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Chapter 1

Introduction

1.1 Crawling out of the cave

For thousands of years people have tried to understand the world which they live in on

a fundamental level. For this purpose they developed, among others, scientific methods

which started more or less from everyday experience. However, this everyday experience,

which still shapes our modern human intuition, has its limitations. As became more and

more clear at the end of the 19th century, our everyday experience forms just the tip of

the iceberg.

The first paradigm shift came with the dawning of Quantum Mechanics in 1900, which

showed that the classical laws of physics cannot blindly be applied to the subatomic world.

Whereas for us the world seems to be continuous, on atomic scales nature turns out to

be quantized, and the clear difference between pointlike matter and waves disappears.

The second paradigm shift came in 1905, when Einstein presented his theory of Special

Relativity [1]. This theory rejects the absolute nature of time, which was and still is for a

lot of people the obvious thing to believe, and unites space and time into one entity called

spacetime. Ten years later, in 1915, Einstein replaced Newton’s theory of gravity by his

theory of General Relativity [2], stating that gravity is a manifestation of the spacetime

curvature described by the so-called Einstein equations. The theory of General Relativity

completely reshaped the universally held notion of spacetime. While in Newtonian physics

and Special Relativity spacetime was just a static and “God-given” arena on which all the

physics takes place, in General Relativity spacetime is a dynamical background which has

its own dynamics determined by its content. As such, spacetime and everything in it be-

come intimately related. General Relativity also opened the doors to modern theories of

cosmology. Observations by Hubble implied that the universe is expanding, a possibility

which was also suggested by the application of General Relativity to the universe as a

whole, but which troubled Einstein and others because of the firm believe in a static uni-

verse. This conviction of a static universe was also based on everyday experience: a human
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life is simply too short compared to cosmic timescales to see the stars on our night sky

change their patterns. In a similar way a human body is too big to experience quantum

effects and is moving too slowly to notice that space and time are really intertwined. If we

lived on a planet orbiting a massive black hole bending spacetime significantly, we would

be comfortable with the idea that the angles of a triangle don’t add up to 180 degrees

and that some objects distort spacetime in such a way that even light cannot escape.

Riemannian geometry would then probably have been found before Euclidean geometry

instead of the other way around. If we lived at lengthscales of Angströms instead of me-

ters, the strange world of Quantum Mechanics where matter shows interference patterns

wouldn’t be that strange anymore. In this sense our everyday experience is like Plato’s

cave [3], with the world of the physical extremes lying outside. Theoretical physics with

its mathematical formulation allows us then to peek outside this cave.1

However, old theories like in Newtonian physics are not considered to be “wrong”.

They just happen to have a smaller region of validity than the new theory. This motivates

the so-called correspondence principle, which was first formulated by Niels Bohr in the

context of Quantum Mechanics [4], and states that in certain limits the new theory should

reproduce the old theory.

~

1
c

G
b

GR

Newtonian Gravity

QM

SR

QFT

Figure 1.1: The “dimensional pyramid”, taken from [5]. The planes with ~ > 0 indicate the

quantum regime, the planes with G > 0 indicate the gravitational regime, and the planes with

1
c > 0 indicate the relativistic regime. The red line {~ = 0, G > 0, 1

c = 0} indicates the Newtonian

1An example outside physics is Darwin’s theory of evolution, in which species gradually change but in

general too slowly to be noticed directly, resembling the movement of the stars. An example in geophysics

is given by Wegener’s theory of continental drift.
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regime, which will be the one of interest in this thesis.

This means that in the Newtonian limit, which according to fig.(1.1) can be characterized

by sending the speed of light to infinity, General Relativity should reproduce Newton’s

theory of gravity in order to be consistent, which it does. But also General Relativity has

its limitations. Namely, it is only applicable beyond a characteristic length scale known

as the Planck scale, because at smaller length scales the notion of spacetime becomes

ill-defined due to quantum fluctuations. The obvious solution to this problem seemed to

be to make the theory consistent with the rules of Quantum Mechanics, but this turned

out to be extremely difficult: quantizing General Relativity as an ordinary field theory

results in a theory which predicts infinities as outcome for e.g. graviton scattering. In

the language of Quantum Field Theory, the theory which unifies Special Relativity and

Quantum Mechanics, it is said that General Relativity is an effective field theory. This

means that beyond a certain energy/length scale new physics appears. General Relativity

is ignorant of this new physics and can only be trusted below this energy scale.

The holy grail of high energy physics is to obtain a well-defined theory of quantum

gravity, which lies on the tilded edge {~ > 0, G > 0, 1
c > 0} of fig.(1.1). One such at-

tempt is Loop Quantum Gravity [6, 7]. Quantum Mechanics turned the infinite answers

of classical physics applied to black body radiation into finite answers by quantizing the

energy of the radiation. Similarly, Loop Quantum Gravity tries to get rid of the infinities

which plague the canonical quantization of General Relativity by quantizing spacetime.

However, it is not yet clear if Loop Quantum Gravity reproduces General Relativity in the

classical limit in which Planck’s constant goes to zero [8]. Another attempt of a theory of

quantum gravity which tries to go beyond General Relativity is String Theory [9–11]. This

theory postulates that all the different particles, which according to Quantum Mechanics

describe matter and the interactions experienced by it, are actually different vibrational

modes of tiny strings. This string-like character of matter and fundamental interactions

only manifests itself clearly at the Planck scale. String Theory does one specific pre-

diction which again contradicts our human intuition: the spacetime inside Plato’s cave

may seem to have four dimensions, but outside the cave (Super)string Theory demands

as a consistency condition that spacetime has six extra spatial dimensions. To account

for observations these extra dimensions have to be very small, such that untill now they

haven’t been noticed yet by particle accelerators. One exciting and highly non-trivial fact

of String Theory is that it seems to be able to reproduce Einstein’s theory of General

Relativity: one vibrational mode of the fundamental string turns out to be a massless

spin-2 mode, and as such has exactly the same properties as one would expect from the

particle mediating gravity, which can be identified as the graviton. Einstein’s equations of

General Relativity plus stringy corrections appear as a condition for quantum consistency
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of the theory. Besides providing a consistent theory of quantum gravity, String Theory

also has the potential to unify gravity with the other fundamental interactions encoun-

tered in nature. The correspondence principle tells us that at low energies String Theory

reduces to so-called “Supergravities” [12] in four spacetime dimensions, which depend on

the specific compactification of the six extra dimensions. Superstring Theory needs a

symmetry called supersymmetry2 in spacetime in order to interpret the spectrum of vi-

brations. This symmetry relates particles of different spin. The Supergravities mentioned

earlier are then supersymmetric extensions of General Relativity. Because supersymme-

try, as mathematically elegant as it is, is still not found experimentally, it is possible that

supersymmetry-wise we are still locked in Plato’s cave.

1.2 General covariance and gauge symmetries

In the development of modern physics the role of symmetries cannot be emphasized

enough. Whereas the laws of physics arrange the events we want to describe in spacetime,

the symmetries arrange the laws of physics themselves by restricting their possible forms!

In short, a symmetry constitutes a change of the physical system without changing the

physical outcome. The following two symmetry principles are very important.

The first symmetry principle is that of covariance, stating that the coordinates one

uses to describe events in spacetime are just labels. As such, the laws of physics should not

depend on the choice of coordinates. This principle already holds in Newtonian physics for

inertial observers, which are all connected by Galilei transformations, and with Newtonian

gravity one can add accelerations in the form of time-dependent spatial translations to

these transformations. The equations of motion for Newtonian gravity then take their

simplest form when written in these coordinates. In General Relativity however one deals

with the principle of general covariance, stating that the laws of physics are invariant un-

der general coordinate transformations. As such the form of the field equations of General

Relativity are the same for all observers. For Einstein this was an important step in de-

veloping his theory of General Relativity, because via the equivalence principle it implied

the description of gravity in terms of differential geometry.

The second symmetry principle is that of gauge invariance, which first showed up in

Maxwell’s theory of electromagnetism. There it was found that the electromagnetic field

can be reformulated in terms of a spacetime vector potential. This vector potential how-

2Historically, supersymmetry was first introduced on the world-sheet to add fermionic degrees of free-

dom. That this world-sheet supersymmetry can be turned into supersymmetry in spacetime is highly

non-trivial. Another formulation of Superstring Theory called the Green-Schwarz formulation starts from

a manifestly spacetime-supersymmetric theory.
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ever is not uniquely defined; one can add the spacetime gradient of a general function

to it without changing the resulting electromagnetic field. In such a way infinitely many

different vector potentials, all connected via so-called gauge transformations, result in the

very same electromagnetic field. For the electromagnetic field such a gauge transformation

can be regarded as the element of the symmetry group of the circle in an abstract, internal

space. The theory can then be formulated on a spacetime, where at each point a circle is

attached which is not part of spacetime itself.

b b b

b

b

bb b

b

b b

M
Mgauging

Figure 1.2: A pictorial representation of a gauging. The circles on the spacetime manifold M rep-

resent an abstract space in which the fields transform. A global symmetry is one in which the

field is rotated in the same way in every spacetime point. Gauging this symmetry makes it local,

meaning that now the field is allowed to be rotated differently at every spacetime point.

Untill now it seems that one cannot get around the vector potential if Quantum Me-

chanics and electromagnetism are unified; in nature it is found that matter is coupled to

the vector potential, and not to the electric or magnetic field separately. The appearance

of gauge symmetries in Maxwell’s theory of electromagnetism was extended by Yang and

Mills [13]. In Yang-Mills theories one promotes a global symmetry to a local one, i.e.

symmetry transformations depending on the spacetime coordinates. While in electromag-

netism the local symmetry was that of a circle, Yang and Mills enlarged the symmetry

groups to those describing higher dimensional objects. The gauge principle then provides

a clear and simple procedure how to couple matter to the different forces they experience.

It seems that the fundamental subatomic interactions of nature can be very accurately

described by these gauge theories: the Standard Model, which describes the different in-

teractions between fundamental subatomic particles except for gravity, is formulated in

terms of a Yang-Mills theory.

So, whereas the principle of covariance deals with spacetime symmetries, the princi-

ple of gauge invariance deals with symmetries in some abstract space attached at each

point in spacetime. However, the so-called hole argument made clear to Einstein that the

coordinate transformations of General Relativity must be regarded as what we now under-

stand to be gauge transformations. Shortly after the development of Yang-Mills theories

it was found that in close analogy, although not completely similarly, General Relativity

can also be reformulated as a gauge theory [14, 15]. In this procedure the abstract, inter-

nal space at each point in the gauge theory must be related to the tangent space at that



12 Introduction

point. Taking symmetries as a guideline in constructing theories, in the sixties some peo-

ple wondered how much symmetry one could invoke in interacting quantum field theories

without making the theory trivial. It turned out that the internal symmetries could not

be mixed up with the symmetries of Special Relativity, a theorem which is now known as

the O’Raifertaigh-Coleman-Mandula theorem. An important assumption in this theorem

is that the symmetries are generated by Lie algebras. A way to circumvent this no-go

theorem is to go to so-called super Lie algebras, in which the symmetry parameters are

Grassmann variables, making them fermionic instead of bosonic. The resulting symmetry

is the earlier-mentioned supersymmetry. This symmetry relates bosons, which mediate

the forces between matter, and fermions, which constitute the matter. One could thus say

that supersymmetry removes the old dichotomy of matter and forces which permeats the-

ories from Newtonian physics untill the Standard Model! Applying a gauging procedure

to the supersymmetry transformations results in an elegant way to obtain the simplest

theory of Supergravity [16,98].

Having seen the enormous role of gauge theories in modern physics, one could wonder

to what extent gauge symmetries determine a set of field equations. To clarify the role of

gauge symmetries, the photon in classical electrodynamics is given as an example. A pho-

ton has two polarizations. However, to describe a photon in a Lorentz-covariant way, the

smallest representation giving room to these two polarization states is the vector represen-

tation. This representation has four components, giving two redundant degrees of freedom.

Gauge symmetry allows one to get rid of these two degrees of freedom, and as such to

describe the photon in a Lorentz-covariant way as a vector. Using gauge symmetries one is

thus able to make spacetime symmetries, in this case those of Special Relativity, manifest.

Something similar is true for Einstein’s field equations of General Relativity. The precise

meaning of the principle of general covariance was not well-understood by Einstein when

he launched his theory of General Relativity.3 Einstein originally gave too much credit to

the notion of general covariance, as was pointed out by others soon after the publication

of his field equations. Kretschmann observed that practically any field equation could be

made invariant under general coordinate transformations [20], and as such also a theory

of Newtonian gravity. Perhaps motivated by this remark Elie Cartan showed explicitly

how to geometrize Newtonian gravity within the language of differential geometry only a

few years later in 1923, and made the equations of motion for Newtonian gravity general-

covariant instead of Galilei-covariant. Such an extension of spacetime covariance is more

general: one can use a so-called Stückelberg trick to make a theory invariant under ar-

bitrary gauge symmetries [21]. Such a trick consists of adding new fields to a theory to

make the field equations invariant under the gauge transformations one wishes, which is

3See e.g. [18] or [19].



