Mechanisms of Language Change

Vowel Reduction in 15th Century West Frisian

1. Introduction
 - 1.1 Central research question: mechanisms of language change
 - 1.2 Introducing the subject
 - 1.2.1 The Frisian Language
 - 1.2.2 Main relevant sources
 - 1.2.3 The Periodisation of Frisian and terminology used
 - 1.2.4 Main relevant developments in West Frisian between 1300 and 1600
 - 1.2.5 Basic views on the mechanisms of language change
 - 1.3 Methodological preliminaries
 - 1.3.1 Collecting the data
 - 1.3.2 Spelling and spelling tradition
 - 1.3.3 Phones, phonemes and graphemes
 - 1.3.4 Mapping the charter language
 - 1.3.5 Reading instruction for maps and graphs
 - 1.3.6 Original charters and copies
 - 1.3.7 Data size and statistical reliability
 - 1.3.7.1 The implications of counting features from an historical corpus
 - 1.3.7.2 The concept of ‘random’
 - 1.3.7.3 Random preservation
 - 1.3.7.4 Random selection from language forms
 - 1.3.7.5 Central concepts: variation and variance
 - 1.3.7.6 Variation in time and space: testing the time trend
 - 1.3.7.7 Testing the spatial trend
 - 1.3.7.8 Variation and variance: statistical context
 - 1.3.7.9 Variant mixture in practice
 - 1.3.7.10 Token count or charter count?
 - 1.4 The language of Unia

2. Description of processes
 - 2.1 Vowel Balance as a phonetic and phonological tendency in Germanic
 - 2.2 Degemination
 - 2.2.1 The Germanic context
 - 2.2.2 The Frisian context
 - 2.2.3 The West Frisian charters
 - 2.3 Open Syllable Lengthening
 - 2.3.1 The Germanic context
 - 2.3.2 The Frisian context
 - 2.3.3 The West Frisian charters
 - 2.3.3.1 Old Frisian short root vowels, when not followed by an unstressed /a/
 - 2.3.3.2 Old Frisian /a/ and /ɔ/ before /a/: regional diversity
 - 2.3.3.3 <VVCC>-spelling
 - 2.3.4 The reverse process: shortening before an /a/
 - 2.3.4.1 Old Frisian fôta
2.3.4.2 Monday

