
<td>211</td>
<td>13.0</td>
<td>455</td>
<td>13.8</td>
</tr>
<tr>
<td></td>
<td>Anaemia in other chronic diseases classified elsewhere</td>
<td>21</td>
<td>1.3</td>
<td>40</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>Aplastic anaemia, unspecified</td>
<td>11</td>
<td>0.7</td>
<td>35</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>Thrombocytopenia, unspecified</td>
<td>9</td>
<td>0.6</td>
<td>21</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>Iron deficiency anaemia, unspecified</td>
<td>3</td>
<td>0.2</td>
<td>10</td>
<td>0.3</td>
</tr>
<tr>
<td>Neoplasms</td>
<td>Cervix uteri, unspecified</td>
<td>42</td>
<td>2.6</td>
<td>106</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td>Leiomyoma of uterus, unspecified</td>
<td>15</td>
<td>0.9</td>
<td>36</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>Stomach, unspecified</td>
<td>11</td>
<td>0.7</td>
<td>24</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>Malignant neoplasm of prostate</td>
<td>10</td>
<td>0.6</td>
<td>19</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>Bladder, unspecified</td>
<td>7</td>
<td>0.4</td>
<td>17</td>
<td>0.5</td>
</tr>
<tr>
<td>Genitourinary system</td>
<td>Unspecified kidney failure</td>
<td>45</td>
<td>2.8</td>
<td>95</td>
<td>2.9</td>
</tr>
<tr>
<td></td>
<td>Chronic kidney disease, unspecified</td>
<td>17</td>
<td>1.0</td>
<td>46</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td>Other specified abnormal uterine and vaginal bleeding</td>
<td>10</td>
<td>0.6</td>
<td>26</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>Excessive and frequent menstruation with regular cycle</td>
<td>10</td>
<td>0.6</td>
<td>25</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>Acute renal failure, unspecified</td>
<td>9</td>
<td>0.6</td>
<td>16</td>
<td>0.5</td>
</tr>
<tr>
<td>Digestive system</td>
<td>Gastrointestinal haemorrhage, unspecified</td>
<td>62</td>
<td>3.8</td>
<td>138</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td>Other and unspecified intestinal obstruction</td>
<td>11</td>
<td>0.7</td>
<td>20</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>Peptic ulcer, site unspecified</td>
<td>6</td>
<td>0.4</td>
<td>17</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>Duodenal ulcer</td>
<td>4</td>
<td>0.2</td>
<td>13</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>Peritonitis, unspecified</td>
<td>6</td>
<td>0.4</td>
<td>11</td>
<td>0.3</td>
</tr>
</tbody>
</table>

ICD: International Classification of Diseases; RBC: red blood cell.

The top five broad ICD-9 procedure categories accounting for most blood transfusion recipients, were for surgical procedures related to: digestive system (32.2%); female genital organs (26.2%); musculoskeletal system (17.5%); male genital organs (6.7%); and obstetrical procedures (4.7%). Most red blood cells were transfused during surgical procedures on the digestive system (29.8%) followed by operations on the female genital organs (26.6%), operations on the musculoskeletal system (18.3%), obstetrical procedures (5.6%) and operations on the male genital organs (5.4%).
Outcomes
The mean and median length of stay in hospital for transfusion recipients was 14 (SD 18) and 8 (range 0 – 214) days, respectively. The in-hospital mortality for transfused patients was 15.9%, while the overall mortality for all the patients was 6.6%. There were statistically significant sex and age differences in both length of stay in hospital and survival rates at discharge. The length of stay in hospital, and in-hospital mortality for the transfusion recipients are shown in Table 4.