1.3 Motivation: Why crawling back into the cave? 13

also the case for Newton-Cartan theory.4 The geometrization which Cartan used can thus

be regarded as a Stückelberg trick, albeit a nontrivial one. This theory is now known as

the theory of Newton-Cartan [22], and its framework forms the basis of this thesis.

1.3 Motivation: Why crawling back into the cave?

So why do we study Newtonian gravity and Newton-Cartan theory if Einstein came up

with a theory which is more widely applicable? The first reason is that, although the

theory of General Relativity conceptually and mathematically is very elegant, it is much

more complicated than Newton’s theory at the computational level. Since our own world

is Newtonian, Newton’s theory of gravity suffices in a lot of everyday applications.

A second reason is that one can gain insight into certain problems in General Relativity,

which often become simpler because degrees of freedom decouple in the Newtonian limit

and as such one can focus on a specific subsector of the relativistic theory. One example

of this is cosmology [23], where for structure formation in the early universe one can turn

to Newtonian approximations. Another example is the so-called cosmic no-hair theorem,

which states that solutions of the Einstein equations with positive cosmological constant

converge to the deSitter solution. This theorem is easier to analyze in the framework of

Newton-Cartan cosmology [24].

A third reason for studying Newtonian gravity is the so-called AdS/CFT correspon-

dence [25, 26], which allows one to reformulate a strongly coupled gravitational theory

on Anti-de Sitter spacetimes as a weakly coupled field theory without gravity on the

boundary of the spacetime, and vice versa. Some years ago this correspondence revived

the interest in non-relativistic physics, because one can describe certain commonly en-

countered condensed matter systems via the AdS/CFT correspondence with solutions of

gravitational theories exhibiting non-relativistic isometries [27, 28]. In most applications,

the non-relativistic limit is taken on the field theory side, whereas it can be interesting

to take the limit also on the gravity side in a covariant way, resulting in Newton-Cartan

theory [90]. An explicit proposal for the resulting Newton-Cartan geometry in such a

limit is the so-called Quantum Hall Effect [119], in which the AdS-space is replaced by flat

space.5 However, in this thesis the emphasis will be on the construction of such theories,

4A simple example of the Stückelberg trick is given by the theory of a massless vector field exhibiting

a U(1) gauge symmetry. Adding a mass term to the Lagrangian explicitly breaks this gauge symmetry.

One can then simply add a scalar field to the theory and restore the U(1) gauge symmetry by assigning

also a gauge transformation to the scalar field. In this way the U(1) gauge symmetry has been restored

by adding a scalar degree of freedom. From that perspective it would be more correct to speak of “gauge

redundancies” instead of gauge symmetries!
5Such a flat space is considered to be the limit in which the AdS radius becomes infinite, giving a

Minkowski background. This limit is important for realistic applications (our universe doesn’t appear to
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and not on applications in the AdS/CFT correspondence.

A fourth reason is that one can go one order beyond the Newtonian approximation

called the “post-Newtonian approximation”. This approximation, which will not be dis-

cussed in this thesis, turns out to be remarkably effective even in regimes where the

gravitational fields are strong and bodies are moving fast [32]. The reason for this effec-

tiveness is not clear yet.

The fifth and last motivation can be summarized by a quote of Feynman [33]: “Psy-

chologically we must keep all the theories in our heads, and every theoretical physicist who

is any good knows six or seven different theoretical representations for exactly the same

physics.” Newton-Cartan theory forces one to reconsider notions like general covariance,

spacetime and gauge symmetries in general, and as such can deepen one’s understanding

of General Relativity and gravity in general. Together, all these considerations motivate

a better understanding of Newtonian gravity and Newton-Cartan theory.

On the other hand, one should be careful in using Newton-Cartan theory to draw

lessons for General Relativity. One particular important problem at which one should be

careful is quantum gravity. If one performs a Hamiltonian analysis of General Relativity,

the Hamiltonian consists only of constraints and thus vanishes. This implies a “frozen”

universe in which nothing changes in time. The reason for this vanishing Hamiltonian

is the absence of absolute structures in General Relativity, and this problem is known

as the “problem of time”. In Newton-Cartan theory one does not have this problem,

because there is a preferred foliation of spacetime by the absolute time which character-

izes Newtonian physics. Another problem one is facing in quantum gravity is that it is

difficult to define observables. An intuitive reason for this is that in probing very small

length scales, one needs a certain amount of energy, creating a black hole with an event

horizon which is bigger than the probed spacetime (see e.g. [34]). But in Newton-Cartan

one does not have black hole solutions.6. For this reason and others people have tried

to quantize Newton-Cartan theory [5, 35], but it is unclear what such a theory of New-

tonian quantum gravity means because the Newtonian limit involves by definition low

energy scales, whereas quantum effects only play a role at high energy scales. Also, these

Newtonian theories of gravity don’t have gravitational waves as solutions, which consti-

tute the propagating degrees of freedom for relativistic gravitational theories. Of course,

one could study the non-relativistic Schrödinger equation with a Newtonian gravitational

potential. However, just as the analysis of the Hydrogen atom in ordinary Quantum Me-

chanics doesn’t teach one anything about Quantum Electrodynamics because ordinary

be AdS) but has its own subtleties, see e.g. [31].
6The notion of an event horizon is a relativistic aspect. One does have singularities due to e.g. point

masses, just like in classical mechanics and field theories.
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Quantum Mechanics is inherently non-relativistic and the electromagnetic field is treated

as a classical background field instead of being quantized, an analysis of Quantum Me-

chanics coupled to Newtonian gravity is not shedding any light on a relativistic theory of

quantum gravity. Combined with the earlier remarks that Newton-Cartan theory seems

to lack the structures which makes quantizing gravity hard in the first place, one should

not have too much hope to learn anything new about relativistic quantum gravity by

quantizing Newton-Cartan theory.

1.4 Outline

Before we turn to the new insights into Newton-Cartan theory, which form the topic of this

thesis, we will first review some topics to give the reader a solid background. In the sec-

ond chapter some preliminaries are given about Galilean, Special and General Relativity,

and the Newtonian limit of General Relativity is reviewed, as well as some Supersymme-

try and Supergravity. In the third chapter both relativistic and non-relativistic particles,

strings and branes are treated from the point of view of sigma models, and their sym-

metries are investigated. This third chapter ends the review of the necessary concepts.

In the fourth chapter, which is based on [37], it is shown how Newtonian gravity can

be obtained by gauging the so-called Bargmann algebra. This Bargmann algebra is a

centrally-extended Galilei algebra, and this central extension plays a very important role

in the gauging procedure. This procedure reproduces Newtonian gravity in the guise of

the earlier mentioned Newton-Cartan theory. Some constraints which are rather ad-hoc in

the traditional Newton-Cartan procedure are shown to follow from curvature constraints

in the gauge theory. The gauging procedure, outlined in chapter 4, can be extended to

theories of gravitating strings and branes, with or without a cosmological constant. This

is done in two ways. The first is a bottom-up approach, in which one gauges the spatial

translations to arrive directly at the class of so-called Galilean observers. The second one

is a top-down approach, in which one gauges the extended stringy Galilei algebra and

imposes constraints to arrive at the Galilei observers. In this procedure the central exten-

sion of the point particle algebra is replaced by a general extension, which again plays an

important role in the resulting gravity theory. This is done in chapter 5, which is based

on [38, 39], and gives “stringy” extensions of Newton-Cartan gravity. A supersymmetric

extension of Newton-Cartan gravity in three dimensions will be addressed in chapter 6,

which is based on [40]. Because the defence of this thesis has had some delay, develop-

ments which succeeded the research done in this thesis are also briefly mentioned. These

developments, together with conclusions and an outlook, will be given in chapter 7.
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Chapter 2

Relativity, gravity and symmetries

In this chapter some basic notions necessary for the following chapters are introduced.

First, some Newtonian physics will be treated, along with the Galilean Relativity Prin-

ciple. After that, Einstein’s theory of Special and General Relativity will be touched,

including the Newtonian limit. We will end this chapter with some preliminaries about

supersymmetry. For a detailed treatment on General Relativity, see e.g. [41–44]. For

details about differential geometry one can consult [45]. Supersymmetry is introduced in

e.g. [46–49].

2.1 Galilean Relativity

In Newtonian mechanics space and time are decoupled. Newtonian space is a flat manifold

R
D−1, and time x0 = t is absolute. This absolute time means that once different observers

have synchronized their clocks they will stay synchronized, regardless of their relative

motion in space. This allows one to define a notion ofD-dimensional Newtonian spacetime,

which is foliated by the absolute time function t and where each foliation is just flat space

R
D−1. The laws of physics are then stated to be the same for the class of observers

on which no forces act, the so-called inertial observers. This is the Galilean Relativity

principle. The spatial coordinates {xi} and time coordinate {t} of these inertial observers

are connected via the Galilei group,1

t′ = t+ ζ0 ,

x
′i = Ai

jx
j + vit+ ζi . (2.1)

Here {ζ0, ζi} are constant temporal and spational translations, vi is the Galilean boost

parameter and Ai
j ∈ SO(D − 1) is a spatial rotation with an inverse denoted by Aj

i,

Ai
jAi

k = δk
j . (2.2)

1For a detailed group-theoretical exposure of the Galilei group and the corresponding algebra, see [50].
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In particular, note that the Galilean boost only involves the transformation of {xi}. These

Galilei transformations constitute the spacetime symmetries of Newtonian physics. In an

inertial frame in Cartesian coordinates the motion of a free particle with trajectory {xi(t)}
is then given by

ẍi = 0 , (2.3)

where a dot denotes derivation with respect to t. The solution is a straight path in

Newtonian space(time),

xi(t) = wit+ di, {wi, di} ∈ R
D−1 . (2.4)

We can then regard (2.1) as the group of transformations connecting all these straight

paths.

b

x1

x2

x3, . . . , xD−1

xi
1(t)

xi
2(t)

Galilei transformation

0

Figure 2.1: Galilei transformations as connections between straight lines xi
1(t) and xi

2(t) in R
D−1.

So-called inertial or ”fictitious” forces appear if one considers Newton’s laws for accel-

erating observers. For example, if we consider a time-dependent rotation Ai
j(t),

x
′i = Ai

j(t)xj , (2.5)

the equations of motion (2.3) in this accelerated frame become2

ẍi +Ak
iÄk

jx
j + 2Ak

iȦk
j ẋ

j = 0 , (2.6)

where the prime is dropped. Inertial forces are called as such because one can put them

to zero by going to an inertial frame of reference, in this case a non-rotating one. The

second term in eqn.(2.6) contains the centrifugal force, while the third term is the so-called

Coriolis force.

2This can be compared to the usual expression in three spatial dimensions for an acceleration described

in a rotating frame, arot = arest −ω× (ω×r)− ω̇×r−2ω×v, where a is the acceleration, r is the position

vector, v is the velocity vector and ω is the angular velocity vector.



