Reassembly of peroxisomes in *Hansenula polymorpha* pex3 cells on reintroduction of Pex3p involves the nuclear envelope

Gert-Jan Haan, Richard J. S. Baerends, Arjen M. Krikken, Marleen Otzen, Marten Veenhuis & Ida J. van der Klei

Eukaryotic Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Haren, the Netherlands

Correspondence: Ida J. van der Klei, Eukaryotic Microbiology, University of Groningen, PO Box 14, 9750AA Haren, the Netherlands. Tel.: +31 50 3632179; fax: +31 50 3638280; e-mail: i.j.van.der.klei@rug.nl

Received 14 July 2005; revised 27 September 2005; accepted 6 October 2005.

First published online 10 January 2006.

doi:10.1111/j.1567-1364.2006.00037.x

Editor: Lex Scheffers

Keywords
nuclear envelope; peroxisome biogenesis; Pex3p; yeast; green fluorescent protein (GFP).

Abstract

The reassembly of peroxisomes in *Hansenula polymorpha* pex3 cells on reintroduction of Pex3p was examined. Using a Pex3-green fluorescent protein (Pex3-GFP) fusion protein, expressed under the control of an inducible promoter, it was observed that, initially on induction of Pex3-GFP synthesis, GFP fluorescence was localized to the endoplasmic reticulum and the nuclear envelope. Subsequently, a single organelle developed per cell that increased in size and multiplied by division. At these stages, GFP fluorescence was confined to peroxisomes. Fractionation experiments on homogenates of pex3 cells, in which the endoplasmic reticulum and nuclear envelope were marked with GFP, identified a small amount of GFP in peroxisomes present in the initial stage of peroxisome reassembly. Our data suggest a crucial role for the endoplasmic reticulum/nuclear envelope in peroxisome reintroduction on complementation of pex3 cells by the PEX3 gene.

Introduction

Peroxisomes are multifunctional organelles, which play an important role in cellular metabolism (for a review, see Purdue & Lazarow, 2001). Several peroxisome-associated disorders have been identified in humans, some of which are lethal (e.g. Zellweger syndrome; reviewed in Weller et al., 2003; Wanders, 2004). In yeasts, peroxisomes are generally involved in the primary metabolism of specific carbon and/or nitrogen sources used for growth.

We have isolated peroxisome-deficient (pex) mutants of the methylotrophic yeast *Hansenula polymorpha* and cloned the corresponding genes. One of these, *PEX3*, encodes a 52 kDa protein essential for peroxisome biogenesis and maintenance (Baerends et al., 1996). The importance of Pex3p in peroxisome biogenesis is underlined by the absence of detectable peroxisomal membrane remnants (ghosts) in a pex3 deletion strain, a characteristic that is shared only by the human pex16 and *Saccharomyces cerevisiae* pex19 cells (Götte et al., 1998; Honsho et al., 1998; Hettema et al., 2000). All other pex mutants identified thus far contain ghosts.

Although ghosts are missing in the *H. polymorpha* pex3 mutant, reintroduction and expression of the *PEX3* gene results in the rapid reintroduction of peroxisomes (Baerends et al., 1996). The origin of the membrane of the newly formed organelles is unknown. The classical model of peroxisome biogenesis involves the growth and multiplication of existing organelles by fission, which implies that new peroxisomes develop from pre-existing ones (Lazarow & Fujiki, 1985). However, recent data support the possibility of alternative pathways for peroxisome biogenesis (for a review, see Titorenko & Rachubinski, 2001; Tabak et al., 2003b).

In this paper, we show that the reintroduction of peroxisomes in *H. polymorpha* pex3 cells on expression of the *PEX3* gene proceeds rapidly and involves the endoplasmic reticulum (ER).