2.3.5 Conclusion

2.4 Reduction of unstressed vowels

2.4.1 The Germanic context

2.4.2 The Frisian context

2.4.3 The West Frisian charters

2.4.3.1 Old Frisian /a/ following a short root, followed by a consonant

2.4.3.2 Old Frisian /a/ following a long root, followed by a consonant

2.4.3.3 Summary: the development of Old Frisian /a/ in protected position

2.4.3.4 Old Frisian word-final /a/ following a short root

2.4.3.5 Old Frisian word-final /a/ following a long root

2.4.3.6 Summary: Old Frisian /a/ in word-final position

2.4.3.7 Old Frisian /ø/ in protected position

2.4.3.8 Old Frisian word-final /ø/ following a short root

2.4.3.9 Old Frisian word-final /ø/ following a long root

2.4.3.10 Summary: Old Frisian /ø/ in word-final position

2.5 Vowel Balance

2.5.1 The Frisian context

2.5.2 The West Frisian charters

2.6 Vowel Harmony

2.6.1 The Germanic context

2.6.2 The Frisian context

2.6.3 The West Frisian charters

3. Phonological Interpretation

3.1 The phonological status of Old Frisian <a>, <e> <u> and <i> in current studies

3.2 Variation in time and space and phonological interpretations

3.3 Phonetic and phonological contrast

3.4 Phonological contrast of underlying /a/ and /ø/

3.5 The nature of 'underlying' /a/

3.6 The nature of protected <i>

4. Late mediaeval Frisian as a tonal language

4.1 The heavy impact of Old Frisian /a/

4.2 Finding typological parallels

4.3 The character of tonal contrasts in Scandinavian dialects

4.4 The prominence of unstressed /a/

4.5 Contrasting tone contours and quantitative effects

4.5.1 Stress and duration

4.5.2 Regional diversity in quantitative effects

4.6 Qualitative impact of unstressed /a/

4.6.1 Vowel Harmony and Accent II

4.6.2 Accent Shift

4.7 The phonologisation of tone contours

4.8 The dialect of Wûns eradiel in the 14th and 15th century

4.9 Conclusion
5. Modelling Language Change

5.1 Modelling the reduction of /a/ and /ø/ as a phonetic process

5.1.1 Vowel ‘mass’: reduction and erosion

5.1.2 The controlling factors

5.1.3 Making a forecast

5.1.4 Checking the forecast

5.1.5 Reverse engineering: The final proof

5.1.6 Discussion

5.1.7 Concluding remarks

5.2 A bidirectional model of language change

5.2.1 Introducing the Bidirectional Table

5.2.2 Turning the table into a working algorithm

5.2.3 Verifying the model

5.2.4 A second case study: seke

6. Concluding remarks

6.1 Main developments in Frisian between 1300 and 1550

6.2 Theoretical implications

References

Appendix 1: Test data

Appendix 1.1: χ^2 test for goodness of fit

Appendix 1.2: Correlations

Appendix 2: Computing trend surfaces in historical dialect maps

Summary

Samenvatting

Index

The author

List of maps:

Map 1.1: Frisian language area around 1200 and present day.

Map 1.2: Base map for dialect maps based on mediaeval charters.

Map 1.3: Distribution of cases of plural of ‘son’.

Map 1.4: Categorised data

Map 1.5: Computing a trend surface

Map 1.6: Adjusting the trend surface’s grey tone scale.

Map 1.7: Complete map of the plural of ‘son’ in the 15th and early 16th centuries.

Map 1.8: Mapping regions and number of original charters until 1430.

Map 1.9: Balancing distortion in time and space.

Map 1.10: Preference for the vowel <o> or <e>(<i>) in the plural of ‘son’, computed from data aggregated at regional level.

Map 2.1: Open Syllable Lengthening in the Germanic languages

Map 2.2: Lengthening of /ɛ/ in Old Frisian sik ‘case’.
Map 2.3: Lengthening of Old Frisian /a/ in bitalad/bitalia. -111-
Map 2.4: Open Syllable Lengthening in words ending in unstressed -a. -111-
Map 2.5: Vowel length in the word föt 'foot' -124-
Map 2.6: Vowel length in Old Frisian móna- in the simplex móna(th) and the compound mónandei. -126-
Map 2.7: Size of the vowel inventory of unstressed syllables in modern Germanic languages. -129-
Map 2.8: Apocope in Modern West Frisian -135-
Map 2.9: Geographical variations in the reduction of protected /a/, following a short root -140-
Map 2.10: Innovation in the plural ending of seka -159-
Map 2.11: Spelling the infinitive and present plural form of Old Frisian habba with final <a> or <e> in the early 16th century. -162-
Map 2.12: Geographical spread of retained final <e> -172-
Map 2.13: Geographical spread of the word-final <e> (and occasionally <a>) in the 1st pers. sg. pres. of the verb habba 'to have' -179-
Map 2.14: Vowel balance effects between 1430 and 1460. -187-
Map 2.15: Dialectal alternation of /e/ ~ /a/ ~ /a/ (labialisation) in Old Frisian words setta 'to set', sella 'to sell' and fenne 'meadow'. -195-
Map 2.16: Vowel Harmony/ a-mutation in seka 'case (pl.)' and wesa(ne) 'to be (gerund)'. -196-

Map 4.1: Vowel Balance, Vowel Harmony and missing Open Syllable Lengthening in Scandinavian dialects -228-

