Tridirectional Protonic Conductivity in Soft Materials**

By Riikka Mäki-Onotto, Karin de Moel, Evgeny Polushkin, Gert Alberda van Ekenstein, Gerrit ten Brinke,* and Olli Ikkala*

Hierarchical polymeric materials, with structure-within-structure morphologies, have attracted interest due to their potential as functional materials.[1] For this work, we constructed an assembly of nanoscale protonically conducting “wires” using hierarchical self-organization of polymeric supramolecules. The supramolecules consist of poly(styrene)-block-poly(4-vinyl pyridine), PS-block-P4VP, where the latter block forms a stoichiometric acid–base complex with tolue sulfonic acid (TSA), which is in turn stoichiometrically hydrogen bonded with 3-n-pentadecylyphenol (PDP), to form PS-block-P4VP(TSA)$_{1.0}$(PDP)$_{1.0}$. Scheme 1. In an effort to achieve “a monodomain”, the local structures are aligned globally by shear flow and the conductivity is enhanced. Protonic transport is macroscopically tridirectional, and largest along the “wires”, both below and above the glass transition point. The nanoscale structures thus allow tuning of the protonic conductivity and anisotropy in soft materials once the structures have been globally aligned.

Electroactive polymers range from conjugated polymers[2] to ionic and protonic conducting[3] materials. They allow conceptually new applications to be realized with a flexibility of the products, as well as new processing and design opportu-

** This work has been supported by the Finnish Academy and Technology Development Center (Finland). K. de M. gratefully acknowledges financial support from the DSM within the Computational Materials Science program of the Dutch Society for Scientific Research (NWO). Tatj Mikela is acknowledged for instructions in the electrical measurements.

[**] This work has been supported by the Finnish Academy and Technology Development Center (Finland). K. de M. gratefully acknowledges financial support from the DSM within the Computational Materials Science program of the Dutch Society for Scientific Research (NWO). Tatj Mikela is acknowledged for instructions in the electrical measurements.

nities. Self-organization involving conducting or conjugated domains has been studied earlier, based on block copolymers[4–13] and hairy rods[14–17]. More recently, undoped hairy rods[18,19] and the corresponding doped hydrocarbon-supramolecules[20] have shown attractive transport properties. For ionic conductivity, solid polymer electrolytes involving lithium salts have aroused major interest, where suppression of the host polymer’s crystallization increases the conductivity; block copolymers have been used as the suppressing agent.[21,22] More recently, the possibilities for nanoscale structures, using the self-organization of block copolymer, hairy-rod type, or liquid crystalline substances, have been reported for lithium conductors.[23–29] Finally, perfluorinated polymeric sulfonic acids are promising materials for protonic conductors,[3,30] where the conductivity is due to proton hopping along adsorbed water molecules.[31,32] Interesting results have been found for polyelectrolyte surfactant complexes, where an ohmic to non-ohmic conductivity change is observed.[33,34] Another major type of protonically conducting polymers consists of acid–base complexes, such as salts of sulfonic-acid containing polymers blended with basic polymers.[35,36] Acid–base complexes are specifically studied in this work.

In protonic conductors, the potential of self-organization within the polymeric host has not been discussed extensively, although self-organization might allow confinement of the moieties involved in the proton hopping (and also water molecules) in tailored and stable nanoscale channels. Previously, we reported that polymeric supramolecules (and supramolecules in general[37]) could be formed by hydrogen-bonding of alkyl phenols (such as PDP) to P4VP, which itself was complexed with methane sulfonic acid.[38] Such supramolecules self-organize to form lamellar structures. If the P4VP chains are further covalently connected to PS blocks, an additional length scale is introduced, to render lamellar-within-lamellar structures.[38] In such materials, a sequence of phase transitions as a function of temperature allows protonic conductivity to be switched.

We report here on the construction of protonically conducting acid–base complexes to form self-organized polydomain nanostructures, manipulation of the structures by shear flow[39–43] to aim for a monodomain structure, and show that the macroscopically aligned nanostructure with fewer domain boundaries, namely less defects, is directly reflected in the transport of protons. The final result leads both to a considerably improved conductivity and to tridirectionality of the macroscopic conductivity anisotropy.