Table 4 | Comparison of length of stay in hospital according to sex and age (n=1,793)

<table>
<thead>
<tr>
<th>Variables</th>
<th>Recipients, n</th>
<th>Median (range)</th>
<th>p-value</th>
<th>Recipients, n</th>
<th>Rate (%)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>630</td>
<td>10 (0 – 145)</td>
<td></td>
<td>637</td>
<td>20.7</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>1078</td>
<td>7 (0 – 214)</td>
<td>0.005a</td>
<td>1093</td>
<td>13.8</td>
<td>0.001c</td>
</tr>
<tr>
<td>Not recorded</td>
<td>85</td>
<td>-</td>
<td></td>
<td>63</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Age range (years)
- 0 – 14 | 231 | 11 (0 – 145) | 232 | 19.3 |
- 15 – 24 | 238 | 7 (0 – 176) | 244 | 10.7 |
- 25 – 54 | 949 | 7 (0 – 198) | 964 | 14.6 |
- 55 – 64 | 118 | 9 (0 – 214) | 111 | 17.1 |
- 65+ | 172 | 12 (0 – 95) | <0.001b | 189 | 24.3 | 0.011c |
| Not recorded | 85 | - | | 53 | - | |

* = Mann-Whitney test, b = Kruskal-Wallis test, c = Fisher exact test

DISCUSSION
This study provides information on the demographic characteristics of blood transfusion recipients and blood component utilization patterns at four urban hospitals in Harare. Current information suggests that this is the first attempt at characterizing blood component utilization in Zimbabwe and is one of the few studies of this nature in SSA. Of the 2,400 patients sampled from the hospital blood banks, discharge records were obtainable for 1,793 patients (74.7%). The discrepancy may have arisen due to erroneous entries of key information (patients’ hospital identification numbers and names) by the hospital staff into the blood bank registers as well as the discharge summaries. It is worth noting that the blood bank registers at the four hospitals are operated manually while computerized registries are in place for capturing patient discharge summaries. It was not possible to identify patients who received transfusion using the computerized registries since that information is not captured. Whilst the retrieval rate is acceptably high, it reflects on the need for improved data capturing and record keeping within the hospitals.
Utilizing electronic registries to capture all blood bank records will significantly reduce the discrepancies observed in this study and improve any future look-back activities, which is difficult and lacks precision, at present. Reviewing and extracting transfusion data from manual registers is labour intensive, time consuming and costly, which may explain, in part, the limited number of studies undertaken in SSA.

The study sample comprised of a much younger cohort of transfusion recipients than in studies reported from developed countries where the majority of transfusion recipients were above the age of 60 years. The low median age in this study reflects the age structure of the general population in Zimbabwe, which is characterized by a young population, with only 3.6% being over the age of 65 years. The life expectancy at birth for Zimbabwe is currently estimated at 58 years, while the global population average is 70 years. Developed countries are predominantly characterized by ageing populations, due to the higher mean life expectancies. An older but comparable transfusion recipient population was reported in Brazil (49 years), whereas a much younger recipient population was described from SSA. The Zimbabwe national census statistics states that the male to female ratio for Zimbabwe is 0.95. This may, in part, explain why this cohort demonstrated more females receiving transfusion. Transfusion recipients in SSA are mostly children, in malaria endemic areas, as well as in women of childbearing age due to complications of pregnancy. Receiving a blood transfusion earlier in life may have far reaching implications for recipients, due to the presence of inherent risks principally due to transmission of infectious agents and adverse reactions associated with blood transfusion. Exposure to these risks at a younger age, for instance transfusion transmitted infections, may leave the recipient affected for much longer than we would see in a much older recipient due differences in life expectancies at the time of exposure. If a young transfusion recipient were to get infected by HIV, for example, the number of years lived with the disease would be much more than an older recipient would. On the same note if a younger transfusion recipient were to die from a transfusion related complication, the number of life years lost would be much more than what an older recipient would lose. Unlike developed countries, most transfusions in developing countries are mainly given early in life, which increases the long-term impact of blood transfusion in the recipients. The present study included fewer paediatric patients receiving blood transfusion, unlike other studies carried out in the SSA region, which have reports on many paediatric patients receiving blood transfusion for anaemia related to malaria. This can be attributed to the location of the hospitals included in this study, as the 4 hospitals are at a high altitude and serve a population, which live in a relatively free malaria area.

The distribution of ABO blood groups, among patients included in the study is consistent with that reported in the donor population in Zimbabwe. Acute shortages of blood group specific blood are often experienced in Zimbabwe making an understanding of the distribution of blood groups among transfusion recipients important. This information is necessary for planning...
bleeds as well as informing distributions of blood and blood components; subsequently ensuring that patients receive blood matching their ABO blood group and Rhesus type.