Materials and methods

Microorganisms and growth conditions

Hansenula polymorpha strains were grown in batch cultures at 37°C on mineral medium (van Dijken et al., 1976) supplemented with 0.5% carbon source (i.e. glucose or methanol) in the presence of 0.25% ammonium sulphate or ethylamine as nitrogen source. For growth on agar plates, all media were supplemented with 1.5% granulated agar. *Escherichia coli* DH5α (supE44ΔlacU169 (φ80lacZΔM15) hsdR17 recA1 endA1 gyrA96 thi-1 relA1) (Sambrook et al., 1989) was used for recombinant DNA procedures and was...
grown on Luria–Bertani (LB) medium supplemented with the appropriate antibiotics.

DNA procedures

Transformation by electroporation of *H. polymorpha* strains and site-specific integration of a single copy of plasmid DNA in the genomic alcohol oxidase (*AOX*), amine oxidase (*AMO*) or *PEX14* locus were performed as described previously (Faber et al., 1994a, b; Otzen et al., 2004; Wanders, 2004). Southern blotting was performed using the ECL direct nucleic acid labelling and detection system, as described by the manufacturer (Amersham Pharmacia Biotech, Buckinghamshire, UK). Recombinant DNA manipulations were performed essentially as described previously (Sambrook et al., 1989). Biochemicals were obtained from Roche (Almere, the Netherlands). pHIPZ5-BiP[1–30]GFP was constructed as follows. The 1.8 kb SmaI/SpeI fragment of plasmid pFEM76 (Faber et al., 2002) was cloned into the 4.3 kb SalI/Klenow-treated SphI fragment of pHIPZ6-Nia. Expression plasmids pHIPX4-PEX3 (Kiel et al., 1995) and pHIPX4-PEX3[1–50]GFP (pFEM75) (Baerends et al., 2000) have been detailed previously.

Strain constructions

The *H. polymorpha* pex3::*PAOX*PEX3::*PAMO* BiP[1–30]GFP strain, which can be used to independently express the PEX3 and BiP[1–30]GFP open reading frames in a pex3 mutant background, was constructed as follows. Nar1-linearized pZ5–BiP[1–30]GFP was used to transform *H. polymorpha* pex3::*PAOX*PEX3 (Baerends et al., 1997).

Hansenula polymorpha pex3::*PAOX*PEX3.GFP was constructed by integrating SphI-linearized pFEM152 (*PAOX*PEX3.GFP) (Faber et al., 2001) into the genome of *H. polymorpha* RBG1 strain (leu1.1Δpex3) (Baerends et al., 2000).

The *H. polymorpha* pex3::*PAOX*DsRed.SKL::*PAMO* PEX3.GFP strain, which can be used to independently express the PEX3.GFP and DsRed.SKL open reading frames in a pex3 mutant background, was constructed as follows. Initially, full-length PEX3 fused to eGFP was cloned behind the *PAMO* by cloning a 3.15 kb Asp718–NcoI fragment of pFEM152 (Faber et al., 2001) into a 5.5 kb Asp718–NcoI fragment of pHIPX5-PEX3 (Kiel et al., 1995), resulting in pHOR45. To obtain a stable strain expressing PEX3-GFP behind the *PAMO*, *H. polymorpha* RBG1 (leu1.1Δpex3) cells were transformed with Aocl-linearized pHOR45. A correct single copy integrant was selected by Southern blot analysis for further analysis, and designated RBG43. Finally, SphI-linearized pHIPZ4-DsRed-T1.SKL (Monastyrska et al., 2005) was used to transform *H. polymorpha* RBG43.

The *H. polymorpha* pex3::*PEX14*::PEX14.GFP strain, in which the endogenous *PEX14* gene was replaced by *PEX14.GFP*, was constructed by integrating SalI-linearized pHIPX10-PEX14eGFPΔPst1 (Otzen et al., 2004) into the genome of *H. polymorpha* RBG1 strain (leu1.1 pex3) (Baerends et al., 1996).

Biochemical methods

Cell fractionation experiments (Van der Klei et al., 1998) and the determination of cytochrome c oxidase activities (Douma et al., 1985) were determined as described previously.

Protein concentrations were determined using the BioRad protein assay kit (BioRad GmbH, Munich, Germany), with bovine serum albumin as standard. Sodium dodecyl-sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blotting were carried out by established procedures. Blots were decorated using the chromogenic (nitro-blue tetrazolium-5-bromo-4-chloroindol-3-yl phosphate, NBT-BCIP) or chemiluminescent peroxidase (POD) western blotting kit (Roche), with specific polyclonal rabbit antibodies.