2.2 Newtonian gravity 19

2.2 Newtonian gravity

Newtonian gravity is an instantaneous force between gravitating masses. The Newtonian

gravitational force F (r) between two particles separated a distance r with gravitational

masses M and m in (D − 1) spatial dimensions is given by

F (r) =
GMm

rD−2
. (2.7)

Here G is Newton’s constant, which we consider to be independent of the spacetime

dimension D. Notice in particular the absence of any time-dependent factor, indicating

that gravity is propagating with an infinite speed. If we write the path of a particle with

inertial mass m in spherical coordinates with radial coordinate r(t), the radial acceleration

r̈(t) due to a gravitational field caused by a mass M is given by

r̈(t) =
−GM
rD−2

≡ −∂Φ

∂r
. (2.8)

Here Φ(r) is defined to be the Newtonian potential. Note that we divided out the mass

m, which is possible because the inertial and gravitational mass of a particle are experi-

mentally determined to be equal up to a very high accuracy. Now, the volume Vd(R) of a

d-dimensional sphere with radius R is given by3

Vd(R) =
2π

d+1
2

Γ(d+1
2 )

Rd ,

≡ SdR
d, Sd ≡ Vd(R = 1) , (2.9)

where we defined the volume of the d-dimensional unit sphere Sd. In particular, V2(R) =

4πR2 and V3(R) = 4
3πR

3. We can use this expression to integrate the relation (2.8) over

a (D − 2)-dimensional sphere ∂V with radius r, giving

∮

∂V

∂Φ

∂r
dD−2x =

GM

rD−2
VD−2(r) ,

= SD−2GM , (2.10)

where on the right hand side the factors of r cancel. However, we can write the mass M

as an integral over space,

M =

∮

V
ρ(x) dD−1x , (2.11)

where ρ(x) is the mass density. Using Gauss’ theorem

∮

∂V

∂Φ

∂r
dD−2x =

∫

V
r−2 ∂

∂r

(

r2∂Φ

∂r

)

dD−1x , (2.12)

3The Gamma function Γ(x) has the properties that Γ(1/2) =
√
π and Γ(x+ 1) = xΓ(x).
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we see that, upon equating the integrands (2.11) and (2.12), eqn.(2.10) gives the Poisson

equation in spherical coordinates,

1

r2

∂

∂r

(

r2∂Φ

∂r

)

= SD−2Gρ(r) . (2.13)

In Cartesian coordinates this equation reads

∆Φ(x) = SD−2Gρ(x) , (2.14)

where ∆ ≡ δij∂i∂j is the spatial Laplacian. It is important to emphasize that the potential

Φ(x) is a scalar under the Galilei group (2.1), but not under (time-dependent) accelera-

tions. The equations of motion for a particle moving in this potential is then eqn.(2.8),

which in Cartesian coordinates reads

ẍi + ∂iΦ(x) = 0 . (2.15)

This equation and eqn.(2.14) are invariant under the Galilei group (2.1), but also under

the additional transformations

x
′i = xi + ξi(t), Φ′(x′) = Φ(x) − δij ξ̈

i(t)xj . (2.16)

Eqn.(2.16) means locally one can always use an acceleration ξ̈i to put Φ′(x′) = 0 and erase

every appearance of gravity. Or the other way around: one can always redefine Φ(x) via

eqn.(2.16) and change the acceleration of an observer in the gravitational field without

changing the physics. Note that this is possible because inertial and gravitational mass

are found to be equal, and that this mass is always positive. If mass could be both positive

and negative, as for electric charges, we could simply flip the sign of the mass to see if

we are dealing with a uniform gravitational field or an accelerating frame of reference. If

inertial and gravitational masses weren’t equal, gravity wouldn’t couple to all masses in

the same way. The transformations (2.16) hint to the idea that gravity can be regarded as

an inertial force, just as the Coriolis force or centrifugal force in eqn.(2.6). This idea goes

under the name of “the equivalence principle”, and was used by Einstein to its full extent

in the theory of General Relativity. It is this property, the ability to make it disappear

locally in spacetime, which makes gravity fundamentally different from the other forces in

nature.

2.3 Special Relativity

In the theory of Special Relativity one focusses on the class of inertial observers. As in

Galilean relativity these observers are postulated to be equivalent, which means that their

experimental outcomes should agree with each other. On top of that it is postulated

they will all measure the same speed of light c, a postulate which is motivated by the

experiments of Michelson and Morley and the Maxwell equations. This postulate will
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change the Galilei symmetries significantly when velocities approach c. The group of

spacetime transformations connecting these inertial observers is called the Poincaré group,

x
′A = ΛA

Bx
B + ζA , (2.17)

where ΛA
B ∈ SO(D−1, 1) are Lorentz transformations and ζA are spacetime translations.

These are global transformations, as the parameters do not depend on the spacetime

coordinates, and form the symmetry group of the theory. The transformations (2.17) are

derived by the demand that they keep the spacetime interval

ds2 = ηABdx
AdxB

= −c2dt2 + δijdx
idxj (2.18)

invariant. The Minkowski metric ηAB = diag(−c2,+1, . . . ,+1) is then a non-degenerate

metric on Minkowski spacetime obeying

ΛC
AΛD

B ηCD = ηAB . (2.19)

From the transformations (2.17) it can be seen that time is not absolute, as x
′0 is not

equal to x0 necessarily. Because gravity is a long range force which is always attractive,

the simplest guess to incorporate it in Einstein’s relativistic framework would be to in-

troduce a massless Lorentz-scalar field, being the relativistic counterpart of the Newton

potential Φ(x). However, such a theory has some observational problems; the deflection of

light cannot be described, and the prediction of the precession of Mercury is also wrong.4

Gravity turns out to be more subtle.

2.4 General Relativity

The conceptual basis of the theory of General Relativity is the so-called equivalence prin-

ciple, which was already mentioned in the context of Newtonian gravity, see eqn.(2.16).

This principle can be stated as

Locally in spacetime, the laws of physics for freely-falling particles in a gravitational field

are the same as those in a uniformly accelerating frame.

”Freely-falling” means there are no forces acting on the particle. This implies that, locally

in spacetime, every observer can accelerate such that he/she doesn’t experience gravity,

and hence can use the theory of Special Relativity. This motivated Einstein to use the lan-

guage of differential geometry to describe gravity. Namely, if spacetime is represented by

a manifold, its curvature manifests itself only globally, like gravity. This makes the identi-

fication of gravity as spacetime-curvature plausible. In General Relativity the Minkowski

4See [43] for a detailed treatment of relativistic scalar-gravity theories.
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metric ηAB is then replaced by a (non-degenerate) metric gµν(x) with Lorentzian sig-

nature, which has its own dynamics. The equivalence principle then always guarantees

locally the existence of general coordinate transformations which transform gµν(x) into

ηAB.5 With this the group of Poincaré transformations (2.17) is extended to the group of

general coordinate transformations. Let’s make this a bit more explicit.

The metric gµν(x) transforms under a general coordinate transformation xρ → x
′ρ(xµ)

as

g′
µν(x′) =

∂xρ

∂x′µ

∂xλ

∂x′ν gρλ(x) , (2.20)

such that the line element ds2 = gµν(x)dxµdxν is a scalar. This can be seen as merely a

field redefinition of the tensor in new coordinates, and we say that the tensor transforms

covariantly under general coordinate transformations.6 The metric is also invertible, and

the inverse is written as gµν :

gµνgνρ = δµ
ρ . (2.21)

Under the Poincaré transformations (2.17) the partial derivative ∂µ transforms covari-

antly, but under general coordinate tranformations it does not. As in gauge theories,

see appendix B, this motivates the introduction of a covariant derivative ∇µ which per

construction transforms in a covariant way:

∇µT
λσ...
νρ... = ∂µT

λσ...
νρ... + Γλ

µθT
θσ...
νρ... + Γσ

µθT
λθ...
νρ... + . . .

− Γθ
µνT

λσ...
θρ... − Γθ

µρT
λσ...
νθ... − . . . . (2.22)

The connection components Γρ
µν then transform inhomogeneously,

Γ
′ρ
µν(x′) =

∂x
′ρ

∂xλ

∂xσ

∂x′µ

∂xθ

∂x′ν Γλ
σθ(x) +

∂x
′ρ

∂xλ

∂2xλ

∂x′µ∂x′ν , (2.23)

just as the gauge field of a Yang-Mills theory transforms inhomogeneously under the gauge

transformations. Note that for the Poincaré transformations (2.17) the inhomogeneous

term drops out of the transformation (2.23). The covariant derivative is per construction

a linear derivative operator obeying the Leibnitz rule, and becomes a partial derivative on

scalar fields. In General Relativity the connection Γρ
µν is usually uniquely determined by

the following two constraints:

• Metric compatibility, ∇ρgµν = 0,

• Zero torsion, Γρ
[µν] = 0.

5And also that the first derivative of the metric vanishes, whereas the second derivative does not.
6From the passive point of view, one went from one chart representing an observer with coordinates

{xµ}, to another chart representing an observer with coordinates {x′ρ(xµ)}. Both observers describe the

metric at the same point on the spacetime manifold M . From the active point of view we stay in the same

coordinate chart representing an observer, and move the point (event) in spacetime. These two pictures

are dual to each other, see e.g. appendix C.1 of [42].
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The first constraint consists of D2(D+1)
2 equations, whereas the second equation leaves

D2(D+1)
2 independent components for the connection. As such these two constraints im-

ply that the connection is uniquely determined by the metric and we can say that the

metric carries all the geometric information of the spacetime manifold. Because the met-

ric is invertible, metric compatibility also implies ∇ρg
µν = 0. The previously mentioned

counting shows that the two constraints can be solved uniquely for Γρ
µν by writing down

∇ρgµν − ∇µgνρ − ∇νgρµ = 0, giving the so-called Levi-Civita connection

Γρ
µν =

1

2
gρλ
(

∂µgλν + ∂νgλµ − ∂λgµν

)

, (2.24)

often denoted by the Christoffel symbols { ρ
µν}. Now, whereas partial derivatives commute,

for covariant derivatives one can check that

[∇ρ,∇σ]V µ = Rµ
νρσ(Γ)V ν (2.25)

for any vector V ν , where we have defined the Riemann tensor

Rµ
νρσ(Γ) = ∂ρΓµ

νσ − ∂σΓµ
νρ + Γλ

νσΓµ
λρ − Γλ

νρΓµ
λσ . (2.26)

This tensor describes the curvature of a manifold with zero torsion and metric compati-

bility, and is completely determined by the metric. It obeys the following identities:

Rµνρσ(Γ) = −Rµνσρ(Γ), Rµνρσ(Γ) = Rρσµν(Γ) ,

Rµ[νρσ](Γ) = 0, ∇[λRµν]ρσ(Γ) = 0 . (2.27)

The last identities are know as the Bianchi identities. Taking traces of the Riemann tensor

gives the corresponding Ricci tensor Rµν(Γ) and Ricci scalar R(Γ),

Rµν(Γ) = Rρ
µρν(Γ), R(Γ) = gµνRµν(Γ) . (2.28)

Having defined these curvatures we can make the statement that gravity is a manifestation

of spacetime curvature more precise. Originally Einstein derived the equations governing

spacetime dynamics by “covariantizing” the Poisson equation (2.14). More specifically,

he looked for a geometric reformulation of eqn.(2.14) which is invariant under general

coordinate transformations by the equivalence principle. The tensorial extension of the

mass density ρ in eqn.(2.14) is the energy-momentum 2-tensor Tµν , which is symmetric in

its indices and obeys the covariant conservation of energy and momentum, ∇µT
µν = 0.

The left hand side of eqn.(2.14), which is a second order differential equation in the Newton

potential Φ(x), should then generalize to a symmetric 2-tensor Gµν constructed out of the

Riemann tensor,7 obeying ∇µG
µν = 0. This Gµν can be found by using the Bianchi

identities of (2.27), and the result Gµν = Rµν(Γ) − 1
2R(Γ)gµν is known as the Einstein

7The Riemann tensor contains up to second order derivatives of the metric.
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tensor. The most general expression which one can then find obeying these demands are

the Einstein equations,

Rµν(Γ) − 1

2
R(Γ)gµν + Λgµν = κ2Tµν . (2.29)

The coupling constant κ2, depending on the spacetime dimension D, is determined via the

correspondence principle mentioned in the Introduction by the Newtonian limit in section

2.7, and Λ is the notorious cosmological constant allowed due to metric compatibility. The

Newtonian limit of eqn.(2.29) indeed gives the Poisson equation as will be checked later,

supplemented by the cosmological constant Λ. In a more formal approach the vacuum

equations of motion (2.29) with Tµν = Λ = 0 are derived from the action consisting of

the simplest scalar density one can write down involving second order derivatives of the

metric, namely

LEH =
√−gR(Γ) . (2.30)

The corresponding action is called the Einstein-Hilbert action, which can be supplemented

by a cosmological constant Λ. If matter is added via the matter Lagrangian Lmatter, one

obtains finally

S =

∫

dDx
√−g

( 1

κ2
R(Γ) − 2Λ + Lmatter

)

. (2.31)

The equations of motion are given by varying eqn.(2.31) with respect to the metric, giving

indeed eqn(2.29). Now the energy-momentum tensor Tµν is defined as

Tµν ≡ 2√−g
δSmatter

δgµν
, (2.32)

and is covariantly conserved due to the invariance of the action (2.31) under general coordi-

nate transformations, as can be easily shown. The Einstein equations (2.29) determine the

dynamics of the spacetime, in which we can consider fields, particles, strings, branes etc.

The path of a particle is determined by the postulate that particles move along geodesics,

neglecting the back-reaction such a particle can have on the spacetime geometry. Such a

geodesic is described by the equation

ẍρ + Γρ
µν ẋ

µẋν = 0 , (2.33)

where a dot denotes derivation with respect to the affine parameter τ and the connection

Γρ
µν is the Levi-Civita connection (2.24).

This review of General Relativity is for general spacetime dimensionD, but we mention

two special cases. For D = 2 the Einstein-Hilbert action is a topological term, and the

resulting Einstein equations Rµν = 1
2Rgµν are trivially satisfied. This can be checked via

the expression for the two-dimensional Riemann tensor:

D = 2 : Rµνρσ = Rg[µ[ρgσ]ν] . (2.34)
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For D = 3 one can check that the number of independent components of the Riemann

tensor, 1
12D

2(D2 − 1), equals the number of independent components of the Ricci tensor,
1
2D(D + 1). As such the Riemann tensor is completely determined by the Ricci tensor,

D = 3 : Rµνρσ = 4g[µ[ρRσ]ν] −Rg[µ[ρgσ]ν] , (2.35)

and the vacuum equations then leave no room for gravitational waves. As we will see in

section 2.7, this means that as a consequence the Newtonian limit in this case gives a

world without gravitational interaction between point particles. This doesn’t imply that

General Relativity in three dimensions is completely trivial, see e.g. [51].