List of graphs:
Graph 1.1: Graphical depiction of the data in table 1.6. -34-
Graph 1.2: Ratio of plural forms of 'son' with <e> and <i>, counted as <e>, or <o> -36-
Graph 1.3: Archaic endings in original charters and copies -42-
Graph 1.4: Linear regression line for the dative plurals of seke on -Vm -53-
Graph 1.5: The correlation between binary raw data and time. -54-
Graph 1.6: Point and computed surface values for the 'sons'-map -57-
Graph 1.7: Point and surface values for the 'sons' map based on data per region -59-
Graph 1.8: Point and surface values for the bitalad/-iane-map -60-
Graph 1.9: Correlation between the overall presence of variants in the language (expressed in variant-probability, X-axis) and the level of variant mixture in individual charters (Y-axis). -66-
Graph 1.10: Archaic spelling practices in Unia and the oldest charters -71-
Graph 2.0: Spectral diagrams of consonant length -85-
Graph 2.1: Proportion of tokens with one intervocalic consonant in words with an historical short consonant. -90-
Graph 2.2: Spelling of Old Frisian fære 'for' between 1379 and 1510. -102-
Graph 2.3: Increasing percentage of charters with <VVCC>-spelling. -118-
Graph 2.4: The rendering of Old Frisian /a/ in bitalad/bitalath/bitaliane. -140-
Graph 2.5: Different timings in the reduction of the unstressed /a/ -142-
Graph 2.6: The rendering of the Old Frisian /a/ in habbath/habbane. -144-
Graph 2.7: The decline of <an> -146-
Graph 2.8: The alternation of <sculta> and <scelta> in the three oldest sub-sections of Unia. -148-
Graph 2.9: The spelling of Old Frisian -a in the infinitive wesa 'to be'. -157-
Graph 2.10: The spelling of Old Frisian -a in protected and word-final position -157-
Graph 2.11: Nominative and accusative plural of seke. -158-
Graph 2.12: <kap(]>a as infinitive and past participle of kāpia 'to buy'. -160-
Graph 2.13: Syncope of the Old Frisian /ə/. -169-
Graph 2.14: Development of unstressed /ə/ in the word seke 'case'. -171-
Graph 2.15: The gradual loss of the word ending -e in the 1st pers. sg. pres. ind. -179-
Graph 2.16: Apocope of Old Frisian /ə/. -181-
Graph 2.17: A 3-D representation of apocope tendencies in Mainland North Frisian, Modern West Frisian and 17th century Harlingerland dialects. -184-
Graph 2.18: Vowel balance in the reduction of Old Frisian protected /a/. -186-
Graph 2.19: Reduction trends for historical long and short-rooted words with a protected (<aC>) and word-final (<a>♯) Old Frisian /a/ -188-
Graph 2.20: Vowel Balance in the reduction of final /a/. -188-
Graph 3.1: Spelling <i> in word-final and protected position. -223-
Graph 4.1: Accent realisations in Scandinavian dialects -232-
Graph 4.2: Old Frisian dorus with a prosodic tone contour. -235-
Graph 4.3: Relative shift of the pitch peak as a consequence of vowel reduction. -236-
Graph 5.1: Intensity Integral Volume of a vowel as the result of duration and intensity. -259-
Graph 5.2: Correlation between logarithm of the Intensity Integral Volume and the timing of the vowel reduction. -267-
Graph 5.3: Correlation between summation of a binary phonological score and the timing of the vowel reduction -270-
Graph 5.4: Testing the working of the model during a shorter time frame -272-
Graph 5.5: Relationship between production and perceptual reliability ratios of <habbe> as the 1st pers. sg. pres. of habba -287-
Graph 5.6: Relationship between the production and perceptual reliability ratios of <habbe> as an infinitive of habba -288-

List of tables:
Table 1.1: Period labels for Frisian -8-
Table 1.2: Example of a part of a data table from the charters -16-
Table 1.3: Example of a data table from the codex Unia -17-
Table 1.4: Interpretation of vowel length according to Latin and Middle Dutch spelling practices -24-
Table 1.5: Interpretation of consonant and vowel length according to Latin and Middle Dutch spelling practices -25-
Table 1.6: Number of attestations to the dative plural of seke -33-
Table 1.7: Case endings of seke in the 15th century. -41-
Table 1.8: Deviation of actual point values from the trend surface value for the 'sons' map. -56-
Table 1.9: The probability of finding different distributions of variant A and B -62-
Table 1.10: Variance of the corpus according to model I (one variant per author) and model II (variation within the texts). -63-
Table 1.11: Quantification of linguistic 'mixture' -65-
Table 1.12: The impact of different counting techniques on the interpretation of variation. -67-
Table 1.13: Linguistic criteria for the dating of the Unia sections -70-
Table 1.14: Relative dating of some of the older texts in the codex Unia (group A)