Microscopic techniques

Whole cells were fixed and prepared for electron microscopy and immunocytochemistry as described previously (Waterham et al., 1994). Immunolabelling was performed on ultrathin sections of unincryl-embedded cells, using specific polyclonal antibodies against various peroxisomal proteins or green fluorescent protein (GFP), and gold-conjugated goat antirabbit or goat antimouse antibodies (Waterham et al., 1994). Fluorescence images were obtained using a Zeiss Axiophot fluorescence microscope or a Zeiss LSM510 CLSM (Zeiss Netherlands b.v., Weesp, the Netherlands), as described previously (Otzen et al., 2004).

Results

Reintroduction of Pex3p leads to rapid formation of peroxisomes in pex3 cells

The kinetics of peroxisome reassembly in pex3 cells of *Hansenula polymorpha* on reintroduction of Pex3p or a Pex3-GFP fusion protein were studied by fluorescence and electron microscopic methods. To this end, pex3 strains were constructed that contained a single copy of either the PEX3 gene or a PEX3-GFP fusion under control of the inducible AOX promoter integrated in the genome (pex3::*PAOX*PEX3 and pex3::*PAOX*PEX3-GFP, respectively) (Baerends et al., 1997). Growth experiments indicated that cells of both transformants had regained the capacity to grow on methanol (data not shown). We analysed the initial stages of adaptation of the cells from glucose (in which *PAMO* is fully repressed) to methanol, which induced *PAOX* and thus Pex3p
or Pex3p-GFP synthesis. Fluorescence microscopy showed that pex3::PAOXPEX3-GFP cells grown on glucose displayed no fluorescence, as expected (not shown). However, within 1 h of cultivation on methanol, in each cell, a single strong fluorescent spot appeared (see Fig. 1). These spots increased in size with time and subsequently multiplied (not shown) to result in the normal wild-type (WT) phenotype of cells containing several spots. These observations were confirmed by electron microscopic data (Fig. 2), which revealed that, in all cells, a small peroxisome could be observed within 30 min after the shift to methanol. Remarkably, the cells generally contained only one peroxisome that increased in size during further cultivation. This organelle was invariably observed in close proximity to the nuclear envelope. Immunocytochemistry showed that these structures contained the peroxisomal membrane protein Pex3p (not shown), as well as the matrix protein AOX (Fig. 2), and therefore indeed represented developing peroxisomes. These analyses also demonstrated that peroxisome reintroduction in both pex3::PAOXPEX3 and pex3::PAOXPEX3-GFP cells proceeded in an identical manner (data not shown).

Reintroduction of Pex3p in pex3 cells that artificially produce ER-resident GFP leads to reassembly of peroxisomes that contain GFP

To enable microscopic and biochemical distinction of the ER/nuclear envelope from other subcellular compartments, we constructed a hybrid gene encoding a fusion protein of the N-terminal 30 amino acids from the Saccharomyces cerevisiae ER-located Hsp70 protein BiP and GFP. We have shown previously that this portion of BiP is sufficient to sort reporter proteins to the ER of H. polymorpha (van der Heide et al., 2002). The constructed strain, pex3::PAOXPEX3::PAMO BiP[1–30]GFP, was grown in glucose–ethylamine-containing medium. Under these conditions, the AOX promoter (PAOX) is fully repressed (by glucose), whereas the AMO promoter (PAMO) is induced by the amine nitrogen source. Fluorescence microscopy, using cells from the mid-exponential growth phase on glucose–ethylamine, showed distinct fluorescence of the nuclear envelope and the peripheral ER (Fig. 3). Subsequently, this strain was transferred to conditions that induced peroxisome biogenesis. To this end, H. polymorpha pex3::PAOXPEX3::PAMO BiP[1–30]GFP cells were grown to the mid-exponential logarithmic growth phase on glucose–ethylamine until OD663 = 1.5, harvested by centrifugation and subsequently resuspended for 30 min in fresh glucose–ammonium sulphate medium at 37°C, conditions that were previously established to fully deplete PAMO-induced mRNAs (Waterham et al., 1993). Next, the cells were transferred to fresh methanol–ammonium sulphate-containing medium to induce the WT PEX3 gene, thereby reintroducing full-length Pex3p under conditions that fully repress BiP[1–30]GFP synthesis (by ammonium sulphate).