2.5 The hole argument

Because this thesis is all about describing gravity by gauge theories, here we briefly discuss

the so-called hole argument. It was invented by a puzzled Einstein in order to show that

general covariance is incompatible with determinism and to justify his temporary reject-

ing of general-covariant field equations. The puzzle was solved by interpreting the general

coordinate transformations as gauge transformations [44, 107]. The argument makes the

implications of general covariance clear, and shows that events in a spacetime do not have

any physical meaning without the metric.

We will focus on the vacuum Einstein equations of General Relativity without cos-

mological constant, which determine the time-evolution of the metric in the absence of

matter and energy:

Gµν [gρλ(x)] = 0 . (2.36)

The metric is a tensor under general coordinate transformations xµ → x
′µ(xν), which is

expressed by eqn.(2.20). This transformation can be regarded in the active sense: the

coordinates {x} and {x′(x)} in eqn.(2.20) are defined in the same chart and as such refer

to different points [42]. Under the general coordinate transformation (2.20) the Einstein

equations (2.36) are covariant:

G′
µν [g′

ρλ(x′)] = 0 . (2.37)

Now imagine one has found a solution gµν(x) of (2.36). By covariance the transformed

metric g′
µν(x′) can be constructed via the coordinate transformation (2.20), which solves

eqn.(2.37). However, we can reset {x′} in g′
µν(x′) to its old value {x} giving g′

µν(x), which

also solves (2.37):

G′
µν [g′

ρλ(x)] = 0 . (2.38)

The following question now arises: as gµν(x) and g′
µν(x) seem to be two different metrics

in the same coordinate system, what is the relation between them? If gµν(x) and g′
µν(x)

are physically different, general covariance allows one to construct an infinite amount of
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physically new solutions g′
µν(x) from gµν(x), but with the same initial data.

For Einstein it was tempting to think that g′
µν(x) and gµν(x) are physically different,

because they look different. So for the moment let’s give in with this temptation and

consider a spacetime manifold M with a region H ⊂ M which is non-empy: H 6= ∅. The

points of M are interpreted as events. Now consider a general coordinate transformation,

such that

• outside H one has xµ = x
′µ,

• inside H one has xµ 6= x
′µ,

• on the boundary of H these two transformations are smoothly connected.

M

H

g′
µν(x) = gµν(x)

g′
µν(x) 6= gµν(x)

Figure D.1: The manifold M with the hole H. The coordinate transformation shifts only the

points inside the hole H. As such, g′
µν(x) 6= gµν(x) inside the hole, and g′

µν(x) = gµν(x) outside

the hole.

As such the region H is called a “hole”. Note that this argument can only be made

because the transformations involved are local.

The following subtlety then arised for Einstein: his equations describe the evolution of

the metric, and a set of initial data should suffice to determine the metric gµν(x) uniquely

through spacetime. Everything is fine outside the hole. But once the hole is entered, one

can suddenly use covariance to obtain from the metric gµν(x) the mathematically different

metric g′
µν(x), as is shown in fig.(2.5). If these two metrics are also different physically,

then covariance implies that the Einstein equations are not deterministic. Namely, the

same initial data results in different solutions inside the hole.

The solution to us is clear: g′
µν(x) and gµν(x) must be physically the same. One must

conclude that mathematically, points on a manifold can be distinguished without a metric,

but physically they cannot. Points (events) and their coordinates can only be physically

interpreted after one introduces a metric, and as such a spacetime always consists of a
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manifold M equipped with a metric structure. But in the hole argument one tacitly as-

sumes that the points, labeled by {xµ} and {x′µ}, have a meaning before the metric is

considered. This is deceiving and simply wrong. In this sense General Relativity must be

regarded as a gauge theory. If we write the general coordinate transformation infinitesi-

mally as δxµ = ξµ(x), on has the induced gauge transformation

δξgµν(x) ≡ g′
µν(x) − gµν(x) = 2∇(µξν) . (2.39)

Under this gauge transformation the vacuum Einstein equation Gµν = 0 is invariant.

Let’s consider the Schwarzschild metric, being a solution to the vacuum Einstein equa-

tions (2.36), as an example [106]. In spherical coordinates {t, r,Ω} = {t, r, θ, φ} the space-

time interval is written as8

ds2 = −
(

1 − 2M

r

)

dt2 +
(

1 − 2M

r

)−1
dr2 + r2dΩ2 . (2.40)

Then the following transformation is chosen:

t → t′ = t ,

r → r′ = f−1(r) ,

Ω → Ω′ = Ω , (2.41)

where the inverse is for notational convenience. The function f−1(r) has the following

properties:

• f−1(r) = r outside H,

• f−1(r) 6= r inside H,

• on the boundary of H these two transformations are smoothly connected.

As such the hole H is defined only by spatial coordinate transformations. Under the

transformation (2.41) the spacetime interval (2.40) becomes

ds′2 = −
(

1 − 2M

f(r′)

)

dt2 +
(

1 − 2M

f(r′)

)−1
(
∂f

∂r′
)2dr′2 + f2(r′)dΩ2 , (2.42)

which by covariance equals ds2.9

8We take G = c = 1 for convenience.
9This is just a choice to keep the argument as simple as possible; one could of course also involve the

time coordinate in the transformations.
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H

r′ 6= r

r′

r

f−1(r)

Figure D.2: The coordinate transformation which defines the hole H in spacetime [106].

Now choose r′ = r in eqn.(2.42) to get

ds̃2 = −
(

1 − 2M

f(r)

)

dt2 +
(

1 − 2M

f(r)

)−1
(
∂f

∂r
)2dr2 + f2(r)dΩ2 . (2.43)

The spacetime interval (2.40) corresponds to gµν(x), whereas the spacetime interval (2.43)

corresponds to g′
µν(x). Comparison shows that they are mathematically different inside

the hole,

ds2 6= ds̃2 r ∈ H . (2.44)

If we now consider an event with coordinate r inside the hole H, we could naively think

that for the metric with interval (2.40) the event is on a sphere with area 4πr2, while for

(2.43) the event is on a sphere with area 4πf(r)2. Also, for (2.40) the horizon seems to

be located at r = 2M , while for (2.43) the horizon is at f(r) = 2M . So the two metrics

seem to give physically different predictions. However, as we saw, this reasoning is wrong.

Only after writing the metric (2.43) we can interpret the coordinate r′ = f−1(r) and

the corresponding points on the manifold. The two metrics (2.40) and (2.43) must be

associated to two diffeomorphic spacetime manifolds, describing the same physics. So, the

moral of the story is:

“Thou shalt not speculate about an event

before the metric is on hand.”

Historically, we can conclude that Einstein was troubled because he didn’t recognize

the metric to be a gauge field under general coordinate transformations.

2.6 The vielbein formalism

Matter as we know it is described by fermions. These fermions are described by fields

transforming under spinorial representations of the Lorentz group. These fields are not

representations of the group of general coordinate transformations. To deal with these

spinor fields one needs to introduce the so-called vielbein formulation. We will see that

this vielbein gives at every spacetime point a map from spacetime to the tangent space,
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in which one can define arbitrary representations of the Lorent group. The vielbein for-

mulation of General Relativity will also be crucial when we regard the theory as a gauge

theory of the Poincaré group.

Up to now we have regarded tensors in a so-called coordinate basis {e(µ) = ∂µ}.

However, we can also introduce a new set of basis vectors {e(A)} which is orthonormal.

The relation between both bases is given by the so-called vielbein eµ
A via e(µ) = eµ

Ae(A).

Because the set {e(A)} is chosen to be orthonormal, we have the relation

gµνeµ
Aeν

B = ηAB . (2.45)

Likewise, we can define the inverse of eµ
A, denoted by eµ

A. The vielbein and its inverse

allow us to write

gµν = eµ
Aeν

BηAB, eµ
Ae

ν
Bgµν = ηAB . (2.46)

For this reason the vielbein is also called the ’square root of the metric’. Because eµ
A is

defined to be the inverse of eµ
A, we also have the relations

eµ
Aeµ

B = δA
B, eµ

Aeν
A = δν

µ . (2.47)

Notice that, using the vielbein, we have defined a coordinate frame in which the metric

locally looks flat. Physically, this frame corresponds to a freely-falling observer which does

not experience the effects of gravity; that such a choice of frame is possible is guaranteed

by the equivalence principle.

Now we are in a position to describe spinor fields in curved spacetime. Namely, the

vielbeine are maps, defined at every point, from the spacetime manifold to the tangent

space and vice versa. And it is in this tangent space that one can define the spinorial

representations of the Lorentz group. If spacetime is flat, we can choose eµ
A = δµ

A and

eµ
A = δµ

A, such that the distinction between curved indices {µ} and flat indices {A}
vanishes. In general, curved indices on tensors can be converted into flat indices and vice

versa via the vielbein. For example, the components of a vector can be rewritten via

eµ
AV µ = V A, eµ

BV
B = V µ . (2.48)

Given a set of vielbeins {eµ
A}, one has the freedom of performing a local Lorentz trans-

formation ΛA
B(x) without changing the metric gµν , as is clear from (2.46) and (2.19):

eµ
′A = ΛA

B(x)eµ
B . (2.49)

These local Lorentz transformations ΛA
B(x), being elements of SO(D − 1, 1), have

1
2D(D − 1) independent components, whereas the vielbein has D2 components, leaving
1
2D(D+ 1) independent components for the metric gµν(x). This is the right number for a
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symmetric two-tensor.

If we consider a tensor TAB...
CD... in the tangent space at a point, the partial derivative

∂µT
AB...
CD... does not transform homogenously under the group of local Lorentz transforma-

tions. We again introduce a connection ωµ
A

B, but this time in the tangent space, which

is called the spin connection:

∇µT
AB...
CD... = ∂µT

AB...
CD... − ωµ

A
FT

F B...
CD... − ωµ

B
FT

AF ...
CD... − . . .

+ ωµ
F

CT
AB...
F D... + ωµ

F
DT

AB...
CF ... + . . . . (2.50)

We can also consider the covariant derivative of tensors with both flat and curved indices.

The rule is that for every curved index one gets a Levi-Civita connection Γρ
µν , whereas

for every flat index one gets a spin connection ωµ
A

B. But a tensor should not depend

on our choice of basis. If we write e.g. the covariant derivative of a vector in both an

orthonormal basis and a coordinate basis and demand that they are equal, we obtain the

so-called vielbein postulate10

∇µeν
A = ∂µeν

A − Γρ
µνeρ

A − ωµ
A

Beν
B = 0 . (2.51)

Metric compatibility ∇ρgµν = 0 and the vielbein postulate together imply that the spin

connection is antisymmetric in {AB}. Note that from now on we won’t care anymore

about the position of the flat indices {A,B,C, . . .}, and simply write ωµ
AB. The viel-

bein postulate (2.51) can be uniquely solved for Γρ
(µν) in terms of the vielbein and spin

connection:

Γρ
(µν) = eρ

A

(

∂(µeν)
A − ω(µ

ABeν)
B
)

. (2.52)

The zero-torsion condition Γρ
[µν] = 0 then gives the additional constraint

∂[µeν]
A − ω[µ

ABeν]
B ≡ Rµν

A = 0 . (2.53)

Here we defined Rµν
A = eρ

AΓρ
[µν] for future convenience. The spin connection has as

many independent components as Rµν
A, namely 1

2D
2(D − 1), and the spin connection

only appears algebraically in Rµν
A multiplied by vielbeins. This means we can solve

(2.53) uniquely for the spin connection. Writing

Rµν
Aeρ

A +Rρµ
Aeν

A −Rνρ
Aeµ

A = 0 , (2.54)

we obtain the solution

ωµ
AB(e, ∂e) = 2eλ[A∂[λeµ]

B] + eµ
Ceλ Aeρ B∂[λeρ]

C . (2.55)

If we write an infinitesimal local Lorentz transformation as ΛA
B = δA

B + λA
B, where

λAB = λ[AB] because of (2.19), the spin connection transforms accordingly to

δωµ
AB = ∂µλ

AB + 2λC[Aωµ
B]C . (2.56)

10For an explicit derivation of this result, see e.g. [41].
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This follows from the explicit solution (2.55) via δeµ
A = λA

Beµ
B.

