Spin-Peierls transition in NaV$_2$O$_5$ in high magnetic fields

S. G. Bompadre, Arthur F. Hebard, and Valeri N. Kotov
Department of Physics, Box 118440, University of Florida, Gainesville, Florida 32611-8440

Donavan Hall
National High Magnetic Field Laboratory, Tallahassee, Florida 32310

G. Maris, J. Baas, and T. T. M. Palstra
Solid State Chemistry Laboratory, Materials Science Centre, University of Groningen, 9747 AG Groningen, The Netherlands

We investigate the magnetic field dependence of the spin-Peierls transition in NaV$_2$O$_5$ in the field range 16–30 T. The transition temperature exhibits a very weak variation with the field, suggesting an unusual mechanism for the formation of the spin-Peierls state. We argue that a charge ordering transition accompanied by singlet formation is consistent with our observations.
both electron-lattice and electron-electron interactions are included. The most probable scenario at present seems to be the ‘‘zigzag’’ order proposed in Ref. 12 where the charge density (i.e., the sites $V^{4.5\pm0.4}$ with deviation $\delta$ from the average valence) is distributed in a zigzag fashion along the ladder direction. As emphasized in Ref. 12, the Coulomb repulsion in combination with the electron-lattice interaction can drive such a transition, while the formation of a spin singlet ground state ‘‘follows’’ the charge order. Charge modulation is consistent with the analysis of the observed magnetic excitation spectra, $^{18}$ Raman spectra, $^{19}$ as well as the anomalies in the thermal conductivity $^{20}$ and the dielectric constant $^{21}$ at $T_c$.

The present work attempts to gain further insight into the nature of the spin-Peierls transition in NaV$_2$O$_5$ by addressing the magnetic field dependence of the transition temperature in very high fields. Previous studies in fields up to 5.5 T, $^5$ have found behavior consistent with the theoretical predictions and similar to the previously known spin-Peierls compounds. $^2$ However, subsequent measurements in higher fields, up to 14 T (Ref. 22) and 16 T $^{23}$ have found much weaker field dependence. These experiments were based on a determination of $T_c$ from the changes in the elastic constants $^{22}$ and the specific heat, $^{22}$ unlike the measurement in Ref. 5 which determined $T_c$ from the drop in the magnetization.

In this work we have measured the magnetization of two NaV$_2$O$_5$ single crystals in magnetic fields from 16 to 30 T. The crystals were grown by high temperature solution growth from a vanadate mixture flux. The masses of the samples investigated were 1.9 and 3.1 mg, respectively, and they had irregular parallelepiped shapes with smooth, faceted faces. The single crystals were characterized with an Enraf-Nonius CAD4 single crystal diffractometer using Mo radiation. The results of the structure refinement were the same as reported earlier in Ref. 7. Magnetization was measured using a standard metal foil cantilever beam magnetometer. The ‘‘T’’ shaped flexible cantilever beam was made from a 7.62 $\mu$m thick heat treated MP35N alloy. The dimensions of the ‘‘T’’ were approximately 8 mm on a side. The gap between the ‘‘T’’ and the parallel fixed reference electrode was approximately 800 $\mu$m. The sample was mounted using a small amount of vacuum grease. In the presence of a dc magnetic field the interaction of the magnetic moment of the sample with the field results in a force and/or torque, deflecting the beam and changing the capacitance between electrodes. A capacitance bridge was used to monitor the changes in force of 3 nN could be resolved.

Cantilever displacement can arise from either a torque or a force on a sample with a magnetic moment. When the sample is at field center, where the field gradient is zero, then torque ($\propto m \times B$) will dominate. Strictly speaking, if the sample is isotropic and there are no shape factors, then there is no torque on the cantilever for fields applied along the direction of displacement (perpendicular to the sample). On the other hand, when the sample is raised (or lowered) away from field center, the force term ($F = m \frac{dB}{dz} \propto BDz$) will usually dominate, although torques can still be present. Figure 1 shows temperature sweeps taken for the 1.9 mg sample at the three indicated fields in the legend. The cantilever was located in a position where the field gradient was maximum. The maximum field at this position (24 T) is 80% of the field center maximum (30 T). The change in capacitance, $\Delta C$, which is proportional to the change in magnetization, is calculated at each field by subtracting the background trace (cantilever alone) from the sample trace (sample+cantilever). This quantity is divided by $B^2$ and plotted as the ordinate in Fig. 1. As seen from the figure, the data scale reasonably well for the three different fields, confirming the $B^2$ dependence expected from both torque and force contributions. To accentuate the small shift in the transition temperature, we plot in the inset the derivative of $\Delta C/B^2$ with respect to the temperature. From the position of the peaks we can determine the field-dependent transition temperature.