Western blot analysis of crude extracts prepared from these cells showed that, during adaptation of the cells to the new methanol environment, both AOX and Pex3p were induced, as expected (Fig. 4). Two hours after the shift of

Fig. 1. Fluorescence microscopy of re-introduction of Pex3p-green fluorescent protein (Pex3p-GFP) in pex3 cells. A single fluorescent spot is observed 1 h after the onset of expression of PEX3-GFP induced by methanol. Bar represents 1 μm.

Fig. 2. Electron microscopic analysis of re-introduction of Pex3p in pex3 cells. (a) Morphology of strain pex3::PAOXPEX3 grown on glucose. Peroxisomes are lacking completely. (b) pex3::PAOXPEX3 cells 1 h after shift to methanol-containing medium. A single small peroxisome is present in the vicinity of the nuclear envelope. (c) Immunocytochemical analysis of pex3::PAOXPEX3 cells after 1 h of growth in methanol-containing medium using anti-alcohol oxidase antibodies. The matrix of the newly formed peroxisomes is specifically labelled. The arrow indicates peroxisome, double-headed arrow indicates nuclear envelope. M, mitochondrion; N, nucleus; P, peroxisome. Bars represent 0.5 μm.
cells to methanol, distinct levels of both proteins could be readily detected. As expected, the level of GFP, which was present at high levels at the time of the shift \((T = 0 \text{ h})\), gradually decreased during prolonged growth of cells on methanol, and decreased to approximately 10% of the initial level after 12 h of incubation.

Immunocytochemistry revealed that, 1 h after the shift of cells to methanol, peroxisomes were present which contained Pex3p and the peroxisomal matrix protein AOX (see Fig. 2). Significant labelling of peroxisomes using GFP-specific antibodies was not observed in immunocytochemical experiments, indicating that GFP levels were below the detection limit of this method (not shown). Also, fluorescence microscopy could not resolve the initially developing peroxisomes in the strong fluorescence background of the nuclear envelope/ER-borne GFP.

Subcellular fractionation of lysates of \(\text{pex3::PAOXPEX3::PAMO BiP}_{1-30}\text{GFP}\) cells prior to Pex3p reintroduction \((T = 0 \text{ h})\) revealed that Pex3p and AOX protein were absent (only shown for AOX) in all gradient fractions, as expected (Fig. 5). \(\text{BiP}_{(1-30)}\text{GFP}\) largely sedimented to a protein peak in fractions 12–14, similar to the ER membrane marker Sec63p. The cytosolic marker protein aldehyde dehydrogenase (ADH) was detected at the top of the gradient. The activity of cytochrome c oxidase, the mitochondrial marker enzyme, was mainly present in fractions 11–16 (46–40% sucrose). Eight hours after incubation of cells in methanol–ammonium sulphate-containing medium \((T = 8 \text{ h})\), Pex3p and AOX were readily detectable in the sucrose density gradient. Both proteins were detected throughout a large

Fig. 3. Fluorescence microscopy of \(\text{pex3::PAOXPEX3::PAMO BiP}_{1-30}\text{GFP}\). Fluorescence can be observed in the nuclear membrane, as well as in the peripheral endoplasmic reticulum (ER) (indicated by arrows). Some cells also show fluorescence inside the vacuole.

Fig. 4. Protein levels in \(\text{pex3::PAOXPEX3::PAMO BiP}_{1-30}\text{GFP}\) cells during adaptation on methanol–ammonium sulphate medium. Crude extracts of cells harvested at indicated time points (indicated in hours) were subjected to sodium dodecylsulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and western blotting. AOX, alcohol oxidase; GFP, BiP\(_{1-30}\text{GFP}\).