We conclude this section by coming back to the claim that the vielbein formalism

allows us to define spinorial fields in curved spacetime. If the
1
2D(D − 1) matrices11 {1

2ΓAB} form the spin-1
2 representation of the Lorentz algebra, a

spinor ψ transforms as

δψ =
1

4
λABΓABψ . (2.57)

The coviariant derivative on a spinor field ψ(x) is then defined via

∇µψ = ∂µψ − 1

4
ωµ

ABΓABψ , (2.58)

which we will denote by Dµψ, such that Dµψ is covariant with respect to local Lorentz

transformations. Of course, this can also be done for other representations of the Lorentz

algebra. For instance, the covariant derivative on the vector-spinor ψµ(x) is defined as

∇µψν = ∂µψν − 1

4
ωµ

ABΓABψν − Γλ
µνψλ

= Dµψν − Γλ
µνψλ . (2.59)

One can check that these covariant derivatives indeed transform tensorially under both

general coordinate transformations and the local Lorentz transformations.

2.7 The Newtonian limit of General Relativity

As was noted in the Introduction, the correspondence principle dictates that under certain

conditions the theory of General Relativity should reproduce Newton’s theory of gravity.

These certain conditions are known as the Newtonian limit, and for the point particle

with embedding coordinates {xµ(τ)} = {x0(τ) = ct, xi(τ)} in a Minkowski background

this limit is defined by three requirements:

• (1) ẋ0 ≫ ẋi,

• (2) gµν = ηµν + ǫfµν with ǫ << 1,

• (3) g0j = 0 and gµν = gµν(xi).

The first requirement means that the longitudinal “velocity” is much larger than the trans-

verse velocity, and captures the non-relativistic limit: the speed |v| of the particle is small

compared to the speed of light c, which we keep explicitly. Effectively this means that

one typically has O(ǫ) = O(v2

c2 ). The second requirement means that gravity is weak,

such that we can expand the metric around the Minkowski vacuum ηµν and only work at

first order in the perturbation fµν , or O(ǫ). The third requirement means that the line

11Spinor indices have been suppressed. The form of the matrices { 1
2
ΓAB} is given in appendix A.
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element is invariant under the transformation x0 → −x0, which corresponds to a static12

gravitational field.

First we consider the Newtonian limit for the geometry. The requirement of weak

curvature reads

gµν = ηµν + ǫfµν , gµν = ηµν − ǫfµν , ǫ << 1 , (2.60)

such that gµνg
νρ = δρ

µ + O(ǫ2). From now on we understand that all the objects we are

writing down are of order O(ǫ) and omit the expansion parameter ǫ. The expansion (2.60)

gives us for the connection and Ricci tensor

Γρ
µν =

1

2
ηρσ
(

∂µfνσ + ∂νfµσ − ∂σfµν

)

,

Rµν = ∂σΓσ
µν − ∂µΓσ

σν . (2.61)

This implies that the Einstein tensor becomes13

Gµν = Rµν − 1

2
Rηµν

= ∂σ∂(µfν)σ − 1

2
∂2fµν − 1

2
∂µ∂νf − 1

2
ηµν(∂σ∂ρfσρ − ∂2 f) . (2.62)

Now, to further simplify the linearized Einstein equations (2.62) we first define

f̄µν ≡ fµν − 1

2
f ηµν . (2.63)

With this definition the linearized Einstein equations become

−1

2
∂2f̄µν + ∂σ∂(µf̄ν)σ − 1

2
ηµν∂

σ∂ρf̄σρ = κ2Tµν . (2.64)

These equations can even be more simplified by using an infinitesimal coordinate trans-

formation xµ → x′µ = xµ − ξµ(x), which transforms the metric into

gµν(x) → g′
µν(x) = gµν(x) + 2∂(µξν)(x) , (2.65)

such that14

f → f ′ = f + 2∂λξλ ,

f̄µν → f̄ ′
µν = f̄µν + 2∂(µξν) − ηµν∂

λξλ ,

∂µf̄µν → ∂′µf̄ ′
µν = ∂µf̄µν + ∂2ξν . (2.66)

12A stationary spacetime admits a timelike Killing vector field, which means that one can always find a

coordinate system in which the metric is time-independent. A static spacetime has the same properties,

plus the additional requirement that gj0(x) = 0.
13Note that the trace f = ηµνfµν+O(ǫ2) is taken with respect to the Minkowski metric. We denote theD-

dimensional spacetime Laplacian ∂2 = ηµν∂µ∂ν , whereas the spatial Laplacian is denoted by ∆ = δij∂i∂j .
14The partial derivative is transformed as ∂′

µ = ∂µ + ∂µξ
λ∂λ, but because ξµ is infinitesimal and fµν is

considered to be a perturbation, they can both be considered to be of O(ǫ). This gives that at order O(ǫ)

one has ∂′µf̄ ′
µν = ∂µf̄ ′

µν . This also explains why the covariant derivative becomes a partial derivative in

the transformation (2.65).
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According to the last transformation one can obtain ∂′µf̄ ′
µν = 0 in the new coordinate

system by solving the equation

∂µf̄µν = −∂2ξν (2.67)

for the parameter ξν . As is common in gauge theories, this doesn’t completely fix the pa-

rameter ξν ; one can still perform gauge transformations which obey the harmonic condition

∂2ξν = 0. Dropping the primes, the linearized Einstein equations (2.64) then become quite

simple in this particular coordinate system,

∂2f̄µν = −2κ2Tµν . (2.68)

Eqn.(2.68) is the linear approximation of the Einstein equations in the gauge-choice (2.67),

and expresses the weak curvature approximation on the geometry.

Now we consider the Newtonian limit for the matter and energy distribution. For

that we take as energy momentum tensor one of non-interacting matter particles following

wordlines ẋµ(τ), or so-called dust. Such a dust is characterized by a proper matter density

ρ(xµ) and velocity ẋµ(τ). The energy momentum tensor reads

Tµν = ρ(xµ)ẋµẋν . (2.69)

In the non-relativistic limit v << c one has T00 = ρ(xµ)c2 showing therefore its interpre-

tation as an energy density, whereas the other components vanish, Ti0 = Tij = 0. The

static approximation states that effectively the matter density ρ = ρ(xi) does not depend

on time, and so ∂0fµν = 0. Plugging these two approximations into (2.68) gives

∆f̄00 = − 2κ2c2ρ , (2.70)

∆f̄kl =0 . (2.71)

If we demand that f̄kl vanishes at spatial infinity, then the solution of the second equation

is

f̄kl = 0 . (2.72)

This gives for the trace f̄

f̄ = ηµν f̄µν = −c−2f̄00 . (2.73)

Comparing (2.70) with the Poisson equation (2.14) relates f̄00 and the Newton potential

φ(x):

f̄00 =
−2κ2c2

G SD−2
φ(x) . (2.74)

Using that eqn.(2.63) implies that f̄ =
(

2−D
2

)

f , one can write

fµν = f̄µν +
1

2
ηµνf = f̄µν +

1

(2 −D)
f̄ηµν . (2.75)
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From this expression it is clear that D 6= 2, which is what we will assume in what follows.

From eqn.2.75 we obtain the components

f00 =
3 −D

2 −D
f̄00 = − 2κ2c2φ

G SD−2

3 −D

2 −D
, (2.76)

fij = − f̄00

2 −D
δij =

2κ2c2φ

G(2 −D) SD−2
δij , . (2.77)

Note that in the static and weak field approximation space is still curved, fij 6= 0.15

Now we turn to the geodesic equation. We will see that the assumption of non-relativistic

velocities imposes that only the term with Γµ
00 enters the geodesic equation. So even though

space is curved, due to the non-relativistic velocities of the test particles these particles will

not experience spatial curvature; all the terms containing ẋi-terms are beyond order O(ǫ).

Also, the assumption of static gravitational fields, ∂0fµν = 0, kicks out the time derivative

of the metric in Γµ
00 and puts Γ0

00 = 0. To be more concrete, in the non-relativistic limit

ẋµ(τ) ≈ (c, 0̄), the geodesic equation becomes

d2xµ

dτ2
+ Γµ

00

dx0

dτ

dx0

dτ
= 0 . (2.78)

The Christoffel symbol Γµ
00 reads

Γµ
00 = −1

2
ηµρ∂ρf00 . (2.79)

Because Γ0
00 = 0 as the gravitational field is static, the equations of motion for {x0} read

ẍ0 = 0. This allows for the (global) choice of static gauge t = τ . Using eqn.(2.76), one

can write

Γi
00 =

2κ2c2

G SD−2

D − 3

D − 2
δij∂jφ . (2.80)

With this the geodesic equation reduces to

d2xi

dt2
+

2κ2c4

G SD−2

D − 3

D − 2
δij∂jφ = 0 . (2.81)

Now, according to the correspondence principle eqn.(2.81) should reduce to ẍi + ∂iφ = 0.

Using (2.9), the coupling constant κ2 for D > 3 must then be given by

κ2 =
D − 2

D − 3

2π
D−3

2

Γ(D−1
2 )

G

c4
. (2.82)

E.g, κ2
4 = 8πG

c4 and κ2
5 = 3π2G

2c4 . From eqn.(2.81) it becomes clear that for D = 3 particles

are not influenced by gravity, which expresses the fact mentioned in section 2.4 that Gen-

eral Relativity for D = 3 does not have propagating degrees of freedom. So we can write

15This can be checked by taking the weak field limit of the Schwarzschild line element. Defining the

Newtonian potential as φ(r) = − GM
r

sourced by a mass M , the weak field limit of the Schwarschild

line element becomes ds2 = −
(

c2 + 2φ
)

dt2 +
(

1 − 2φ

c2

)

dr2 + r2dΩ2. Notice that the potential in the

grr-component is surpressed by a factor of c2 compared to the gtt-component.
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down Newtonian gravity for D = 3, but it cannot be considered to be the Newtonian limit

of General Relativity in three spacetime dimensions. The case D = 2 is not considered

because the Einstein equations are trivially satisfied; the Einstein-Hilbert action is for

D = 2 a topological term, see eqn.(2.34).

Having discussed the Newtonian limit of General Relativity, some comments should be

made. First, from the expression Γi
00 = ∂iφ and the transformation (2.23) one can deduce

how φ transforms under an infinitesimal coordinate transformation δx0 = 0, δxi = ξi(t) in

the static gauge, namely

δφ(x) = ξi∂iφ− xiξ̈
i , (2.83)

which is indeed the infinitesimal form of the transformation (2.16). Second, we consider a

massive particle with mass m << M moving in a gravitational potential due to a mass M ,

where the distance between m and M is r. In the Newtonian regime one then typically

has

mv2 ∼ GMm

r
, (2.84)

stating that the kinetic energy of the particle is of the same order as the gravitational

potential. If we denote the Schwarzschild radius by rs = 2GM
c2 , eqn.(2.84) implies that

v2

c2
∼ rs

r
. (2.85)

So we see that, keeping G fixed, we could interpret the expansion parameter ǫ in gµν =

ηµν + ǫfµν as ǫ = κ2, and regard the Newtonian limit as an expansion in c−2.16 Third,

the Newtonian limit depends heavily on the fact that one is considering point particles.

We will see in chapter 5 how to define a non-relativistic theory in which the Newtonian

potential φ is being replaced by a tensor potential depending on what kind of objects one is

considering in the gravitational field (particles, strings, branes, etc.). This will not be done

by taking a non-relativistic limit at the level of equations of motion. Instead, we will take a

so-called Inönü-Wigner contraction [54] on the symmetry algebra of the relativistic theory

without gravity, and apply a gauging procedure in order to obtain a non-relativistic theory

of gravity. Fourth, because one takes the Newtonian limit on the level of the field equations

a natural question to ask is what happens to the spacetime geometry. After being exposed

to General Relativity, it seems unnatural to leave the language of differential geometry,

because it is so succesful in describing gravity in the framework of Special Relativity. There

is no reason to believe that differential geometry cannot be used for Galilean Relativity. In

the next section we will discuss the metric structure of classical mechanics, which will be a

first step in reformulating Newtonian gravity into a metric theory, called Newton-Cartan.

This structure is obtained in the gauging procedure just mentioned. This Newton-Cartan

theory can also be obtained by performing the Newtonian limit on General Relativity in

which c−2 is treated as the expansion parameter [52].

16Note that all the time derivatives ∂0 are of order O(c−1).
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2.8 Galilean metrical structure

Looking at the theory of Special Relativity one can wonder which spacetime interval

is invariant under the Galilei group (2.1), giving the Newtonian spacetime a metrical

structure. To answer this question we rewrite the Galilean transformations (2.1) as

xµ → x
′µ = Λµ

νx
ν + ζµ , (2.86)

where now Λµ
ν is not an element of the Lorentz group, but

Λµ
ν =

∂x
′µ

∂xν
=

(

∂x
′0

∂x0
∂x

′0

∂xi

∂x
′i

∂x0
∂x

′i

∂xj

)

=

(

1 0

v A

)

.

