Respiratory chain supercomplexes in the plant mitochondrial membrane

Natalya V. Dudkina1,*, Jesco Heinemeyer2,*, Stephanie Sunderhaus2, Egbert J. Boekema1 and Hans-Peter Braun2

1Department of Biophysical Chemistry, GBB, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
2Institute for Plant Genetics, Faculty of Natural Sciences, Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany

The intricate, heavily folded inner membrane of mitochondria houses the respiratory chain complexes. These complexes, together with the ATP synthase complex, are responsible for energy production, which is stored as ATP. The structure of the individual membrane-bound protein components has been well characterized. In particular, the use of Blue-native polyacrylamide gel electrophoresis has been instrumental in recent years in providing evidence that these components are organized into supercomplexes. Single particle electron microscopy studies have enabled a structural characterization of some of the mitochondrial supercomplexes. This has provided the opportunity to define a functional role for these supercomplexes for the first time, in particular for the dimeric ATP synthase complex, which appears to be responsible for the folding of the inner mitochondrial membrane.

Structure and function of the mitochondrial OXPHOS system

The mitochondrial oxidative phosphorylation (OXPHOS) system consists of four multi-subunit oxidoreductases involved in respiratory electron transport (Complexes I to IV) and the ATP synthase complex (Complex V). Except for Complex I, a considerable amount of information is known about the structure of the OXPHOS complexes of fungi and animals based on X-ray crystallography and biochemical investigations.

Complex I

Complex I (NADH–ubiquinone oxidoreductase) is the major entrance point of electrons to the respiratory chain [1]. It has a molecular mass of ~1 MDa and is composed of two elongated domains that together form an L-like structure. One domain is localized within the inner mitochondrial membrane and is involved in proton translocation; the other domain protrudes out of the plain of the membrane into the mitochondrial matrix and is responsible for oxidation of NADH. Approximately 40 different subunits are known to form part of Complex I [2,3].

Complex II

Complex II (succinate–ubiquinone oxidoreductase) is a second entrance point of electrons to the respiratory chain [4,5]. It is the smallest complex of the OXPHOS system and consists of two soluble matrix-exposed subunits that are attached to two hydrophobic membrane proteins.

Complex III

Complex III (ubiquinol–cytochrome c oxidoreductase) represents the central component of the OXPHOS system [6,7]. It is a functional dimer of ~500 kDa composed of 2×10 or 11 distinct subunits. About a quarter of the complex is embedded within the inner mitochondrial membrane, a small part protrudes out into the mitochondrial intermembrane space and a larger part protrudes into the mitochondrial matrix.

Complex IV

Complex IV (cytochrome c–O2 oxidoreductase) represents the terminal complex of the respiratory chain [8,9]:12 to 13 subunits together form a monomer of ~220 kDa. It can exist as a monomer or a dimer within the membrane.

Complex V

The ATP synthase complex (Complex V) is a bipartite structure composed of a so-called F1 headpiece within the mitochondrial matrix, which is anchored to a hydrophobic F0-part within the inner mitochondrial membrane [10]. The two parts of Complex V are linked by a central stalk that rotates during catalysis and by a peripheral stalk that prevents rotation of the entire headpiece. The rotation of subunits within the two subcomplexes of Complex V is caused by the proton gradient across the inner mitochondrial membrane and forms the basis for phosphorylation of ADP. Complex V comprises ~15 distinct subunits, which partially are present in multiple copies within the holo-enzyme. The total molecular mass of Complex V is between 500 and 600 kDa.

Structure and function of the mitochondrial OXPHOS system in plants

The general structure and function of the plant OXPHOS complexes is considered to be closely related to those of the heterotrophic eukaryotes, although no particular structures have been analysed by X-ray crystallography. All five complexes include similar numbers of subunits, most
of which are homologous to components of the corresponding yeast or bovine protein complexes [11]. However, some plant-specific subunits occur, which in some cases introduce side-activities into OXPHOS complexes. In all organisms, the acyl carrier protein of the mitochondrial fatty acid biosynthesis pathway forms part of Complex I [12,13]. In addition, in plants, L-galactono-1,4-lactone dehydrogenase (which represents the terminal enzyme of the mitochondrial ascorbic acid biosynthesis pathway) and carbonic anhydrases form part of Complex I [14,15]. Complex III includes the two subunits of the mitochondrial processing peptidase in plants, which is responsible for removing mitochondrial pre-sequences from nuclear-encoded mitochondrial proteins after transport has been completed [16]. Also, complexes II and IV include some additional plant-specific subunits that probably integrate extra functions into these OXPHOS complexes [17,18].