The majority of the transfusion recipients in the sample (92.6%) received red blood cell transfusions, which is higher than that reported in studies from Brazil (42.0%)\(^2\) and Korea (43.3%)\(^1\), however it is comparable to the proportions reported from developed countries (56 – 96%)\(^2,15,24\). This is a reflection of the proportions in which blood and blood components are prepared and distributed in Zimbabwe. More than 90% of all collected blood is processed into components and about 87% of the components are distributed as red blood cells\(^3\). The distribution of blood components transfused to the recipients in this study was comparable to the distribution of blood components issued to the hospitals included in the study. Currently, the use of whole blood for transfusions is very low in Zimbabwe. Whole blood is only issued for transfusion following special requests by the clinicians mainly for massive haemorrhages and exchange transfusions.

Women in this study, especially in the reproductive age group (15 – 49 years) received the majority of the blood and blood components transfused. This is consistent with findings in other countries in the SSA region where women receive more blood for pregnancy-related complications, mainly related to intra partum and postpartum haemorrhage\(^18,29,30\). Studies from developed countries, report that more men than women receive blood transfusion\(^3,8\). This may be attributed to advanced health care services and management practices during pregnancy, which reduces the associated complications requiring transfusion. An assessment of how pregnancy is managed amongst women in Zimbabwe may assist in developing more effective ways of reducing pregnancy-related complications and subsequently the need for blood transfusion. An understanding of the complications occurring in these young women together with the associated risk factors may go a long way in reducing maternal mortality, which at this point is fairly high. It might also help reduce exposure to blood transfusion and hence the associated risks.

The median number of units transfused for each component ranged from 2 for red blood cells, fresh frozen plasma, whole blood and cryoprecipitate to 4 for platelets. These are similar to findings from Brazil (3 units)\(^2\), Sweden & Denmark (4 units)\(^15\), and Germany (1-4 units)\(^2\). In this study the median number of red blood cell units transfused per patient was similar for both males and females, while it increased from 1 unit for recipients aged less than 15 years to 2 – 4 units for recipients over the age of 15 years. The median number of red blood cell units transfused also varied depending on the broad diagnostic category; a finding similar to reports in literature\(^2\).

The top five diagnoses for which patients received a blood transfusion in Zimbabwe were pregnancy and childbirth; diseases of blood and blood forming organs; neoplasms; genitourinary system; and diseases of the digestive systems. In contrast to developing countries, most studies
in literature from African countries9,18,29,30 did not classify the diagnoses according the ICD-10, making it impossible for direct comparisons with the findings in this study. Only one recent study from Namibia used the ICD-10 classification31 and reported results which are relatively comparable to our study. This study reported diagnoses in the infectious disease, pregnancy and gastrointestinal categories as accounting for 14.8\%, 11.1\% and 6.1\% of red blood cell units issued, respectively. This underscores the importance of standardizing methodologies for undertaking comparative analysis using data from related studies. However, malaria and pregnancy related conditions were cited among top indications for blood transfusion in the region18,29,30. Studies from non-African countries reported neoplasms, injury, digestive systems, and circulatory system as the main diagnoses associated with transfusion1,3,24,28. This strongly demonstrates that blood utilization patterns vary significantly within regions, practices and patient characteristics. The disease burdens, levels of organization and advancement of health care in the different settings also contribute to significant differences in blood utilization. In developed countries, for example, more resources are available and pregnant women are better cared for, from the onset of pregnancy, which reduces the likelihood of complications and requirements for blood transfusion. Currently, data on the number of pregnant women requiring blood for transfusion is not available. However, we recognize the importance of gathering such data especially in light of the high maternal mortality rate reported in Zimbabwe. Further work addressing the use of blood and blood components in obstetric care is warranted.