To measure $T_c$ at the maximum field of 30 T, the sample was placed at field center (sensitive to the torque only) and the data collected and analyzed as described above. A similar scaling with $B^2$ was observed. Figure 2 shows the derivative of $\Delta C$ with respect to temperature at field center. Plotted in this way, the shift in $T_c$ can be clearly seen. Data similar to those plotted in Figs. 1 and 2 were obtained for a second sample with mass 3.1 mg, and for reversed fields. In all cases the shifts in $T_c$ were equal to or less than the shifts shown in Fig. 2. In Fig. 2 (inset) we also show the results of magnetization measurements at low fields using a commercial SQUID magnetometer (MPMS7). The singlet formation at $T_c$ is clearly observable, but no shift of $T_c$ can be observed within measurement accuracy in fields up to 5 T, in agreement with previous work. $^4$
FIG. 2. Derivative of the unscaled capacitance readings (proportional to magnetization) with respect to temperature for the sample shown in Fig. 1 located at field center. Inset shows low field SQUID magnetization measurements.

In Fig. 3 we present our high field data for the variation of $T_c$ in terms of $\Delta T_c/T_c(0) = T_c(H)/T_c(0) - 1$ and the square of the scaled magnetic field $h = g \mu_B H/2kT_c(0)$. This scaling is expected in spin-Peierls systems, and for small fields $h \ll 1$, the relative variation of $T_c$ should be quadratic:

$$\Delta T_c/T_c(0) = -a h^2.$$  \hspace{1cm}
(1)

The data of Fig. 2 follow this dependence quite well, and we estimate $a_{exp} = 0.072(8)$. The value $T_c(0)$ was not measured directly but was estimated from an extrapolation to zero field of the quadratic dependence of $T_c$ vs $H$ to be $T_c(0) = 34.2$ K. This value is close to published values and to the $T_c(0)$ measured by us using SQUID magnetometer measurements of the magnetization of a 40 mg polycrystalline sample. The combination of our high field data and the lower field data of previous measurements gives the variation of $T_c$ over a large range of magnetic field and shows a very weak dependence. In contrast, the "conventional" spin-Peierls compound CuGeO$_2$ exhibits a much stronger field dependence with $a = 0.39$, in good agreement with the theory. The theoretical values of $a_{SP}$ predicted for the spin-Peierls transition are $a_{SP} = 0.44$ or 0.36, depending on the way interaction effects are taken into account. The first, larger number corresponds to the Hartree approximation for the interactions between the Jordan-Wigner fermions, representing the localized spins. The value 0.36 is obtained by exact treatment of the correlation effects, which is possible in the Luttinger liquid framework in one dimension. In both cases the characteristic scaling $H/T_c(0)$ which appears in Eq. (1) is due to the commensurate nature of the dimerized phase. For large fields, corresponding to a reduction of $T_c$ by a factor of $T_c/T_c(0) = 0.77$, a transition into an incommensurate phase is expected to take place. Such a transition is less sensitive to magnetic field and has been observed in a variety of spin-Peierls materials. In NaV$_2$O$_5$, however, a transition into such a modulated phase does not seem to take place, since even in the highest field (30 T), $T_c(30 T)/T_c(0) = 0.97$, which is very far from the expected incommensurate boundary. Notice that even in a field as high as 30 T the scaled ratio $h = 0.59$ is quite small due to the large $T_c(0)$.

We now discuss the possible sources for the difference between the measured value $a_{exp}$ and the theoretically predicted one $a_{SP} = 0.36 \pm 5a_{exp}$ for spin-Peierls systems. In addition to this discrepancy, any theory of NaV$_2$O$_5$ should also be able to explain the large value of the ratio $2\Delta/T_c(0) = 6.3$ [Ref. 8] (Ref. 8 being the spin gap), where a mean-field value of 3.52 might be expected.