Fig. 5. Biochemical analysis of reintroduction of Pex3p in \(\text{pex3}\) cells. Sucrose density gradients of \(\text{Hansenula polymorpha pex3::PAOXPEX3::PAMO BiP}_{1-30}\text{GFP}\) cells grown on glucose–ethylamine \((a, b)\) or pregrown on glucose–ethylamine and shifted for 8 h to methanol–ammonium sulphate medium \((c, d)\). \((a, c)\) +, sucrose percentage; \(\nabla\), protein \((\text{mg mL}^{-1})\); •, cytochrome c oxidase \((\text{U mL}^{-1})\). \((b, d)\) western blots are shown for alcohol oxidase (AOX), \(\text{BiP}_{1-30}\text{GFP}\) (GFP), alcohol dehydrogenase (ADH), Sec63p and Pex3p, as indicated.
part of the gradient (fractions 4–20 for AOX, 5–15 for Pex3p), in conjunction with a minor peak of both proteins at fraction 5 (55% sucrose). This position (fraction 5) corresponded to the expected position of WT *H. polymorpha* peroxisomes (Van der Klei et al., 1998). This observation suggests that minor portions of the newly synthesized peroxisomal proteins AOX and Pex3p reside in structures that display biochemical characteristics of normal WT peroxisomes. However, significant quantities of both proteins were found in fractions with lower density, possibly indicating the presence of these proteins in structures of lower density or leakage (in the case of AOX). The bulk of BiP*$_{[1–30]}$*GFP colocalized with Sec63p, as was the case at $T=0$ h. However, a minor but significant portion of GFP was detected in higher density fractions (fractions 5–10), colocalizing with AOX and Pex3p, but not with the ER marker protein Sec63p. This was not due to the presence of contaminating cell membrane vesicles or (fragmented) protoplasts that carry cytoplasmic components, as indicated by the distribution of the cytosolic marker protein ADH. Therefore, these data suggest that a minor amount of BiP*$_{[1–30]}$*GFP was present in peroxisomes. The controls ADH and cytochrome c oxidase sedimented in patterns that were largely superimposable on those found at $T=0$ h.

The results of the fluorescence and electron microscopic analyses described above indicated that only a very small fraction of BiP*$_{[1–30]}$*GFP could be detected in the newly formed peroxisomes. Taken together, our data were consistent with the view that the nuclear envelope could act as a template for the reintroduction of peroxisomes in *pex3*::*P$_{AOX}$*PEX3::*P$_{AMO}$* BiP*$_{[1–30]}$*GFP cells.

Fluorescence microscopy

Reintroduction of peroxisomes was also followed by fluorescence microscopy. To this end, a strain was constructed that produced Pex3p-GFP under the control of the methyllamine-inducible AMO promoter (*P$_{AMO}$*), as well as the red fluorescent protein DsRed containing the PTS1 sequence-SKL at its C-terminus (DsRed-SKL) under control of the methanol-inducible *P$_{AOX}$*. Cells of this strain were precultivated at conditions that fully repressed the synthesis of both Pex3p-GFP and DsRed-SKL (glucose–ammonium sulphate), followed by the induction of both proteins by shifting the cells to methanol–methylamine-containing medium. In cells grown on glucose–ammonium sulphate to the mid-exponential growth phase, GFP and DsRed fluorescence were not detectable (not shown). After a shift of such cells to methanol–methylamine, the initial GFP fluorescence was localized to distinct structures that, on the basis of their morphology, were likely to represent the nucleus and connecting ER (Fig. 6a). DsRed fluorescence was not detectable at this growth stage (Fig. 6a). After prolonged cultivation, a distinct GFP fluorescent spot developed, and weak DsRed fluorescence appeared in the cytosol (Fig. 6b). This spot developed in a round structure that also accumulated DsRed (Fig. 6c), and therefore was considered to represent a developing peroxisome. Inside this peroxisome, GFP...
fluorescence was enhanced at the periphery of the organelle, which is normally seen in peroxisomes of methanol-grown *H. polymorpha* cells as a result of the presence of a large AOX crystalloid inside peroxisomes. After further cultivation, all cytosolic red fluorescence accumulated in this structure (Fig. 6d), after which the organelle multiplied (Fig. 6e). Typically, as observed previously (Haan et al., 2002), a portion of Pex3p-GFP accumulated in a focal spot at the peroxisomal membrane (Fig. 6c–e). Taken together, these data were consistent with the view that the new peroxisomes in these cells derived from a subcellular membrane system, most likely the nucleus/ER system.