A Galilei-invariant contravariant metric gµν should obey

Λµ
ρΛν

λg
ρλ = gµν . (2.87)

This gives the restrictions

gij = vivjg00 + 2v(iAj)
kg

0k +Ai
kA

j
lg

kl ,

g0j = vjg00 +Aj
kg

0k , (2.88)

which for general rotations and boosts are solved by

gµ0 = 0, gij = δij . (2.89)

To investigate the Galilei-invariance of a covariant metric g̃µν , where the tilde stresses

the fact that we cannot regard this metric as the inverse of gµν since this inverse is not

uniquely defined, we identify the inverse17 Λν
µ of Λµ

ν as

Λν
µ =

∂xµ

∂x′ν =

(

∂x0

∂x′0
∂x0

∂x′i

∂xi

∂x
′0

∂xi

∂x
′j

)

=

(

1 0

−A−1v A−1

)

.

Galilei-invariance of g̃µν is now expressed as

Λρ
µΛλ

ν g̃µν = g̃ρλ . (2.90)

This equation gives the constraints

g̃00 = g̃00 −Ak
ivkAl

jvlg̃ij −Ak
ivkg̃i0 ,

g̃i0 = Ai
kg̃k0 −Ai

kAm
lvmg̃kl ,

g̃ij = Ai
kAj

lg̃kl . (2.91)

These constraints are solved by

g̃i0 = g̃ij = 0 . (2.92)

17Notice that we use relativistic notation, Λν
µ ≡ [Λµ

ν ]−1.
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and leave only g̃00 as constant, nonzero entry. We now rename these metrics as

g̃µν ≡ τµν , gµν ≡ hµν . (2.93)

Scaling τ00 = 1, the two metrics which are Galilei-invariant then for D = 4 read explicitly

τµν =













1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0













, hµν =













0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1













.

As such we can only assign Galilei-invariant lengths to spatial separations via hµν or to

temporal separations via τµν . It is now clear that the Galilei group keeps invariant two

separate metrics hµν and τµν which are degenerate:18

hµντνρ = 0 . (2.94)

Having a metric structure, one can wonder whether it would be possible to describe Newto-

nian gravity as a metric theory, as in General Relativity. This degenerate metric structure

will indeed be the starting point of the theory of Newton-Cartan, which will be considered

in chapter 4.

2.9 Supersymmetry and Supergravity

As was mentioned in the Introduction, supersymmetry, which we will abbreviate as SUSY,

is a symmetry which relates bosons and fermions. In non-supersymmetric quantum field

theories both the “internal” symmetries, or gauge symmetries, and the spacetime symme-

tries are generated by elements of a Lie algebra which are bosonic. The O’Raifertaigh-

Coleman-Mandula theorem states that for interacting theories in more than two spacetime

dimensions these two classes of symmetries don’t talk to each other, i.e. they commute.

The intuitive reason for this is that enlarging the symmetries by making internal and space-

time symmetries non-commuting would constrain a field theory in such a way that the

individual momenta of particles would be conserved instead of the total momentum, and

hence there is no scattering. As such the total symmetry algebra of an ordinary quantum

field theory can be written as a direct sum of the Poincaré algebra and the gauge algebra.

The so-called Haag-Lopuszanski-Sohnius theorem [53] shows that the symmetries of four

dimensional quantum field theories can be extended with fermionic generators, giving the

SUSY algebra. This algebra is a so-called Z2-graded algebra, meaning that for bosonic

18In chapter 3 we will see that we can take a particular combination of the Newton-Cartan metrics and a

vector field mµ, namely hµν − 2m(µτν), which is also invariant under boosts. The vector field is the gauge

field of the central extension explained in section 3.4.
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generators B and fermionic generators F one has schematically

[B,B] = {F, F} = B ,

[B,F ] = F . (2.95)

Here { , } denotes an anticommutator. Such an algebra is also called a super-Lie algebra,

and circumvents the O’Raifertaigh-Coleman-Mandula theorem. In practice one can de-

fine interacting supersymmetric field theories for any spacetime dimension D = 1, . . . , 11;

higher dimensions forces one to consider multiplets with spin higher than two, which we

discuss at the end of this section. Here we will focus on the case of D = 4. The algebra

defining so-called minimal or N = 1 SUSY is an extension of the algebra which generates

the Poincaré transformations (2.17), called the super-Poincaré algebra. Besides Lorentz

transformations and spacetime translations, the algebra also includes supertransforma-

tions. It reads19

[PA, PB] = 0 , [PA, Q] = 0 ,

[MBC , PA] = −2ηA[BPC] , {Q , Q} = −1

2
ΓAC−1PA ,

[MCD,MEF ] = 4η[C[EMF ]D], [MAB, Q] = −1

2
ΓABQ . (2.96)

When we realize this algebra on the corresponding gauge fields, we use parameters λA
B

(Lorentz transformations), ζA (spacetime translations) and ǫ (supertransformations). Be-

cause the supercharge Q can be chosen to be a Majorana spinor, and a Dirac spinor in 4

dimensions has 2D/2 = 4 complex components, the Q’s (and their corresponding param-

eters ǫ) have 4 real components. The commutator [PA, Q] = 0 tells us that the SUSY is

rigid, i.e. the parameters are constant, and the commutator [MAB, Q] tells us that the

supercharge Q transforms as a spinor. As such these two commutators are fixed. The

interesting commutator however is {Q , Q} ∼ P , which often is described by saying that

“the square of a supertransformation is a spacetime translation”, connecting the super-

transformations between fermions and bosons with their spacetime transformations. It

can be motivated in several ways, but the most straightforward way is to check the graded

Jacobi identities

(−1)ac[A, [B,C]] + (−1)ab[B, [C,A]] + (−1)bc[C, [A,B]] = 0 , (2.97)

where a, b, c ∈ Z2 are the gradings of the generators A,B,C respectively, and where an

anticommutator for two fermionic generators is implicitly understood. Writing

{Q , Q} = c1ΓAC−1PA + c2ΓABC−1MAB (2.98)

19For our spinor conventions, see appendix A.2. We don’t write spinor indices explicitly here. Notice

that the C−1-matrix in the commutator {Q , Q} is used to pull down a spinor index on ΓA.
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for two coefficients c1 and c2, the Jacobi identity (2.97) then shows that c1 = −1
2 and

c2 = 0. For any supersymmetric field theory, all the fields then fall into irreducible

representations of the algebra (2.96) called supermultiplets. The commutator [MAB, Q]

implies that the states in such a multiplet differ in helicity/spin λ by steps of 1/2. The

multiplets are usually analyzed by writing down the {Q,Q}-commutator in the rest frame

for which we need the equations of motion, which makes the analysis on-shell. First one

can analyze the massive case. The fact that PAP
A is a Casimir means that all the states

in a multiplet have the same mass m. Choosing C = Γ0, in the rest frame PA = (m, 0, 0, 0)

one then obtains

{Q,Q} =
1

2
m1 . (2.99)

By rescaling Q with a factor
√

2/m, the anticommutator (2.99) describes a Clifford algebra

in 4 Euclidean dimensions, having 24/2 = 4 states. The analog of Γ5 in this Clifford

algebra is Q1Q2Q3Q4, which is an operator acting on states of which the eigenvalue tells

you whether this state is fermionic or bosonic. Being traceless and Hermitian, it has two

eigenvalues equal to +1, and two eigenvalues equal to −1, which is the statement that

on-shell a supermultiplet contains an equal number of bosonic and fermionic degrees of

freedom. For massless multiplets one can choose the frame PA = (E, 0, 0, E), which gives

{Q,Q} =
1

2
E(1 + Γ03) . (2.100)

Because Γ03 is traceless and squares to one, the matrix (1+Γ03) has two eigenvalues equal

to +2, and two eigenvalues equal to 0. This splits the algebra into two parts, of which the

non-degenerate part gives again a Clifford algebra as in the massive case, but now in two

dimensions. Half of these states are fermionic, and half of them are bosonic.

One can also write down N > 1 versions of the algebra (2.96) by considering N
supercharges Q(i), which changes the {Q,Q} commutator in the algebra (2.96) into

{Q(i) , Q(j)} = −1

2
δi

jΓAC−1PA . (2.101)

In practice this means that a supermultiplet is a combination of several N = 1 multiplets.

For these extended SUSY algebras one can also introduce so-called central extensions, a

concept we will address in section 3.4 and which we will use for the N = 2 algebra in

chapter 6.20

Having seen the successes of gauge theories in the Standard Model, a natural thing to

try is to gauge the SUSY algebra (2.96), which amounts to making all the corresponding

parameters spacetime-dependent. The commutator {Q , Q} ∼ P then implies that we

20In that chapter we will denote the two parameters of the supertransformations by ǫ±, for reasons that

will become clear.
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also obtain local spacetime translations as a symmetry. These local translations, which

are described by parameters ζA(x), smell like general coordinate transformations, which

are the symmetries of General Relativity. Of course, local translations are not exactly

equivalent to general coordinate transformations, but it turns out that upon using cur-

vature constraints a local translation can be rewritten as a sum of a general coordinate

transformation and other symmetry transformations; see the remarks after eqn.(B.10).

As such the local translations are effectively removed from the algebra, leaving us with

general coordinate transformations, local Lorentz transformations and local supertrans-

formations. So the important lesson to learn is that gauging SUSY introduces gravity in

our theory! This statement can indeed be made more precise, and the resulting theory

is minimal (N = 1) Supergravity.21 The corresponding gauge field of the generator Q is

the vector-spinor ψµ called the gravitino, and the gravitational supermultiplet of N = 1

supergravity then consists of the metric and one gravitino. Unlike N = 1 supergravity,

the transformation rules of N = 2 supergravity cannot be obtained by a direct gauging

of the corresponding SUSY algebra. The theory contains two gravitino states |λ = 3/2〉
and one vector state |λ = 1〉. An easy way to see this is to denote the graviton state by

|λ = 2〉 (of which there is only one), and note that schematically

Q(1,2)|λ = 2〉 = |λ = 3/2〉 ,
Q(1)Q(2)|λ = 2〉 = −Q(2)Q(1)|λ = 2〉 = |λ = 1〉 . (2.102)

A supermultiplet always contains an equal amount of fermionic and bosonic degrees of

freedom; this is necessary to realize SUSY (see e.g. [46]). Often these amounts will only

be equal by using the equations of motion for the fields. Such a closure of the symmetries

is called ’on-shell closure’. An on-shell counting for the graviton, i.e. by using the grav-

itational field equations, shows that the graviton has two degrees of freedom. The two

gravitini together have 2 × 2 = 4 on-shell degrees of freedom [12]. Comparison of these

two numbers shows that one needs 4 − 2 = 2 extra bosonic degrees of freedom to realize

on-shell closure of SUSY on the fields. These two bosonic degrees of freedom are provided

by one vector field. Similarly, N -extended supergravity will contain, among others, N
gravitini ψ

(i)
µ , and hence extra bosonic fields.

Finally, we discuss the bound on the spacetime dimension D and amount of SUSY N
for Supergravity theories. Untill now there are no consistent Supergravity theories with

massless fields having spin larger than two due to the fact it is not known how to describe

consistent couplings of these higher spin fields to gravity [56], see also e.g. [57, 58]. This

leads to the bound N ≤ 8 and D ≤ 11.22 To show this, let’s consider N = 1 supergravity

in D = 12. In D = 12 one can choose the supercharge Q to be a Majorana or Weyl spinor

21For a very nice introduction to Supergravity, see [55].
22This is under the assumption of one timelike direction.
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(but not both). This means that the number of real components of Q is 212/2 = 64. In the

massless case this gives us, following the remarks after eqn.(2.100), 64/2 = 32 raising and

lowering operators, of which half of them will lower the helicity/spin. This means these

lowering operators take us from |λ = +4〉 to |λ = −4〉, giving fields with helicity/spin

larger than two. Increasing D or N only makes the problem worse. For this reason the

only consistent Supergravity theories are known to exist for D ≤ 11, where the D = 11

case has an amount of supersymmetry N = 1.23 A similar argument explains the bound

on N .

23We will see in chapter 6 that a non-trivial, non-relativistic notion of supersymmetry requires that

N > 1. With non-trivial we mean that two SUSY-transformations give a local (space or time) translation.

The reason is that for N = 1 the SUSY-transformations decouple from the local translations, giving only

a central charge transformation. This suggests that in order for non-relativistic supergravity theories as

limits of their relativistic counterparts to be non-trivial, we have the bound D ≤ 10.
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Chapter 3

Particles and strings

In this chapter the dynamics of particles, strings and branes will be discussed. To obtain

a proper understanding of the notion of symmetries of these objects, sigma models will be

treated. After that particles and strings will be described in terms of these sigma models,

both relativistic and non-relativistic. We will see that the difference between relativistic

and non-relativistic particles and strings lies in their target space symmetries, whereas

their world-volume symmetries are the same.

3.1 Symmetries and sigma models

First some attention is beying paid to non-linear sigma models and their symmetries

[12, 59, 60]. These models have a wide range of applications in physics, from the strong

interaction and condensed matter systems to String Theory. This more general discussion

will turn out to be useful if we consider particles and strings and their gravitational inter-

actions.