The functional context of mitochondrial respiration differs in autotrophic and heterotrophic organisms. In plants, mitochondria and plastids are involved in the redox balance of the cell [19]. Furthermore, mitochondria indirectly participate in photosynthesis through the ‘photorespiration’ pathway. Probably to accomplish these extra functions, additional oxidoreductases form part of the OXPHOS system in plants, such as the ‘alternative oxidase’ and three to four different ‘rotenone-insensitive NAD(P)H dehydrogenases’ [20–23]. All these enzymes participate in electron transport without contributing to the proton gradient across the inner mitochondrial membrane and therefore appear to catalyse wasteful reactions that are nevertheless considered to be of great importance under certain physiological conditions. Structurally, these enzymes do not form part of multi-enzyme complexes but instead exist as monomers or homo-dimers [22]. Unlike the classical OXPHOS enzyme complexes, which include nuclear and mitochondrially encoded subunits, these enzymes are all encoded by the nuclear genome.

Fluid state versus Solid state model of the OXPHOS system

The supramolecular organization of the OXPHOS system in mitochondria is a matter of debate. According to the ‘Fluid-state’ model, the five OXPHOS complexes independently diffuse within the inner mitochondrial membrane; electron transfer from one complex to another is based on random collisions between the complexes. By contrast, the ‘Solid-state’ model postulates stable interactions between the OXPHOS complexes under *in vivo* conditions. Experimental results supporting the Fluid-state model are based on the finding that all OXPHOS complexes can be biochemically purified in an enzymatically active form, and on diffusion rate measurements of OXPHOS complexes reconstituted into phospholipid vesicles [reviewed in 24]). The Solid-state model is supported by results obtained by reconstitution experiments [25,26], flux control experiments [27,28], and results concerning mutants with respect to subunits of individual OXPHOS complexes that specifically affect other OXPHOS complexes [29–31]. A useful strategy to investigate the supramolecular association of the OXPHOS proteins is based on mild solubilization of mitochondrial membranes using non-ionic detergents and separation of the solubilized protein complexes using Blue-native polyacrylamide gel electrophoresis (BN-PAGE) [32,33]. Using this strategy, defined supercomplexes could be described that have a I+III2, III2+IV1–2, I+III2+IV1–4 and V2 composition (Figure 1 and Table 1). Here we highlight recent studies of the plant OXPHOS mitochondrial system that used BN-PAGE and other biochemical procedures to investigate the supramolecular association of the OXPHOS proteins. Some of the respiratory supercomplexes discovered are extremely stable in plants, enabling their low-resolution structure to be defined by single particle electron microscopy (EM) for the first time [15,34,35].

Methodological strategies for characterizing mitochondrial supercomplexes in plants

BN-PAGE has proved to be a powerful procedure for characterizing mitochondrial supercomplexes. The method is based on solubilizing mitochondrial membranes with non-ionic detergents and incubating the generated protein fractions with Coomassie-blue, which introduces negative charge into proteins without denaturing them [36]. Protein complexes and supercomplexes are subsequently resolved on polyacrylamide gradient gels. Upon combining with SDS-PAGE as the second gel dimension, complexes are dissected into their subunits, which form vertical rows of spots on the resulting 2D gels (Figure 1a,c–h). Alternatively, first dimension BN-PAGE can be combined with a second BN-PAGE (BN/BN-PAGE), which is carried out in the presence of a different detergent. For example, protein solubilization and the first gel dimension are carried out in the presence of digitonin and the second gel dimension in the presence of dodecylmalto-side. All supercomplexes specifically destabilized by the conditions of the second gel dimension are (partially) dissected into protein complexes, which migrate beneath the diagonal line on the resulting 2D gels (Figure 1b). Both 2D gel systems enable the supramolecular association of proteins of the OXPHOS system and of other systems (e.g., the photosystem-supercomplexes of chloroplasts) to be investigated [37].

Supercomplexes of sufficient stability can be structurally analysed by single particle EM. For this approach, isolated mitochondria are treated with non-ionic detergents and supercomplexes are resolved by sucrose gradient ultracentrifugation. Selected fractions can be directly used for EM analyses and image processing [15,34,35].