Hansenula polymorpha pex3cells lack peroxisomal membrane structures

Data obtained in *Pichia pastoris* (Hazra et al., 2002) have suggested that *P. pastoris* pex3 cells contain peroxisomal membrane remnants. Despite various biochemical and immunocytochemical studies, however, we were invariably unable to detect such structures in *H. polymorpha* pex3 cells (Barends et al., 1996, 1997; Van der Klei et al., 1998). We re-examined this issue using fluorescence microscopy to analyse the localization of two peroxisomal membrane proteins, Pex10p and Pex14p. To this end, we analysed the localization of Pex10-cyan fluorescent protein (CFP) and Pex14-GFP fusion proteins (both expressed under the control of their own promoters). However, Pex10-CFP fluorescence was below the limit of detection. Moreover, we were unable to detect any Pex10-CFP by Western blot analysis, whereas in WT controls this protein was easily detectable (data not shown). In the case of Pex14-GFP, we observed strong spots of GFP fluorescence that localized to the mitochondria (Fig. 7). This observation indicated that the normal target membrane for Pex14p-GFP was absent in *H. polymorpha* pex3 cells. Similar findings (undetectable Pex10p levels and mislocalization of Pex14-GFP to the mitochondria) have been reported previously for *H. polymorpha* pex19 cells, which are devoid of peroxisomal membrane remnants (Otzen et al., 2004). Hence, our data suggested that, as in *H. polymorpha* pex19 cells, in *H. polymorpha* pex3 cells peroxisomal membrane remnants were absent.

Discussion

In this paper, we have provided evidence for a role of the ER/nuclear envelope in the reformation of peroxisomes in *Hansenula polymorpha* pex3 cells. pex3 cells lack morphologically detectable peroxisomal membrane remnants (‘ghosts’) and thus, hypothetically, a peroxisomal membrane template for peroxisome reassembly (Baerends et al., 1996, 1997; Van der Klei et al., 1998) (this study). However, reformation of WT Pex3p in the mutant led to the rapid reappearance of one small peroxisome per cell. GFP, accumulated in the ER lumen, including the nuclear envelope, of pex3 cells appeared to be present in the initial peroxisomes of the complemented cells, suggesting that these membranes served as a template for the formation of the organelles.

Previous work in our laboratory has already suggested a role of the nuclear envelope in one specific case of peroxisome biogenesis. We showed that the synthesis of the first 50 amino acids of Pex3p (Pex3[1–50]) resulted in the formation of vesicles that arose from the nuclear envelope (Faber et al., 2002). These vesicles had the potential to develop into normal peroxisomes on reintroduction of full-length Pex3p. This implies that mature Pex3p—eventually in conjunction with other peroxisomal membrane proteins – can accumulate all the components necessary to develop the vesicles into normal peroxisomes, providing indirect evidence that the nuclear envelope can generate the template for peroxisome reformation. Our present data link and extend these findings to a more direct line of evidence that the ER/nuclear envelope can indeed serve as a template to allow peroxisome rescue in *H. polymorpha* pex3 cells.

In *Yarrowia lipolytica*, several observations have been made that point to an ER–peroxisome assembly relationship. In this organism, N-linked core glycosylation of the peroxins Pex2p and Pex16p was observed. This finding suggested that these peroxins had been in contact with the ER lumen during some stage of their presence in the cell (Titorenko & Rachubinski, 1998). Further evidence for a role of the ER in peroxisome biogenesis in this organism came from the observation that the *Y. lipolytica* mutants sec238 and *srp54*, which are specifically affected in the general secretion route via the ER, were also disturbed in peroxisome biogenesis. Moreover, they accumulated Pex2p and Pex16p in the ER (Titorenko & Rachubinski, 1998). In the same paper, these authors provided evidence for a multistep process for peroxisome biogenesis, involving the development of five peroxisomal subforms with different characteristics that developed into mature peroxisomes.