An acid–base complex is formed between P4VP and a stoichiometric amount of TSA. This choice was motivated by two factors. Firstly, the acid–base complexes between several basic polymers, including P4VP, with polymeric sulfonic acids allow relatively high protonic conductivity both in the hydrated and dehydrated state.[35,36] In this work, we preferred oligomeric sulfonic acids, as we expected more perfect structures in this case. Secondly, TSA was selected because its aromatic nature allows enhanced thermal stability to be obtained. A stoichiometric amount of PDP versus sulfonate groups was taken to form the hydrogen-bonded comb-shaped complex (Scheme 1). The P4VP was included also as one block of a diblock copolymer PS-block-P4VP with weight fraction of PS f_{PS} = 0.88. Assuming that TSA and PDP are nominally fully complexed to form the supramolecules PS-block-P4VP(TSA)$_{1.0}$(PDP)$_{1.0}$ (Scheme 1), the weight fraction of the PS block is f_{PS} = 0.62. This value suggests self-organized alternating lamellae of PS and P4VP(TSA)$_{1.0}$(PDP)$_{1.0}$ (and related materials[38,44]). Our previous studies[38,44] suggest that within the P4VP(TSA)$_{1.0}$(PDP)$_{1.0}$ layers, there will be another “inner” level of self-organization, which consists of alternating layers of non-polar pentadecyl chains and polymeric salt moieties. The expected scheme of self-organization is shown in Figure 1B. That such structures really were achieved will be demonstrated later by small-angle X-ray scattering (SAXS), see Figure 2.
The self-organized nanoscale structures are local structures and additional driving forces, such as a shear flow field, electric field, or surfaces have to be invoked to achieve macroscopic alignment when striving towards monodomains. Figure 2 shows the two-dimensional SAXS intensity patterns of a flow-oriented sample in the tangential, normal, and radial directions. Scattering peaks are observed at \(q_1 = 0.02 \) Å\(^{-1}\) and \(2q_1 \), which indicates a lamellar self-organization between PS and P4VP(TSA)\(_{1.0}\)(PDP)\(_{1.0}\) with a periodicity of 320 Å. The lamellae are relatively well aligned along the shearing planes, see Figure 2. SAXS also shows another peak at \(q_2 = 0.15 \) Å\(^{-1}\). The second-order peak is beyond the range shown in Figure 2. However, from the corresponding homopolymeric supramolecules P4VP(TSA)\(_{1.0}\)–(PDP)\(_{1.0}\) (see Fig. 3), the structure can be assigned to a lamellar order with a long period of 41 Å, as shown in Figure 1B. Importantly, this structure, corresponding to the orientation of the protonically conducting nanowires, becomes globally relatively well oriented after the imposed flow, as shown in Figure 2.

The conductivities were investigated using the simple Arrhenius and empirical Vogel–Tamman–Fulcher (VTF) equations, which are widely used for crystalline and amorphous polymer electrolytes. The inset of Figure 4 shows the conductivity of the pristine P4VP(TSA)\(_{1.0}\), which is poor due to crystallinity. For the non-aligned PS-block-P4VP(TSA)\(_{1.0}\)(PDP)\(_{1.0}\) (case 4), the protonic conductivity is improved and isotropic due to the polydomain structure with different local orientations of the conducting nanowires. In the aligned case (cases 1–3), the protonically conducting nanowires have common overall orientations due to the nearly monodomain structure. The conductivity is increased further due to fewer domain boundaries and the nanoscale conductivity anisotropy is manifestly present.

\[
\sigma(T) = A \exp(-E_a/kT) \tag{1}
\]

with activation energy \(E_a \approx 1.8 \) eV. Figure 4 shows that the conductivity of PS-block-P4VP(TSA)\(_{1.0}\)(PDP)\(_{1.0}\) is drastically higher due to plasticization, even without alignment. The empirical VTF equation

\[
\sigma(T) = \frac{A}{\sqrt{T}} \exp \left[-\frac{E_a}{k(T - T_0)} \right] \tag{2}
\]

describes its conductivity, with a pseudoactivation energy \(E_a \approx 0.10 \) eV and a characteristic temperature \(T_0 = -74 \) °C, which is typically related to the glass transition temperature. In the nonaligned case, the conductivity is isotropic in all three directions with \(E_a \approx 0.15 \) eV as the local anisotropies have been averaged out due to the polydomain structure. Interestingly, Figure 4 further shows that upon macroscopic alignment the conductivities in the three directions still increase, possibly due to enhancement of organization of nanostructure and reduction of domain boundaries. The conductivity is anisotropic and highest along the macroscopically aligned protonically conducting nanoscale wires. Lower values are observed for the direction across the relatively thin (order of magnitude 20 Å) insulating pentadecyl layers. The lowest values, however, are observed in the direction across the relatively thick PS layers (order of magnitude 150 Å). This is in good agreement with the structural information from SAXS experiments (Fig. 4).