In this study, unspecified anaemia was the most common principal diagnosis (73.5\%) under diseases of blood and blood forming organs. This may be due to limited capacity and expertise to make specific diagnoses, thus overestimating diseases of blood and blood forming organs, while underestimating other diagnoses. This may also be attributed to poor record keeping and coding by clinicians and medical records staff. False (threatened) labour was provided as criteria for the discharge diagnoses for transfusion recipients, recorded in this study, although it is recognised that blood transfusion has no role in the management of this condition. This is an example of inaccurate, misleading and poor record keeping, and erroneous coding. A prospective study to evaluate the indications for blood transfusion will assist in classifying transfusion triggers and more precisely describing the profiles of individual recipients. This will also present an opportunity for assessing the use of and adherence to guidelines on Prescribing Blood in Zimbabwe34. “The National Blood Policy of the Republic of Zimbabwe”35 and “Standards for Blood Donation, Processing and Clinical Transfusion in Zimbabwe”36 were published and accepted for national distribution in 2010. These documents advocate the formation of Hospital Transfusion Committees, which will have the responsibility of assessing the clinical use of blood and blood components in hospitals. In addition, recommendations are made for the establishment of a haemovigilance program, which will provide surveillance on blood donation and clinical use of blood. Findings from these committees and programs will ensure a platform for determining adherence to policies, guidelines and practices in the Clinical use of Blood, leading to effective
auditing and improvements in transfusion practices, nationally. Training hospital personnel; periodic monitoring and evaluation of all activities related to clinical transfusion practice, will improve the quality of record keeping, coding and most importantly, patient management and care. This would subsequently help enhance the quantity and quality of reports of transfusion related adverse events, both previously reported as substantially low.

In-hospital mortality among blood transfusion recipients, in this study was lower than that reported in Brazil (24.0%)28, however, much higher when compared to the USA (7.6%)23. Data for patients who did not receive blood transfusion was not available hence it was not feasible to assess the association between blood transfusion and in-hospital mortality. The length of stay in hospital generally provides the level of disease severity of the admitting diagnoses and extent of complications that may arise. The length of stay in hospital for transfusion recipients would be more informative when compared with data for patients who had not received blood transfusions, as this would provide an indication of the additional burden due to transfusion. However, data for patients who did not receive blood transfusion was not available for this study and a comparison was only possible with data for transfusion recipients reported from other countries. In addition, the length of stay can serve as indicator of the cost burden of the admitting diagnoses beyond the costs incurred because of transfusion. The median length of stay in hospital was lower but comparable to the one reported for Brazil, (13 days; range, 0 – 278)28. A study by Morton et al in the USA reported a mean length of stay in hospital of 9.2 days23. Male transfusion recipients in this study remained in hospital for more days and had a higher mortality rate, at discharge, compared to women recipients. This may indicate that male recipients had more serious medical conditions, on admission, which required more time to recuperate, with a reduced chance of survival.

The study demonstrates a number of potential limitations. First, the data were obtained from four urban hospitals, which may not accurately represent the overall transfusion practices in Zimbabwe. A future prospective national study, which incorporates hospitals in all provinces at different locations, will provide a better representation of the patterns of blood utilization throughout the country. Information on the total number of patients, who received transfusions and the actual number of blood components transfused, over a specified period, was not available for this study. This information largely remains unknown due to the unavailability of electronic data systems and reliance on manually kept registers which are often not fully recorded. The number of blood components distributed was, therefore, used as a surrogate measure of consumption. These are key denominators, which are necessary in epidemiological studies and without them it is not possible, from the available data to accurately extrapolate the information nationally.
CONCLUSIONS

In this study sample, blood transfusion recipients were relatively young, which may result in prolonging of the long-term impact of blood transfusion in these recipients. A higher proportion of women received blood transfusion for conditions related to pregnancy and childbirth. Transfusion of red blood cells was predominant. Although this study presents data from a limited number of hospitals and a small proportion of patients, who received blood transfusion in Zimbabwe, the findings provide an insight into the characteristics of blood transfusion recipients and form the basis for planning more comprehensive blood utilization studies in Zimbabwe. It also highlights the probable differences in utilization patterns and practices in different settings. This warrants for more research in our settings aimed at generating evidence necessary to inform policies and practices.

ACKNOWLEDGEMENTS

The research leading to these results received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 266194. The authors wish to thank the T-REC (building research capacity for blood transfusion services in Africa) consortium for its support. The views expressed in the manuscript do not reflect the views nor do they imply endorsement of the suggestion by the funders.

The hospitals’ medical records and blood bank staff are acknowledged for the assistance in retrieving the data. The authors wish to thank the Nomusa Mukadzambo, an NBSZ Research Data Clerk, for the assistance rendered in entering data into Epi-Info.

The Authors declare no conflicts of interest.
REFERENCES