A non-linear sigma model is defined in a (p + 1) dimensional world-volume Σ with

metric γᾱβ̄(σ), with a collection of D scalar fields {φµ(σ)} on a target space N with

metric gµν(φ). The dynamics of such a model is described by the following action:

S = T

∫

Σ
dp+1σ

√−γ gµν(φ)∂ᾱφ
µ∂β̄φ

νγᾱβ̄(σ) . (3.1)

Here γ = det(γᾱβ̄) and T is a coupling constant. The world-volume symmetries of this

action are

δφµ = ξᾱ∂ᾱφ
µ ,

δγᾱβ̄ = ξǭ∂ǭγᾱβ̄ + ∂ᾱξ
ǭγǭβ̄ + ∂β̄ξ

ǭγᾱǭ ,

δ
√−γ = ∂ᾱ

(√−γξᾱ
)

, (3.2)

with appropriate boundary conditions on the world-volume vector ξᾱ. These world-volume

symmetries do not depend on the target space background gµν(φ).
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N

Σ

γᾱβ̄(σ)

gµν(φ)

φµ(σ)

Figure 3.1: The sigma model. The D scalar fields φµ(σ) : Σ → N provide maps from a world-

volume Σ to a target space N .

We will now focus on the target space symmetries. There is an interesting interplay

between the world-volume and target space [60]. Although on the target space the metric

gµν(φ) is a background, from the world-volume point of view this background can be

regarded as an (infinite) set of coupling constants which couples the fields {φµ(σ)} and

their derivatives {∂ᾱφ
µ(σ)}, as can be seen by performing a Taylor expansion of gµν(φ)

around φµ = 0. Under a general coordinate transformation on the target space we have

φµ → φ
′µ(φν), g′

µν(φ′) =
∂φρ

∂φ′µ

∂φλ

∂φ′ν gρλ(φ) , (3.3)

which is just a reformulation of (2.20). We interpret this transformation as a field redefi-

nition of φµ(σ), accompanied by a field redefinition of the background gµν(φ). The action

(3.1) is invariant under these two redefinitions, and thus eqn.(3.3) constitutes a symmetry

of the theory. However, because we changed both the fundamental fields φµ(σ) and the

background gµν(φ), the transformation (3.3) is called a pseudo-symmetry of the target

space. These pseudo-symmetries don’t have Noether charges associated to them.1

Proper symmetries of the target space on the other hand are defined by those transfor-

mations which act only on the fundamental fields φµ(σ), and do have associated Noether

charges. We will refer to these symmetries as the isometries of the target space. Infinites-

imally we write

δφµ = −kµ(φ) . (3.4)

The change in the metric gµν(φ) due to the transformation (3.4) is given by

δgµν(φ) = gµν(φ− k) − gµν(φ)

= −kρ∂ρgµν(φ) . (3.5)

1Note that general covariance (or “invariance under diffeomorphisms”) of the Einstein equations implies

that the energy-momentum tensor is covariantly conserved, as was noted after eqn.(2.32). As such the

general coordinate transformations are not pseudo-symmetries anymore, because in the Einstein-Hilbert

action we consider the metric to be the fundamental field.
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The transformation (3.4) also implies

δ
(

∂ᾱφ
µ
)

= ∂ᾱ

(

δφµ
)

= −∂ᾱk
µ(φ) = −∂ᾱφ

ν∂νk
µ , (3.6)

where we used the fact that δ and ∂ᾱ commute as we keep the world-volume coordinates

{σᾱ} fixed, and the chain rule. Varying the action (3.1) and using the transformations

(3.5) and (3.6), it follows that the transformation (3.4) constitutes a proper symmetry

only if the Lie derivative of gµν(φ) with respect to kρ vanishes:

Lkgµν(φ) = 2∇(µkν) = 0 . (3.7)

With the isometry transformation (3.4) we can associate a conserved world-volume current

jᾱ =
∂L

∂(∂ᾱφµ)
kµ . (3.8)

Using the conservation equation ∇ᾱj
ᾱ = 0, the Noether charge Q[k] associated to the

Killing vector k can be obtained by integrating over a spatial world-sheet section with

coordinates {σ1̄, . . . , σp̄}:

Q[k] =

∫

dpσj0̄ . (3.9)

This language of fundamental fields, backgrounds, world-volumes, target spaces, pseudo

symmetries and proper symmetries will now be used in analyzing particles and strings,

both relativistically and non-relativistically.

3.2 Relativistic point particles

We saw that the spacetime metric gµν(x) is determined by the Einstein equations (2.29),

whereas the particle’s trajectory is determined by the geodesic equation (2.33). We can also

regard such a particle in terms of a p = 0 sigma model. The world-volume then collapses

to a wordline, and the target space becomes the spacetime M of General Relativity. We

therefore relabel the fields in (3.1) as follows:

σᾱ → τ,

φρ(σ) → xρ(τ) . (3.10)

The D fields xρ(τ), describing the path of the particle, are regarded as fundamental world-

line fields. However, to describe massive particles the sigma model must be modified

because the equation of motion for the world-volume metric implies that the particle

follows a light-like geodesic. To achieve this, the sigma model action (3.1) can be modified

such that it gives the same equations of motion as the usual point particle action and has

a sensible massless limit. To show this, a mass term is added to the p = 0 sigma model

action (3.1):2

S =
1

2

∫ τf

τi

(

e−1gµν(x)ẋµẋν − em2c2
)

dτ , (3.11)

2Here e(τ) =
√

−γ0̄0̄(τ).
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where c is the speed of light. The einbein e(τ) is a world-line scalar density, as is clear

from the world-volume transformations (3.2). Using the (algebraic) equation of motion

for the einbein,

e(τ) = (mc)−1
√

−gµν ẋµẋν , (3.12)

and plugging this solution back into the action (3.11), one recovers the familiar massive

point particle action

S = −mc
∫ τf

τi

√

−gµν ẋµẋνdτ . (3.13)

The action (3.11) (and (3.13)) is world-line reparametrization invariant, as we expect from

a sigma model.3

We now turn to flat backgrounds, i.e. we take gµν = ηµν in (3.13):

S = −mc
∫ τf

τi

√

−ηµν ẋµẋνdτ . (3.14)

The corresponding Lagrangian L is invariant under the target space transformations

δxµ = λµ
νx

ν + ζµ , (3.15)

which are just the Poincaré transformations. The action is invariant under infinitesimal

world-line reparametrizations δτ = ξ(τ),

δS = −mc
(

ξ
√

−ηµν ẋµẋν
)∣

∣

∣

τf

τi

= 0 , (3.16)

because of the boundary conditions ξ(τi) = ξ(τf ) = 0. The canonical momenta pµ read

pµ =
∂L

∂ẋµ
=

mcẋµ
√

−ηµν ẋµẋν
, (3.17)

where L is the Lagrangian. Varying the action (3.14) then gives the equations of motion

d

dτ

( mcẋµ
√

−ẋµẋµ

)

= ṗµ = 0, or ẍµ =
L̇

L
ẋµ . (3.18)

Now, the components of the canonical momentum (3.17) are not independent. One can

see from their expression that the constraint

V0 ≡ pµp
µ +m2c2 = 0 (3.19)

holds. This is called a primary constraint, because it is satisfied due to the definition of

pµ, without using the equations of motion. The origin of this primary constraint is that

the relation pµ(ẋν) is not invertible; the Jacobian matrix

∂pµ

∂ẋν
=

∂2L

∂ẋµ∂ẋν
(3.20)

3Note that upon writing the metric as gµν = eµ
Aeν

BηAB , the action (3.13) is also invariant under

infinitesimal local Lorentz transformations in the tangent space applied on the vielbein, δeµ
A = λA

Beµ
B .
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has one eigenvector with zero eigenvalue, namely ẋµ, stating that the determinant of

the Jacobian matrix (3.20) vanishes. The canonical Hamiltonian corresponding to the

Lagrangian (3.14) also vanishes:

Hcan = pµẋ
µ − L = 0 , (3.21)

which means that all the dynamics is captured by (3.19). This is to be expected; the

canonical Hamiltonian describes the τ -evolution of the system, but the action is invariant

under τ -reparametrizations. As such the parameter τ is not a dynamical degree of freedom,

but a gauge degree of freedom. The total Hamiltonian is then defined to be

H = Hcan + λ0(τ)V0 = λ0(τ)[pµp
µ +m2c2] , (3.22)

where λ0(τ) is a Lagrange multiplier.

In the first order formalism the coordinates {xµ} and momenta {pµ} are a priori

independent. We rewrite the Lagrangian as

L = pµẋ
µ −H = pµẋ

µ − λ0(τ)[pµp
µ +m2c2] . (3.23)

Hamilton’s equations for {xµ}, {pµ} and λ0(τ) respectively then read

ṗµ = 0 ,

ẋµ = 2λ0(τ)pµ ,

pµp
µ +m2c2 = 0 . (3.24)

Unlike in the second order formalism, here we can express ẋµ in terms of pµ due to the

Lagrange multiplier λ0(τ). Comparison with (3.18) and (3.19) shows the equivalence.

The choice λ0(τ) = (2m)−1 in this first order formalism corresponds in the second order

formalism to
√

−ηµν ẋµẋν ≡ c → ηµν ẋ
µẋν = −c2 . (3.25)

This means that for this choice the evolution parameter τ becomes an affine parameter of

the particle and that the particle moves on a timelike geodesic. In terms of the world-line

theory this choice corresponds to taking the induced world-line metric γ0̄0̄ = ηµν ẋ
µẋν to

be constant. The Hamilton equations of motion (3.24) can then be written as

ẍµ = 0, pµp
µ +m2c2 = 0 , (3.26)

which are the geodesic equation in flat spacetime plus the relativistic energy-momentum

relation.
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3.3 Non-relativistic particle without gravity

We next consider the action of a non-relativistic free particle,4

S =
m

2

∫ τf

τi

ẋiẋi

ẋ0
dτ . (3.27)

This action defines a one-dimensional field theory, where the fundamental fields are given

by {x0(τ), xi(τ)}. The Lagrangian is invariant under world-line reparametrizations τ →
τ ′(τ). These transformations constitute the world-line symmetries, and it explains the

appearance of {ẋ0} in the denominator of the Lagrangian of (3.27). The target-space

symmetries are given by the Galilei transformations (2.1), which infinitesimally read

δHx
0 = ζ0 ,

δJx
i = λi

jx
j , δGx

i = λix0, δPx
i = ζi . (3.28)

These transformations constitute the proper symmetries of the theory. An important

observation is that the Lagrangian transforms as a total derivative under boosts, a fact

which we will treat in the next section. One can define the canonical momenta p0 and pi:

p0 =
∂L

∂ẋ0
= −m

2

ẋiẋi

(ẋ0)2
, pi =

∂L

∂ẋi
= m

ẋi

ẋ0
. (3.29)

These momenta obey the primary constraint

V0 = pipi + 2mp0 = 0 , (3.30)

which should be recognized as the non-relativistic dispersion relation. Varying the action

(3.27) with respect to {x0} and {xi} respectively gives the equations of motion

ṗ0 = 0, ṗi = 0 → ẍi =
ẍ0

ẋ0
ẋi . (3.31)

The equations of motion for {x0} and {xi} are not independent; from the primary con-

straint (3.30) one can already see that ẋiṗi = 0 implies ṗ0 = 0. Due to the world-

line reparametrization invariance of the action (3.27) the canonical Hamiltonian Hcan =

pµẋ
µ − L vanishes, and so we can write

H = Hcan + λ0(τ)V0 = λ0(τ)
(

pipi + 2mp0

)

, (3.32)

with λ0(τ) a Lagrange multiplier. In the first order formalism the Lagrangian of (3.27)

becomes

L = p0ẋ
0 + piẋ

i −H

= p0ẋ
0 + piẋ

i − λ0(τ)
(

pipi + 2mp0

)

. (3.33)

4Note that we use curved indices {0, i} for notational convenience.
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To show the equivalence between the Lagrangians (3.33) and (3.27) we calculate Hamilton’s

equations of motion for {x0}, {xi}, {p0}, {pi} and λ0(τ) respectively:

ṗ0 = 0, ṗi = 0 ,

ẋ0 = 2mλ0, ẋi = 2λ0p
i ,

pipi + 2mp0 = 0 . (3.34)

Due to its linear appearance the conjugate momentum {p0} acts as a Lagrange multiplier.

From the third and fourth equation we can eliminate λ0 to get

pi = m
ẋi

ẋ0
, (3.35)

which equals the conjugate momentum {pi} in eqn.(3.29). Choosing the Lagrange multi-

plier as λ0 = (2m)−1 corresponds to

ẋ0 = 1 , (3.36)

which implies the static gauge x0 = τ up to a constant.