In order to analyze the proton-hopping transport in more detail, it is helpful first to consider the homopolymeric supramolecules P4VP(TSA)\(_{1.0}\)(PDP)\(_{1.0}\). This material was also oriented by shear flow and characterized using SAXS, see Figure 3. Peaks at \(q_2 = 0.15 \) Å\(^{-1}\) and \(2q_2 \) indicate lamellar order with a periodicity of 41 Å, see also Figure 1A. Figure 3 further shows that the conducting lamellae are well oriented along the shearing planes. Also in this case, the conductivity is drastically improved in comparison with the pristine
P4VP(TSA)$_{1.0}$ at 80°C the conductivity along the two lamellar directions was 8×10^{-4} Scm$^{-1}$ and that across the insulating pentadecyl layers was slightly lower (3×10^{-4} Scm$^{-1}$). The conduction activation energies for P4VP(TSA)$_{1.0}$ (PDP)$_{1.0}$ and PS-block-P4VP(TSA)$_{1.0}$(PDP)$_{1.0}$ are comparable. Finally, the hopping rates ω_p were evaluated by applying the scaling law: $\omega_p = (\omega_0 + A\omega)^n$, ω_0 to the higher frequency data, see the insets of Figures 5A and 5B. The hopping rates of the mobile species were evaluated using $\omega_p = [\sigma(0)/\sigma]^{1/n}$, see Figure 5A. For P4VP(TSA)$_{1.0}$(PDP)$_{1.0}$, the hopping rates along the protonically conducting nanoscale layers are an order of magnitude larger than across the pentadecyl insulating layer, see Figure 5A. In agreement, in PS-block-P4VP(TSA)$_{1.0}$ (PDP)$_{1.0}$, the hopping rate is decreased by roughly an order of magnitude across the thin pentadecyl layers and still another order of magnitude across the thicker PS layers, see Figure 5B. Therefore, the local tridirectional anisotropy of the nanostructures is directly reflected in the macroscopic conductivity.

In conclusion, specific acid–base supramolecules were constructed and the presence of attractive and repulsive interactions renders local nanoscale conducting domains due to self-organization. The number of domain boundaries can be reduced by macroscopic alignment of the local nanostructures, which in this work has been accomplished by an imposed shear flow; plasticized materials with improved protonic conduction were obtained. The nanostructures allow tuning of the protonic transport, as two-dimensional nanostructures provide conductivity anisotropy in two dimensions and three-dimensional nanostructures achieve the same in three dimensions. Thus, the molecular level anisotropy is reflected in the macroscopic conductivity behavior in a controlled way.

Experimental

Materials and Sample Preparation: P4VP was obtained from Polyscience Inc. with $M_w = 50000$ g mol$^{-1}$. PS-block-P4VP (PS 40000 g mol$^{-1}$, P4VP 5600 g mol$^{-1}$), was obtained from Polyscience Inc. with polydispersity 1.09. PDP was purchased from Aldrich (purity 98%) and was twice recrystallized with petroleum ether and dried at 40°C in vacuum for four days before use. TSA was obtained from Acros (purity 98%). A lamellar-within-lamellar structure was obtained by dissolving PS-block-P4VP in analytical grade dimethylformamide (DMF) at 60°C. A stoichiometric amount (with respect to the number of pyridine groups) of PDP and TSA was added to the dilute solution (1–2 wt.-%). At the end, DMF was evaporated and the sample was vacuum dried (80°C, 0.04 mbar, 24 h) and stored in a desiccator. Details of sample preparation, including the preparation of the sample pills for rheological tests, have been described elsewhere [41].