As discussed in the introduction, a transition into a charge ordered state in a 1/4-filled system is consistent with a number of recent experiments. Although it is not clear whether the charge density wave (CDW) precedes or forms simultaneously with the magnetically dimerized spin-Peierls state, it seems certain that the physics of charge ordering must be taken into account. Recent numerical work has shown that CDW and spin-Peierls order can coexist in quasi-one-dimensional 1/4-filled electronic systems. If we assume that the CDW formation is the driving force behind the opening of a spin gap, as argued in Ref. 12, then the "charge" part of the transition will be mainly responsible for the $T_c(H)$ dependence. In a system of noninteracting electrons, undergoing a Peierls transition into a (commensurate) CDW state, the decrease of $T_c$ for small magnetic field (coupled to the electron spin via a Zeeman term) is also described by Eq. (1), but with $a_{CDW} \approx 0.21$. Two effects, orbital coupling and electron-electron interactions, could further modify this result. Orbital effects are known to be present when nesting is imperfect, and generally compete with the Pauli terms, producing a flatter dependence of $T_c$ on $H$, i.e., a further reduction of $a_{CDW}$. However, spin-orbit interactions lead to anisotropic variation of $T_c$ with respect to the magnetic field direction. In NaV$_2$O$_5$, this variation has been found to be extremely weak, which is also confirmed in this work, and consequently the orbital effects can be ruled out as a source of the weak $T_c(H)$ dependence. On the other hand, electron-electron interaction effects do not reflect anisotropies and are important in the
formation and stabilization of a CDW state. In general, the stability of the CDW depends on the strength of the electron-phonon coupling (which drives the transition) and on the on-site and nearest-neighbor Coulomb correlations.

To demonstrate this latter point concerning strong correlation effects, we consider the simplified model of a Hubbard chain with an on-site repulsion \( U \). We treat the phonons adiabatically, as in Ref. 29, but take into account the electron-electron interaction following Ref. 28, i.e., calculate the polarization bubble exactly for the Luttinger liquid. In this case, it is known that \( T_c(H = 0) \) increases with respect to its value at \( U = 0 \). For finite magnetic field we find, at \( U = 2t \) (where \( t \) is the bandwidth), that the coefficient \( \alpha \) drops to \( \alpha_{CDW} = 0.15 \), i.e., below the noninteraction value of 0.21. This is not surprising and in fact is quite similar to the difference dependence sets in, and the Peierls instability is effectively enhanced. Thus the interaction effects, being naturally more important for the CDW formation (as compared to the spin-Peierls case), can produce a weaker \( T_c(H) \) dependence. A more realistic calculation based on a Hamiltonian appropriate for NaV\(_2\)O\(_5\) would be very desirable.

The orbital and interaction effects discussed above are, strictly speaking, valid only for an isolated chain. It was assumed that interchain interactions are sufficiently strong to suppress the fluctuation effects, typically important in one-dimensional systems. The fluctuations are known to reduce \( T_c(0) \) below the mean-field value and cause a specific heat jump at the transition \( \Delta C_p \) several times the mean-field one. The large observed ratio \( \Delta T_c(0) \) (twice the mean-field), in combination with a \( \Delta C_p \) about ten times the mean-field value suggests that fluctuations indeed could be important in NaV\(_2\)O\(_5\). At the same time, one should have in mind that, due to the specific structure of NaV\(_2\)O\(_5\), transverse interchain interactions are expected to play a crucial role in the stabilization of the ordered phase, in particular the formation of the spin gap and doubling of the period in the \((a,b)\) plane.

The vanadium displacements are nearly absent along the ladder direction \((b)\) axis, and longest perpendicular to the ladder direction both along the \(a\) and \(c\) axis. Thus it is not clear whether fluctuation effects have to be necessarily invoked to explain the large \( \Delta T_c(0) \) ratio in this material as is traditionally done, or whether the large \( \Delta T_c(0) \) ratio is intimately related to the anomalously weak variation of \( T_c \) with field reported in this work.

We are grateful to A. Dorsey, S. Hershfield, D. Maslov, C. Biagini, and S. Arnason for many stimulating discussions, and M. Meisel for a critical reading of the manuscript. We are also appreciative of experimental advice given by V. Shvarts and by the Users Support Group at the National High Magnetic Field Laboratory (NHMFL). G.M. acknowledges the support of the Netherlands Foundation for Fundamental Research on Matter with financial aid from NWO. A.F.H. and S.G.B. were supported by the NSF funded In-House Research Program of the NHMFL in Tallahassee and V.N.K. was supported by NSF Grant DMR9357474.

---

10 J.L. de Boer et al. (unpublished).
24 The g factor varies very weakly in the three directions (Refs. 5 and 23), and we take \( g = 2 \) in Fig. 3 within the experimental resolution.