Table 2.1: Phonologised Vowel Balance in Old Swedish
Table 2.2: Vowel Balance effects in the retention of final vowels in Old West Germanic languages.
Table 2.3: Correspondences between pronunciation and spellings
Table 2.4: Geminated consonants and their phonological status.
Table 2.5: Spelling vowel length with monographs or digraphs
Table 2.6: Distribution of the dative plural endings \(<um>\) and \(<em/im>\) according to word structure.
Table 2.7: Old Frisian paradigm of \(skip\) 'ship'
Table 2.8: Middle Frisian paradigm of \(skip\) 'ship'
Table 2.9: Primary and secondary forms of the noun \(seke\) 'case' in the period 1480-1550
Table 2.10: Possible scenarios for Open Syllable Lengthening for Old Frisian -\(an\)
Table 2.11: Skewed distribution of the sequence \(<aell>\).
Table 2.12: Paradigm of Old Frisian \(jur\) in the archaic parts of Unia (group A)
Table 2.13: Spelling of the first element in the word 'Monday'
Table 2.14: Vowel reduction and root structure in the modern Frisian varieties.
Table 2.15: The geographical and temporal spread of the forms of 'Sunday'.
Table 2.16: Geographical stages in the development of unstressed /a/ in Old Frisian \(sunande\) 'Sunday'.
Table 2.17: Development of Old Frisian \(abbate\).
Table 2.18: The Old Frisian and Middle Frisian paradigm of the noun \(seke\) 'case' in the 14th and 15th century.
Table 2.19: The changing plural paradigm of \(seke\) in the 15th century
Table 2.20: Vowel Balance in the reduction of word-final /a/.
Table 2.21: /\(o\)/-syncope in Old Frisian noun paradigms.
Table 2.22: Writing a dative \(<e>\) in Old Frisian \(k\(\)ap\)
Table 2.23: Interference of morphology and phonology in the paradigm of \(skip\) 'ship'
Table 2.24: Vowel Harmony types in Germanic and other languages.
Table 2.25: Examples of different Vowel Harmony types in several stages of West Frisian.
Table 2.26: The distribution of \(<sack>\) according to case and ending.
Table 2.27: The distribution of \(<deg>/deg>/<dag>\) according to case and ending.
Table 3.1: Possible interpretations of spelling variation
Table 3.2: Phonemes in unstressed syllables in the 15th century.
Table 4.1: Vowel Balance in Álvdalsk and Open Syllable Lengthening in Icelandic.
Table 4.2: Vowel Harmony in Álvdalsk and Open Syllable Lengthening in Icelandic.
Table 4.3: Gradually differing types of tone contours in 15th century West Frisian.
Table 4.4: Pitch peak delay as an additional plural marker of feminine nouns.
Table 5.1: Scores for the Intensity Integral Volumes of the vowel, based on extrapolation of modern phonetic measurements.
Table 5.2: Correlation between Intensity Integral values and years of vowel reduction.
Table 5.3: Defining the average year of reduction for [θ] versus [ə] -268-
Table 5.4: Defining the average years of vowel reduction in protected versus word-final position -268-
Table 5.5: Measured and reconstructed phonetic increase ratios -269-
Table 5.6: Number of written endings in the original charters from 1390 to 1430 detailing the 1st pers. sg. present and the infinitive of habba ‘to have’ -278-
Table 5.7: Production ratios for full and reduced forms during the period 1390 to 1430 -279-
Table 5.8: Production and perception of [hab], [habː] and [haba] -280-
Table 5.9: Idealised Bidirectional Table: Stage one -281-
Table 5.10: Bidirectional table with application of noise: Stage two -281-
Table 5.11: Bidirectional table with calculation of the new production ratios -283-
Table 5.12: Bidirectional table with new intentional production figures and corresponding perception ratios. -283-
Table 5.13: New production ratios from table 5.12, now including phonetic noise. -284-
Table 5.14: New production rates after 16 runs -284-
Table 5.15: New production rates after 45 runs -285-
Table 5.16: Observed and computed prod(uction) and perc(ption reliability) ratios for <habːɛ> as the form of the 1st pers. sg. pres. of habba -287-
Table 5.17: Observed and computed prod(uction) and perc(ption reliability) ratios for <habːɛ> as a form of the infinitive habba -288-
Table 5.18: Observed (obs.) and computed (comp.) production ratios for <secke> and <seck> as a singular form of the word seke ‘case’. -291-
Table 5.19: Observed and computed production ratios for <secke> as a form of the singular or plural of seke ‘case’ in charters from the south and west. -292-
Table 5.20: Observed and computed production ratios for <secka> as a form of the singular and plural of seke ‘case’ in charters from the south and west. -292-
Table 5.21: Observed and computed production ratios for <secken> as a form of the plural of seke ‘case’ in charters from the south and west. -293-