Complex I and the I+III2 supercomplex of plants

Until recently, our knowledge of the composition and configuration of plant Complex I was limited. The location of most the ~40 subunits within the L-shaped complex is still not known. However, some useful conclusions can be drawn from a comparison of the low-resolution structure of a series of Complex I molecules of animals and fungi obtained by EM (http://www.scripps.edu/biochem/CI/research.html). A structural scheme of the *Arabidopsis* Complex I is presented in Figure 2. The complex...
Table 1. OXPHOS supercomplexes in mitochondria identified by Blue-native PAGEa

<table>
<thead>
<tr>
<th>Organism</th>
<th>V_2</th>
<th>$I + II$</th>
<th>$II + IV_{1-2}$</th>
<th>$II + IV_{1-4}$</th>
<th>Refs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arabidopsis</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>[17,49]</td>
</tr>
<tr>
<td>Barley</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>[17]</td>
</tr>
<tr>
<td>Bean</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>[17]</td>
</tr>
<tr>
<td>Potato</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>[17,44]</td>
</tr>
<tr>
<td>Spinach</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>[48]</td>
</tr>
<tr>
<td>Tobacco</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>[66]</td>
</tr>
<tr>
<td>Pea</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>[67]</td>
</tr>
<tr>
<td>Sunflower</td>
<td>(X)</td>
<td></td>
<td>(X)</td>
<td></td>
<td>[68]</td>
</tr>
<tr>
<td>Asparagus</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlamydomonas</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>[55]</td>
</tr>
<tr>
<td>Polytomella</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>[35,56]</td>
</tr>
<tr>
<td>Saccharomyces cerevisiae</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>[32,33]</td>
</tr>
<tr>
<td>Podospora anserina</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>[69]</td>
</tr>
<tr>
<td>Bovine</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>[33]</td>
</tr>
<tr>
<td>Homo sapiens</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>[70]</td>
</tr>
</tbody>
</table>

*Empty cells in the table indicate that, to date, the corresponding supercomplexes have not been discovered, which could be due to low stability or their absence under in vivo conditions.

bReference including the first report on the occurrence of a specific supercomplex.

cIn potato two forms of $I + II$ supercomplexes occur, which have $I + III_2$ and $I_2 + III_2$ composition.

dIn sunflower, a complex IV containing supercomplex of >1000 kDa was described, which probably has $I + III_2 + IV_{1-4}$ composition.

eThe respiratory chain of Saccharomyces cerevisiae does not include complex I, therefore complex-I-containing supercomplexes are absent.

fIn Podospora anserina, Complex I containing supercomplexes were reported to have I_2 and I_2III_2 composition.

gS. Sunderhaus, unpublished. See Figure 1d.
The carbonic anhydrase domain appears to be firmly attached to the membrane arm of Complex I because no particles without this protrusion were observed; this is probably achieved by membrane-inserted helical anchors close to the C-termini of the proteins. Possibly these carbonic anhydrases of Complex I are involved in an inner-cellular carbon transport system in higher plants that resembles the carbon concentration system of cyanobacteria [43]. Carbonic anhydrases also form part of the cyanobacterial Complex I. However, they do not form a similar second luminal-exposed domain upon EM analysis (A.A. Arteni et al., unpublished). An unknown third additional mass is present at the tip of the hydrophobic arm in *Polytomella* [15] but not in *Arabidopsis*.

On BN gels, Complex I forms part of a 1.5 MDa supercomplex that includes dimeric Complex III (Figure 1). This supercomplex is composed of all visible subunits of Complex I and Complex III and consequently is assumed to comprise at least 50 different types of polypeptides [17]. Using BN/BN-PAGE, the supercomplex becomes partially dissected into monomeric Complex I and dimeric Complex III (Figure 1b). No additional protein components form part of the I + III2 supercomplex. In contrast to yeast and bovine mitochondria [33], the I + III2 supercomplex of plant mitochondria is one of the dominant structures on BN gels, indicating high abundance or stability. More than 50% of Complex I is present within the I + III2 supercomplex in potato and barley and ~50% of Complex I forms part of the supercomplex in *Arabidopsis, Asparagus*, bean and *Polytomella* [17,35,44]. Based on flux control experiments and BN-PAGE, supercomplexes and corresponding monomeric OXPHOS complexes are assumed to co-exist in mitochondria under *in vivo* conditions [28,44] and possibly assemble and disassemble in a dynamic manner. In potato, tissue-specific differences concerning supercomplex occurrence were observed [44]. Because of its high stability, the I + III2 supercomplex of *Arabidopsis* was the first OXPHOS supercomplex to be characterized by single particle EM [34].