Other data have been presented that point to a role of the ER in peroxisome biogenesis (reviewed in Tabak et al., 2003a). Moreover, using immunocytochemistry and tomography, a continuity was demonstrated between maturing peroxisomes and specialized regions of the ER in mouse

Fig. 7. Localization of Pex14p-green fluorescent protein (Pex14p-GFP) in *Hansenula polymorpha* pex3 cells. Analysis by confocal laser scanning microscopy indicated that green fluorescence, due to HpPex14-GFP, was present as a distinct spot on the mitochondria (stained in red by Mitotracker).
dendritic cells (Geuze et al., 2003). However, several other studies failed to provide evidence for a role of the ER in peroxisome biogenesis (South et al., 2000, 2001; Voorn-Brouwer et al., 2001; Tabak et al., 2003a).

The rescue of peroxisomes in pex mutant cells that lack ghosts (e.g. pex3, pex16 and pex19 mutants) has been observed in several organisms (Purdue & Lazarow, 2001). Moreover, it has been suggested that the ER plays a role in this process (Bascorn et al., 2003). However, the absence of peroxisomal membranes in Pichia pastoris strains lacking Pex3p (Hazra et al., 2002) or Pex19p (Snyder et al., 1999) has been questioned. Moreover, in Y. lipolytica pex19 cells, structures were observed that resembled normal peroxisomes (Lambkin & Rachubinski, 2001). In H. polymorpha pex19 cells, peroxisomes and peroxisomal membrane remnants were fully absent. However, on overproduction of Pex3p in such cells, peroxisomal structures were formed (Otzen et al., 2004). The latter observation strongly suggests that these structures were not formed from pre-existing peroxisomes or ghosts, but from another membrane source (e.g. the ER) (Otzen et al., 2004).

The origin of the newly synthesized peroxisomes has not been revealed in detail in any of these studies (Tabak et al., 2003a). In their careful study on the rescue of peroxisomes in a cell line from a Zellweger syndrome patient (PBD061) defective in PEX16, on introduction of the PEX16 expression vector, South & Gould (1999) observed the first new peroxisomal structures in a time span of 3 h. On the basis of their data, these workers proposed a model for peroxisome rescue in complemented PBD061 cells. This model predicted that Pex16p created nascent peroxisomes from a yet unidentified structure, termed the preperoxisome. The nascent peroxisomes subsequently developed into normal peroxisomes by the import of other peroxisomal membrane proteins, also including the proliferation factor Pex11p. This mechanism in normally induced WT cells. In such cells, peroxisome proliferation proceeds via the fission of existing organelles. The rescue mechanism most likely becomes operative in cells that have lost the organelle, for instance as a result of a failure in inheritance.

While this paper was under review, restoration of peroxisome formation was also shown to involve the ER in Saccharomyces cerevisiae pex3 mutants on expression of PEX3 (Hoepfner et al., 2005; Kragt et al., 2005; Tam et al., 2005).

Acknowledgements

We thank Dr R. Schekman for his generous gift of antibodies against Saccharomyces cerevisiae Sec63p. Dr W.-H. Kunau is gratefully acknowledged for providing the antibodies against green fluorescent protein and S. cerevisiae aldehyde dehydrogenase. We thank Drs I. Keizer-Gunnink and A.M. Kram for their expert technical support. GJH, AMK and MO are supported by the Earth and Life Sciences Foundation, which is subsidized by the Netherlands Organization for Scientific Research (NWO). RJSB was supported by Grant BIO4-08-0543 from the European Community.

References

Baerends RJ, Rasmussen SW, Hilbrands RE, van der Heide M, Faber KN, Reuvekamp PT, Kiel JAKW, Cregg JM, van der Klei
Reassembly of peroxisomes in Hansenula polymorpha pex3

