CHIROPTICAL SWITCHING BETWEEN LIQUID-CRYSTALLINE PHASES

Feringa, B.L.; Huck, N.P.M.; van Doren, H.A.

Published in:
Journal of the American Chemical Society

DOI:
10.1021/ja00144a027

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1995

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Download date: 16-03-2019
Chiroptical Switching between Liquid Crystalline Phases

Ben L. Feringa,*† Nina P. M. Huck,* and Henk A. van Doren†

Received May 1, 1995

The modulation of the mesophases and physical properties of liquid crystalline (LC) materials by reversible photochemical reactions, i.e., photoswitching of LC phases, is a major challenge for information technology. The chiroptomic behavior of organic molecules has also attracted renewed interest with a view to the development of materials for optical data storage and molecular optical devices. It is well-known that small amounts of optically active guest molecules added to a nematic host induce a cholesteric phase and that the helical pitch in the twisted nematic phase is very sensitive to chemical modifications in the chiral guest molecule.

Reversible switching of a liquid crystal between a twisted and a nontwisted phase by photochemical modification of the chirality of the doping molecule, although predicted, has thus far not been realized. In their pioneering efforts to develop a chiral liquid crystalline phototrigger, Schuster and co-workers showed that photoisomerization of optically active binaphthyl derivatives induces a cholesteric to nematic transition in a doped phase.

We describe herein the first successful demonstration of the reversible photochemical modulation of the helical pitch of a twisted nematic LC phase and the reversible transition between cholesteric and nematic phases using as dopant an optically active photoresponsive molecule. The chiroptical molecular switch employed is based on the donor-acceptor substituted inherently dissymmetric alkenes cis- and trans-2-nitro-7-(di-methylamino)-9-23-dihydro-1H-naphtho[2,1-b]-thiopyran-1-ylidene)-9H-thioxanthene (I and 2) (Scheme 1). Addition of 1 wt % of enantiomerically pure P-trans to the nematic phase, obtained from 42-pentylloxy)-4-biphenylcarboxonitrile 3.

Scheme 1. Photoisomerization of M-1 and P-2

1 Enantiomerically pure M-1 (cis-nitro), P4 (cis-nitro), M-2 (trans-nitro), and P2 (trans-nitro) were obtained as described previously (ref 9) and were stable toward thermal (ΔG = 122.2 + 0.5 kJ mol−1) and photochemical racemization under the conditions employed (HPLC, CD analysis).

11 4-(Pentloyloxy)-4-biphenylcarboxonitrile (Aldrich), mp (C-N) 48 °C, (N-l) 67 °C; after doping of 1 wt % P2 mp (C-N) 40 °C, (N-l) 63 °C.

12 At this concentration the dopant P2 is fully compatible with 3; a “stable cholesteric phase” indicates constant pitch irrespective of prolonged irradiation times.

14 The term pseudonanotomers is used in this context to indicate the opposite helicity of P2 and M1.

15 Ratios determined in n-hexane (HPLC); the isomeric composition at the photostationary states and the extrema in the UV/Vis difference spectra of 1 and 2 in the LC phase may well deviate slightly from those in solution.

16 A wedge-shaped sample was prepared by gluing a glass hair onto a microscope slide and resting one side of the cover slip on top of the glass hair. An orientation of the cholesteric phases the glass was rubbed after having been hydrophobized with dimethyldichlorosilane. The sample was held at 47.3 °C. Irradiations were carried out with a 200 W high-pressure mercury lamp (Oriel). The desired wavelengths were obtained using monochromators and interference filters (band with ±10 nm). It should be noted that 3 is transparent at the wavelengths employed.

17 It was observed in all experiments that initial irradiation for 15 s of a doped film was sufficient to reach a stable cholesteric phase (and apparently a photostationary state of the dopant). Subsequent irradiation times of 5 min were employed to interconvert cholesteric phase I to cholesteric phase II (and vice versa) to ensure stable phase formation. We have at present no explanation for the discrepancies in initial and subsequent irradiation times required.

1905 American Chemical Society

0002-7863/95/1517-9929$09.00 © 1995 American Chemical Society
the microslide are rubbed unidirectionally, after having been coated with a P
also that the cholesteric screw sense is modulated upon nematic LC to cholesteric phases of opposite handedness, but provide a concentric planar surface alignment both the converging lens and that, as expected, the pseudoenantiomers P-
measured using a converging lens with planar boundary conditions. To the distances between the concentric rings of Grandjean-Cano lines were
the cholesteric screw sense by the Grandjean-Cano method between a twisted and a nontwisted phase was examined. The
behavior was observed, i.e., alternating irradiation at 435 and 365 nm resulted in a decrease or an increase of the pitch, respectively. In addition, we could show by determination of the cholesteric screw sense by the Grandjean-Cano method
that, as expected, the pseudoenantiomers P-2 and M-1 twist the nematic LC to cholesteric phases of opposite handedness, but also that the cholesteric screw sense is modulated upon irradiation at 435 and 365 nm.20
Next the possibility of switching of the liquid crystal 3 between a twisted and a nontwisted phase was examined. The

UV/vis spectra of 1 and 2 are nearly identical at 300 nm, and irradiation of either M-1 or P-2 at 313 nm in n-hexane has been shown to result in a photostationary state with equal amounts of both helices (M-1:P-2 = 1).21 Irradiation of a thin film of 3 containing 1 wt % M-1 at 47.3 °C for 20 min using 313 nm light results in a conversion of the cholesteric to the nematic phase as is shown in Figure 1c. Apparently a (nearly) 50:50 ratio of opposite helices of the chiral guest molecule is formed in the LC phase as well as in solution at this particular wavelength, resulting in a compensated nematic phase. Much to our delight, subsequent irradiation of this film at 435 nm for 20 min restored the original cholesteric texture (Figure 1a). Finally the switching cycles shown schematically in Scheme 2 were executed; the changes in the LC phase and the optically active dopant (chiroptical switch) are both indicated.

A thin film of 3 and 1 wt % P-2 was irradiated at 435 nm (cholesteric phase I, negative helicity) and subsequently irradiated at 313 nm for 20 min, resulting in a compensated nematic phase. Next irradiation at 435 nm (20 min) reversed this process (cholesteric phase I, negative helicity), and subsequent irradiation at 365 nm (5 min) induced a decrease of the pitch (cholesteric phase II, positive helicity). Irradiation of this film at 435 nm (5 min) reestablished cholesteric phase I (negative helicity). This four-step switching cycle was repeated two times without appreciable deterioration of the film.21

In conclusion, we have demonstrated that the helically shaped photoswitchable alkenes 1 and 2 are highly effective in the reversible, light-induced, conversion of cholesteric to nematic LC phases as well as in the reversible alteration of the macroscopic helical pitch (and the screw sense) in the cholesteric phase. Both processes in this three-position switch can be controlled by modulation of the diastereomeric ratio that is produced depending on the wavelength used for irradiation.

A quantitative study of helical twisting power and wavelength dependency of these processes with other mesoscopic systems is currently in progress.

Acknowledgment. This investigation was financially supported by the Technology Foundation (STW) and the Dutch Foundation for Scientific Research (NWO). We thank Prof. Dr. R. M. Kellogg for valuable suggestions. The assistance of Prof. Dr. H. G. Kuball and his co-workers of the Department of Physical Chemistry of the University of Kaiserslautern (FRG) in measuring the helical twisting power and the helical screw sense is gratefully acknowledged.