Computer modelling using the three-dimensional structure of bovine Complex III (reviewed in [5]) and the single particle EM structure of *Neurospora* and bovine Complex I [45,46] revealed that the interaction between both structures is within the membrane and that the matrix exposed hydrophilic parts of both complexes are not in close contact (Figure 2) [34]. Complex III is laterally attached to the membrane arm of Complex I, which is slightly bent around Complex III. The high stability of the I + III2 supercomplex in plants might be due to the length of the membrane arm of Complex I, which is extended compared with the corresponding arm in animals and fungi (~230 Å versus ~190 Å). The physiological implications of the interaction between Complexes I and III2 are not yet fully understood. The bovine I + III2 supercomplex was shown to have higher NADH:cytochrome c oxidoreductase activity than the corresponding separate complexes under *in vitro* conditions [33]. This increase in activity can probably not be explained by direct ubiquinone channeling because the ubiquinone reduction site is believed to be located at the membrane arm close to its...
interface with the matrix arm [1]. However, the physiology of the membrane arm of Complex I is largely unknown. It is speculated to include further proton (and other) translocation activities that might interact with the physiological processes of Complex III.

The III$_2$+IV and I+III$_2$+IV$_{1–2}$ supercomplexes of plants

Analyses of bovine mitochondria by BN-PAGE revealed abundant supercomplexes consisting of the OXPHOS complexes I, III$_2$ and IV [33]. Up to four copies of Complex IV are present within these supercomplexes. Corresponding particles were given the name ‘respirasomes’ because they can autonomously carry out respiration in the presence of the mobile electron carriers ubiquinone and cytochrome c. In mitochondria of *Saccharomyces cerevisiae*, which do not contain Complex I, stable III$_2$+IV$_{1–2}$ supercomplexes were described by BN-PAGE [33,47]. These particles were also identified in bovine mitochondria but are of lower concentration [33]. In plants, supercomplexes containing Complexes III and IV are of low abundance on BN gels (Figure 1). Respirasomes were described for potato and spinach and a III$_2$+IV supercomplex for potato, spinach and *Asparagus* [44,48]. Hardly any Complex IV-containing supercomplexes were observed in *Arabidopsis* upon analysis by BN-PAGE and, to date, no single particle EM structures have been published of Complex IV-containing supercomplexes from any organism.

Dimeric ATP synthase supercomplex of plants

A dimeric ATP synthase supercomplex was first discovered for yeast mitochondria by BN/SDS-PAGE [32]. The supercomplex includes dimer-specific subunits termed e, g and k. More recently, a dimeric ATP synthase supercomplex was described for *Arabidopsis* on the basis of BN-PAGE [17,49]. This supercomplex is most stable upon solubilization of mitochondrial membranes using low Triton X-100 concentrations, which was previously reported for yeast [32]. However, compared with the I+III$_2$ supercomplex, dimeric ATP synthase is a fragile structure in higher plants. Disruption of the nuclear gene encoding the yeast subunit g led to the absence of dimers, indicating an important role for this protein in supercomplex assembly or stability. Ultrastructural studies on this yeast mutant also indicated that cristae were absent, which led to the suggestion that dimeric ATP synthase is essential for folding the inner mitochondrial membrane into cristae [50,51]. A similar prevention of cristae formation was described upon *in vivo* crosslinking of F$_1$ headpieces in yeast [52]. Previously, oligomeric ATP synthase complexes were identified by rapid-freeze deep-etch EM. These oligomers were proposed to be essential for folding the inner mitochondrial membrane [53,54]. However, until recently, precise information about the role of dimerizing ATP synthase was lacking.

