Supporting medication intake of the elderly with robot technology
Cnossen, Fokeltje; Sweers, Nikie; Shantia, Amir

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Publication date:
2016

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Supporting medication intake of the elderly with robot technology

Fokie Cnossen¹, Nikie Sweers¹ & Amir Shantia¹,²

¹Institute of Artificial Intelligence & Cognitive Engineering, Faculty of Mathematics and Natural Sciences, University of Groningen (f.cnossen@rug.nl)
²Enacer BV, Groningen (enacer.nl)

AIM OF THE STUDY

• To develop a robot interface to assist the elderly with their medication intake.
• To investigate whether the target group is willing to accept medication intake assistance from a robot.

MEDICATION INTAKE INTERFACE

The interface was developed in HTML5.

MAIN RESULTS OF USER STUDY

Usability test
• The majority of participants in this study (17 out of 19) were able to take their medication with assistance of the interface.
• Participants found it difficult to work with more advanced interface settings.
• Setting notifications interval.
• Changing pharmacy’s contact details.
• Post-Study Usability Questionnaire (Likert 5-point scale)
• Users rated usability positively
• Mean score of 3.9 (between ‘Neutral’ and ‘Agree’)

Robot Acceptance
• Robot Acceptance Questionnaire (Likert 5-point scale)
• User accepted help from the robot
• Mean score of 3.5 (‘Favourable’)

CONCLUSIONS & RECOMMENDATIONS

Conclusion
• The basic functionality of the interface was easy to use for the elderly for assistance with the medication intake task.

Recommendations
• Interfaces for the elderly should really be as simple as possible.
• Testing of usability aspects during the design process is vital for a well-designed robot.

REFERENCES

SHORTEST SUMMARY

• RITA is a robot to assist the elderly in daily activities.
• We developed and evaluated an interface for RITA.
• interviews with caregivers
• the main findings were:
 - users understood the interface
 - users were able to take medication with the touch screen support
 - many were unable to perform slightly more advanced functions.
• The main conclusions / recommendations were:
 - Interfaces should be as simple as possible.
 - Usability tests should be routine in developing health technology for the elderly.

AIM OF THE STUDY

• To develop a robot interface to assist the elderly with their medication intake.
• To investigate whether the target group is willing to accept medication intake assistance from a robot.

MEDICATION INTAKE INTERFACE

The interface was developed in HTML5.

BACKGROUND

• Medication intake can prove to be a complicated task for the elderly.
• Roughly 50% of all prescribed medication is taken incorrectly (MacLaughlin, et al., 2005).
• Simplification of this task might have beneficial effects on this group’s general health and society’s healthcare costs.
• Together with Enacer Company we developed an assistive robot for the elderly, called RITA (the Reliable Interactive Table Assistant).

DESIGN PROCESS

Interviews with caregivers
• Main result:
 - it is especially important to check whether the elderly actually take their medication.

Focus group of elderly
• feedback on the clarity of the design
• requirements analysis
• Main result:
 - Font size should be increased for optimal utility.

Interface development
• The interface was developed in HTML5.

User study
• Usability test of the interface on the touch screen.
• subjects were asked to perform a number of tasks related to the intake of medication.
• basic task: supervision of medication intake.
• more advanced functions: change settings.
• Acceptance questionnaire.

THE ROBOT RITA

• RITA is an intelligent, moving wooden table.
• Accompanies people in their own home.
• assists in activities of daily living.
• RITA continuously monitors the client.
• RITA analyses behavioral patterns.
• Detects uncommon situations.
• Alerts health care personnel to check the situation.
• RITA can serve food and drinks to clients and visitors.
• RITA functions autonomously.
• Clients have no need to give direct orders to RITA: RITA will already know what to do.
• RITA can be operated directly by using the touch screen on the front of the robot.
• RITA was designed to blend in with existing furniture and not to stand out.
• It does not have a futuristic look but is indeed a wooden table.
• Market research has shown that older people appreciate the classic look.
• RITA supports health care professionals to make sure they are able to provide their clients with maximum comfort and quality of life-relieving them of certain repetitive tasks and aiding them in more complex tasks.

REFERENCES