Dynamic Rheology: Oscillatory shear flow using a dynamic rheometer (TA Instruments R1000N) with cone and plate geometry was used (diameter 20 mm, cone angle 4°). Firstly the samples were heated to 130°C to obtain a homogeneous sample with good contact with both the rotor and the stator of the rheometer. Oscillatory shear flow parameters were chosen in agreement with previous work on PS-block-P4VP(PDP)$_{1.0}$ [41,53]. After imposing shear flow, the samples were cooled below 0°C with liquid nitrogen and removed from the rheometer.

Small-Angle X-ray Scattering: The resulting structure was inspected with SAXS (Bruker NanoSTAR), a ceramic fine-focus X-ray tube is used in a point focus mode. The tube is powered with a generator (Kristalloflex K780) at 35 kV and 40 mA. The primary beam is collimated with cross-coupled Gobel mirrors and a pinhole of 0.1 mm in diameter providing a Cu Kα radiation beam ($\lambda = 1.54 \AA$) with a full-width half-maximum value of about 0.2 mm at the sample position. The sample–detector distance was varied from 0.64 to 1.08 m. A position-sensitive area detector (Siemens-AXS Hi-Star) allowed the scattering intensity to be recorded in the q range 0.08–3 nm$^{-1}$.

Conductivity Measurements: The conductivities were studied with a Hewlett-Packard HP4192LF Impedance Analyzer at frequencies of 10$^{-1}$–107 Hz. The P4VP(TSA)$_{1.0}$ and PS-block-P4VP(TSA)$_{1.0}$(PDP)$_{1.0}$ were vacuum dried before measurement (60°C, 0.04 mbar, 24 h) and afterwards stored in a desiccator. In the measurement setup, the sample (typical size about 1x1x2 mm3) was placed between two platinum plates. The sample was surrounded with Teflon in order to isolate the material from atmospheric humidity and reduce development of defects while measuring above the material’s T_g.

The complex impedance plot (resistance versus reactance) showed typical semicircular behavior. The conductivity of the sample was determined based on the intermediate frequency plateau, near 1 kHz, where the electrode interface polarization does not play a major role, for examples see the inset of Figure 5A. For the temperature sweep, a modified instrument (Linkam TMS91) was used with heating and cooling rate of 1 K min$^{-1}$ first from 60 to 115°C and another cycle to 140°C for PS-block-P4VP(TSA)$_{1.0}$(PDP)$_{1.0}$.
Energy Transfer in Mixtures of Water-Soluble Oligomers: Effect of Charge, Aggregation, and Surfactant Complexation**

By Martin Stork, Brent S. Gaylord, Alan J. Heeger, and Guillermo C. Bazan*

Emissive conjugated polymers are under intense investigation for their potential role in chemical[1] and biological[2] sensors. Intrachain and interchain energy transfer processes[3] allow excitations to sample multiple environments.[4] If one of these sites is in close proximity to a fluorescent quencher molecule, the result is an enhancement of the quenching event. If removal of the quencher molecule from the vicinity of the conjugated polymer can be coupled to the presence of a target analyte, one obtains the platform for optical sensing. It is difficult to isolate fluorophores to exhibit similar amplification.

Water-soluble conjugated polymers[5] are of particular interest in biosensor schemes.[6] To compensate for the hydrophobic nature of the backbone, these polymers contain charged groups for solubility in aqueous media. The dependence of interchain aggregation and the coil conformation show behavior typical of polyelectrolytes. Indeed, many of the lessons learned from the complexation of surfactants to polyelectrolytes[7] have been used to tune the optical properties of polymers such as poly(2,5-methoxy-phenylallylenevinylene) (MPS–PPV).[8] The relationship between the charge of the quencher molecule and the efficiency of quenching has also been studied for a polymer similar to MPS–PPV.[9]

[*] Prof. G. C. Bazan, Dr. M. Stork, B. S. Gaylord, Prof. A. J. Heeger
[1] Prof. G. C. Bazan, Dr. M. Stork, B. S. Gaylord, Prof. A. J. Heeger
[2] Prof. G. C. Bazan, Dr. M. Stork, B. S. Gaylord, Prof. A. J. Heeger
[3] Prof. G. C. Bazan, Dr. M. Stork, B. S. Gaylord, Prof. A. J. Heeger