A stable ATP synthase supercomplex was found in the algae *Chlamydomonas* and *Polytomella* [55,56] (Figure 1). This supercomplex could be purified by sucrose gradient ultracentrifugation and studied by single particle EM [35]. In these dimers, the monomers make an angle of $\sim 70^{\circ}$ with their long axes (Figure 3b). The kink in the lower part of the dimer causes a remarkable separation of the F$_1$ headpieces by more than 50 Å, preventing any direct contact between them. Hence, interaction of the monomers can only be realized by dimer-specific subunits within the membrane plane (Figure 3a, red). Interaction is probably also facilitated by the two peripheral stalks, which are facing each other. The ATP synthase supercomplex from *Polytomella* includes an additional 60 kDa protein termed ‘Mitochondrial ATP synthase associated protein’ or MASAP, which is supposed to be responsible for the high stability of the dimers. The MASAP subunit is probably part of the large mass in the upper half of the dimer (Figure 3a, red) close to the OSCP subunit (Figure 3a, purple), which links the b subunit of the peripheral stalk (Figure 3a, blue) to the F$_1$ headpiece. Such a large additional mass is lacking from analysed dimers of the yeast *S. cerevisiae* (Figure 3c). The yeast dimers were purified and analysed in a similar way to those of *Polytomella* (N.V. Dudkina et al., unpublished) but show some distinct differences. Because of the lack of a large additional dimer-specific mass outside the membrane, tentatively assigned to the MASAP subunit, the peripheral stalks are thinner or hardly visible. However, the membrane-embedded F$_0$ parts are wider and kinked even more strongly, making an angle of $\sim 90^{\circ}$. The wider diameter of the F$_0$ parts causes the F$_1$ headpieces to be separated even more strongly. It has been suggested that the yeast subunits 6, 8 (homologous to bovine A6L), b, f, g, i and k are present in this larger interface together with the peripheral stalk [50], but their exact location is not yet established. The precise homologues of some of these subunits in plants and *Polytomella*, if present, also need to be established. But, given the smaller membrane interface in *Polytomella*, it is likely that some of the yeast subunits do not have a counterpart.
In parallel to the ATP synthase dimer from *Polytomella*, the ATP synthase dimer of bovine mitochondria was analysed by EM [57]. This dimer has a configuration in which the headpieces are (almost) in contact, mainly because the angle between the monomers is only ~40°, which is strikingly different to the maps presented in Figure 3b,c. However, similar particles with an angle of 35° are also present in yeast (Figure 3d) (N.V. Dudkina et al., unpublished). No intermediate angles were observed so it appears that both types of yeast particles could represent specific associates. The most logical explanation would be that these two dimers have a different composition. According to a scheme presented by Patrick Paumard et al. [50], the dimers arrange into linear oligomers in the membrane. We hypothesize that detergent solubilization of the oligomers could lead to ‘true (native) dimers’ as depicted in Figure 3b,c and to ‘pseudo-dimers’ consisting of two close-neighbour monomers from two different broken native dimers, as shown in Figure 3d. If correct, this interpretation would explain why the width of the F0 moiety in the pseudodimer (Figure 3d) and in the bovine dimer [57] is much smaller than it is in the yeast true dimer (Figure 3c).

There must be a special reason for the occurrence of ATP synthase dimers in mitochondria because the monomer is perfectly designed for catalysing the synthesis of ATP, including mechanisms to regulate its activity. The shape of the *Polytomella*, bovine and yeast ATP synthase supercomplexes gives a clue as to the role of dimerization. The unique orientation of the out-of-plane association of the F0 membrane domains (Figure 3) will force a strong local curvature of the membrane [35,57]. Most of the ATP synthase complexes are not part of a flat inner mitochondrial membrane but occur within strongly curved invaginations known as cristae lamellae and tubules. For tubular membranes, the diameter is often in the range of 30 nm [58]. If the bent membrane in the region of the dimers is regarded as an arc section of radius 15 nm, this configuration could by extrapolation induce a tubule with a diameter of ~30 nm. Such a diameter would fit the observed cristae dimensions. It is likely that the ATP synthase dimers associate into specific oligomers and that the other respiratory chain supercomplexes are arranged between the ATP synthase oligomers. Indeed, oligomeric ATP synthase rows were previously described by rapid-freeze deep-etch EM [53,54]. We propose that ATP synthase dimers are the building blocks of ATP synthase oligomers, which are helically arranged in tubular cristae, as originally proposed by Richard Allen et al. [53]. The formation of these helical structures is the driving force for cristae formation and overall mitochondrial morphology as shown in Figure 4.

![Figure 4](https://www.sciencedirect.com)
In this model, the other types of supercomplexes, composed of Complexes I, III and IV, are arranged in densely packed arrays between the rows of ATP synthase dimers. Wider or flattened tubules also appear to occur so there might be some variation on this theme and variation between species given that the dimers of *Polytomella* and yeast differ in shape (Figure 4).

A further question is whether the ATP synthase supercomplex arrangement (Figures 3 and 4) is unique to mitochondria. Based on BN-gel electrophoresis studies, the ATP synthase from *Chlamydomonas* chloroplasts is claimed to be dimeric as well [59]. However, an EM study of spinach chloroplasts indicated that the P1 headpieces do not have any specific interaction within the membrane [60]. Because the chloroplast membranes are flat in the parts where the ATP synthase is located [60], there is no obvious reason why there should be (kinked) dimers in the chloroplast membranes. Hence, it can be concluded that the dimers are probably unique to mitochondria and that their interaction is primarily essential to enlarge the surface of the inner mitochondrial membrane by inducing its heavy folding.

Perspectives

The proposed organization of mitochondrial membranes rules out the possibility that this membrane is organized according to the ‘Fluid-state’ model. However, mitochondria and their membranes are regarded as flexible structures that can rapidly adapt in response to changing physiological requirements. Consequently, the OXPHOS system cannot be described by the static ‘Solid-state’ model. Single OXPHOS complexes and their supercomplexes probably dynamically co-exist within the inner mitochondrial membrane (Figure 4): this idea is supported by results obtained by BN-PAGE and by flux control measurements [28]. Furthermore, the stoichiometry of different OXPHOS complexes within the inner mitochondrial membrane differs, excluding the possibility that all complexes form part of a supercomplex at a given time. Cardiolipin is reported to play an important role in supercomplex formation in yeast mitochondria [61,62].

The physiological roles of OXPHOS supercomplexes have not yet been determined. *In vitro* activity measurements indicate that they form the basis for enhanced electron transfer rates between the complexes of the respiratory chain [33]. Furthermore, supercomplex formation has implications for the structural organization of the inner mitochondrial membrane. The morphology of the folds of the inner mitochondrial membrane varies in different organisms and, therefore, abundance and composition of specific respiratory supercomplexes can be expected to differ, which is supported by the results obtained by BN-PAGE (Figure 1). Based on classical thin sectioning it appears that three types of inner membrane folds can be distinguished: lamellar cristae, vesicular cristae and tubular cristae. The formation of ATP synthase dimers and oligomers is likely to be particularly important for tubular cristae, which is in line with results obtained by transmission EM for Paramecium and *Polytomella* [53] (N.V. Dukdina et al., unpublished). The inner membrane folds of higher plants are thought to be more of the lamellar cristae type, which perhaps explains the comparatively weak interaction of ATP synthase monomers in this group of organisms. However, this is speculative and, moreover, classical techniques such as thin sectioning might give a rather distorted view of membrane morphology [58]. Higher-resolution EM tomography investigations [63] need to be performed on intact mitochondria to better understand correlations between the folding types of the inner mitochondrial membrane and the supercomplex composition within in this membrane.

Many other hypotheses concerning supercomplex function have been proposed [33,34]. Supercomplexes possibly allow reciprocal stabilization of OXPHOS complexes, they might offer efficient regulation of the respiratory chain or they could simply be important for increasing the amount of protein that can be inserted into the inner mitochondrial membrane. I+III2 supercomplex formation was thought to regulate alternative respiration in plants because it possibly limits the access of the alternative oxidase to its substrate ubiquinol. The alternative oxidoreductases of plant mitochondria do not appear to form part of any of the respiratory supercomplexes described [17] and to date the regulation of these enzymes is not well understood. More precise information on the supramolecular organization of the OXPHOS system must await the structural characterization of further supercomplexes, particularly those that include Complex IV, the terminal respiratory chain oxidoreductase.

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft and the Dutch science foundation NWO-CW.

References

8. Tsukihara, T. et al. (1996) The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 Å. *Science* 272, 1136–1144

Braun, H.P. et al. (1992) The general mitochondrial processing peptidase from potato is an integral part of cytochrome c reductase of the respiratory chain. *EMBO J.* 11, 3219–3227

66 Pineau, B. et al. (2005) Targeting the NAD7 subunit to mitochondria restores a functional Complex I and a wild type phenotype in the *Nicotiana sylvestris* CMS II mutant lacking nad7. *J. Biol. Chem.* 280, 25994–26001

Plant Science meetings in July 2006

Plant Growth Regulation Society of America (PGRSA) 33rd Annual Conference
9–12 July 2006
Quebec City Hilton, Quebec City, Canada
http://www.griffin.peachnet.edu/pgrsa

17th International Symposium on Plant Lipids
16–21 July 2006
East Lansing, MI, USA
http://www.ispl2006.msu.edu/index.html

XV FESPB 2006: Plants, People, Ecosystems and Applications
17–21 July 2006
Lyon, France
http://www.fespb2006.org/

5th International Conference on Mycorrhiza
23–27 July 2006
Granada, Spain
http://www.eez.csic.es/icom5/

Botany 2006
28 July – 3 August 2006
Chico, CA, USA
http://www.2006.botanyconference.org/

American Phytopathological Society
29 July – 2 August 2006
Québec, Canada
http://meeting.apsnet.org/