A natural question to pose is if one could add a term to the Lagrangian of (3.27) such

that the Lagrangian is invariant under the Galilei transformations, instead of transforming

into a total derivative. This feature, in which the Lagrangian transforms into a total

derivative, is known as quasi-invariance of the Lagrangian. In an attempt to make the

Lagrangian invariant, a total τ -derivative ḟ(x, ẋ) can be added to the Lagrangian,

L → L+ ḟ(x, ẋ) , (3.37)

without changing the equations of motion. To make the Lagrangian invariant under the

Galilei transformations, the function f(x, ẋ) must then obey the constraints

δH ḟ(x, ẋ) = δP ḟ(x, ẋ) = δJ ḟ(x, ẋ) = 0,

δGf(x, ẋ) = −mxiλi . (3.38)

Using the infinitesimal Galilei transformations (3.28), these constraints become

δHf = ζ0 ∂f

∂x0
= cst. ,

δP f = ζi ∂f

∂xi
= cst. ,

δJf = λi
jx

j ∂f

∂xi
+ λi

j ẋ
j ∂f

∂ẋi
= cst. ,

δGf = λix0 ∂f

∂xi
+ λiẋ0 ∂f

∂ẋi
= −mλix

i . (3.39)

This set of differential equations does not have a solution for f(x, ẋ), as can be easily

checked. However, there is another way to make the Lagrangian invariant: we can extend
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Newtonian spacetime by an extra coordinate s ∈ R and consider5

Lext =
m

2

( ẋiẋi

ẋ0
+ 2ṡ

)

. (3.40)

Per construction the extra coordinate {s} obeys

δGs = −λix
i, δHs = cst., δP s = cst., δJs = 0 , (3.41)

such that the Lagrangian (3.40) is invariant under the Galilei group. Note that the mass

m plays the role of the conjugate momentum to {s}.

3.4 Central extensions

Central extensions are perhaps best known for their appearances when quantizing a clas-

sical theory. For example, classical String Theory exhibits a conformal symmetry on the

world-sheet, generated by the so-called Witt or Virasoro algebra. If one quantizes the

string, normal-ordering ambiguities in the word-sheet fields dictate a central extension for

this algebra. However, (central) extensions also show up in classical physics whenever the

Lagrangian transforms as a total derivative under certain symmetry transformations [85].

For a point particle this means that δL = Θ̇ for some function Θ(xµ). This is precisely the

case for the action (3.27). This action is invariant under the Galilei transformations (2.1),

which infinitesimally are given by eqn.(3.28). However, the Lagrangian L transforms as a

total derivative under an infinitesimal Galilean boost:

δL =
d

dτ

(

mxiλ
i
)

= Θ̇, Θ = mxiλ
i . (3.42)

Due to this the Noether charge belonging to the Galilean boosts becomes QG = piδxi−Θ =

mẋiλix0 − mxiλ
i. The Noether charges belonging to the Galilei transformations (3.28)

are then given by

QH = p0ζ
0, QJ = piλ

i
jx

j QP = piζ
i, QG = piλ

ix0 −mxiλi . (3.43)

Using the Poisson brackets

{F , G}P B =
∂F

∂xµ

∂G

∂pµ
− ∂F

∂pµ

∂G

∂xµ
(3.44)

such that {xµ, pν}P B = δµ
ν , the symmetry transformations (3.28) are generated by the

Noether charges via the Poisson brackets:

δXx
µ = −{QX , x

µ}P B . (3.45)

5The construction of a Lagrangian which is invariant under a group of symmetries can be done more

rigorously by using the formalism of Maurer-Cartan forms.
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For example, δPx
i = −{QP , x

i}P B = ζi. The Poisson brackets of the Noether charges

(3.43) also obey the Lie algebra with structure constants fZ
XY generating the symmetries

of the action (3.27),

{QX , QY }P B = fZ
XYQZ , (3.46)

and the Jacobi identities. This hints to the centrally extended Galilei algebra, which is

known as the Bargmann algebra. Namely, one may verify that the Poisson bracket of

the Noether charge QG corresponding to infinitesimal Galilei boosts δxi = λi with the

Noether charge QP corresponding to infinitesimal spatial translations δxi = ζi indicates

the existence of the central generator Z:

{QG, QP }P B = −mζiλ
i . (3.47)

With this it is clear that the Z generator is needed to obtain massive representations of

the Galilei algebra.

Another place where central extensions are found is in extended supersymmetry alge-

bras, which was already mentioned in section 2.9. One can use the graded Jacobi identities

(2.97) to show that the N = 2 algebra in D = 4 allows for the two central extensions V

and Z in the following way:

{Q(i) , Q(j)} = −1

2
δijΓAC−1PA +

1

2
εij(Γ5Z + iV )C−1, i, j = 1, 2 . (3.48)

Here εij is the two-dimensional epsilon symbol. Being central extensions means that V

and Z commute with all the other generators of the supersymmetry algebra, making

them Lorentz scalars. From a field theory point of view these central extensions allow

one to introduce massive multiplets without completely breaking the supersymmetry, see

e.g. [48]. We will use the central extension Z in chapter 6 to introduce the notion of

non-relativistic supersymmetry.

3.5 Non-relativistic particle with gravity

One can introduce Newtonian gravity for the point particle by coupling a potential φ(x)

to the field {ẋ0}:

L =
m

2

(δij ẋ
iẋj

ẋ0
− 2ẋ0φ(x)

)

. (3.49)

The transformations we now consider are (2.16), which infinitesimally read

δHx
0 = ζ0 ,

δFx
i = ξi(x0), δJx

i = λi
jx

j . (3.50)

Here ξi(x0) is an arbitrary differentiable function describing an arbitrary time-dependent

acceleration. Under spatial rotations J and temporal translations H the Lagrangian is
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invariant. Under an acceleration F the Lagrangian transforms as

δFL = m
( ẋiξ̇i

ẋ0
− ẋ0δFφ(x)

)

= m
( d

dτ
(
xiξ̇i

ẋ0
) − d

dτ
(
ξ̇i

ẋ0
)xi − ẋ0δFφ(x)

)

. (3.51)

So if we choose6

δFφ(x) = − 1

ẋ0

d

dτ
(
ξ̇i

ẋ0
)xi , (3.52)

the Lagrangian is quasi-invariant under (3.50). However, these symmetries are pseudo-

symmetries of the theory. The reason is that the transformation (3.52) of the potential

φ(x), which can be considered as a background field, is not induced by the fundamental

fields {xi(τ)},

δFφ(x) 6= ∂φ

∂xi
δFx

i . (3.53)

As such the transformation (3.52) expresses covariance of the theory under arbitrary accel-

erations, and therefore these transformations don’t have corresponding Noether charges.

Calculating the momenta {p0} and {pi}, the primary constraint (3.30) is replaced by

V0 = pipi + 2mp0 − 2m2φ(x) = 0 , (3.54)

from which it is clear that the equations of motion for {x0} and {xi} are not independent.

To calculate the Lie algebra which generates (3.50) we write {x0 = t} for convenience and

expand the translation parameter ξi(t) as follows:

ξi(t) =
N
∑

n=0

1

n!
ai

(n)t
n ≡

N
∑

n=0

ξi
(n), N → ∞ . (3.55)

An infinitesimal translation on the transverse coordinate {xi} is then written as

δF (n)xi =
1

n!
ai

(n)t
n . (3.56)

The non-zero commutators of the corresponding (infinite dimensional!) Lie algebra are

then easily calculated to be

[H,F
(n)
i ] = F

(n−1)
i , F

(−1)
i = 0 ,

[Jij , F
(n)
k ] = −2δk[iF

(n)
j] ,

[Jij , Jkl] = 4δ[i[kJl]j] . (3.57)

6Note that here and the in following chapter we leave out the push-forward term in the infinitesimal

transformation of the Newton potential, i.e. we define the variation δ from now on as δΦ(x) ≡ Φ′(x′)−Φ(x)

because we are interested in the covariance of the action (3.49) under the field redefinition of the embedding

coordinates. In [43] this variation is denoted as δ̃. Note also that in the transformation (2.83) we used

the conventional definition of the variation. The difference between these two definitions is merely the

earlier-mentioned push-forward term.
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Notice that we don’t require N to be finite in the expansion (3.55) in order for the algebra

to close. It is also clear that the translations commute and do not allow for a central

extension. This can be understood from the Jacobi identities of this algebra as follows.

Imagine that we keep N in eqn.(3.55) finite. For N = 1 we get the Galilei algebra, for

N = 2 a constant-acceleration extended Galilei algebra [61], etc. Then the Jacobi identities

imply that the only possible central extension C in the translations is between

[F (N), F (N−1)] ∼ CN,N−1 . (3.58)

This can be seen by looking at the following sequence:

[H, [F (0), F (1)]] + cycl = 0

[H, [F (0), F (2)]] + cycl = 0 → C0,1 = 0

[H, [F (1), F (2)]] + cycl = 0 → C2,0 = 0

[H, [F (1), F (3)]] + cycl = 0 → C1,2 = 0

... (3.59)

Because we send N → ∞ in eqn.(3.55) as the accelerations are arbitrary differentiable

functions of the time {t}, the central extension drops out, and hence

[F
(n)
i , F

(m)
j ] = 0 . (3.60)

From this analysis and checking all the Jacobi identities it is clear that indeed the Galilei

algebra (for which N = 1) does allow for a central extension giving the Bargmann algebra,

whereas the algebra (3.57) does not allow for such a central extension.

3.6 Relativistic strings

We now go from particles, which were considered to be one-dimensional sigma models, to

strings, which are two-dimensional sigma models. The relativistic string in an arbitrary

target space background gµν(x) is described by the Nambu-Goto action

S = −T
∫

Σ
d2σ

√−γ, γᾱβ̄ = ∂ᾱx
µ∂β̄x

νgµν(x) , (3.61)

where γ = det(γᾱβ̄) is the determinant of the induced world-sheet metric γᾱβ̄. The ge-

ometric interpretation of this Nambu-Goto action is that it is proportional to the area

which the world-sheet Σ traverses in the target space. This action can be obtained from

the sigma model action (3.1) by using the equations of motion for the world-volume metric

in terms of the induced metric γᾱβ̄ and plugging this expression back into the action. This

nontrivial feature makes quantization of the string in a flat background possible, because
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as such one can get rid of the square root in the Nambu-Goto action. The equations of

motion are7

γᾱβ̄
(

∇ᾱ ∂β̄ x
ρ + ∂ᾱx

µ∂β̄x
ν Γρ

µν

)

= 0 , (3.62)

where Γρ
µν = { ρ

µν}. More generally, we can define any p-brane via the Nambu-Goto action

(3.61) such that the geodesic equation (3.62) describes the dynamics of the world-volume.

The canonical momenta corresponding to the Lagrangian of (3.61) are

pµ =
∂L

∂ẋµ
= −T√−γγᾱ0̄∂ᾱxµ , (3.63)

where a dot denotes derivation with respect to τ = σ0̄, whereas a prime8 will denote

derivation with respect to σ1̄. One then has the identities

pµx
′µ = −T√−γγᾱ0̄γᾱ1̄ ∼ δ0̄

1̄ = 0 , (3.64)

and

pµp
µ + T 2x′

µx
′µ = −T 2γγ0̄0̄ + T 2γ1̄1̄ = 0 , (3.65)

where for the last identity we used the inverse relation

γᾱβ̄ =
1

γ

(

γ1̄1̄ −γ0̄1̄

−γ0̄1̄ γ0̄0̄

)

.

So the primary constraints {V0, V1} are given by

V0 = pµp
µ + T 2x′

µx
′µ = 0 ,

V1 = pµx
′µ = 0 . (3.66)

Because the canonical Hamiltonian satisfies

Hcan =

∫

dσ
(

pµẋ
µ − L

)

= 0 , (3.67)

all the dynamics of the string is captured by the primary constraints (3.66), as for the

point particle. The Hamiltonian is then written as the sum of the primary constraints,

H =

∫

dσ
(

λ0V0 + λ1V1

)

, (3.68)

for the two Lagrange multipliers {λ0(σ), λ1(σ)}.

7Using that γµνΓρ
µν = − 1√−γ

∂λ

(√−γγλρ
)

for any Levi-Civita connection Γρ
µν .

8This prime shouldn’t be confused with the prime used for a coordinate transformation or the prime

used for a flat longitudinal direction {a′}.



3.7 Non-relativistic strings 55

3.7 Non-relativistic strings

The action describing non-relativistic strings in a flat background is given by

S = −T
2

∫

d2σ
√−γ̄

(

γ̄ᾱβ̄∂ᾱx
i∂β̄x

jδij

)

, (3.69)

where γ̄ᾱβ̄ is the pull-back of the longitudinal metric ηαβ , i.e.

γ̄ᾱβ̄ = ∂ᾱx
α∂β̄x

βηαβ . (3.70)

One can check that in the “point particle limit”, where γ̄ᾱβ̄ → γ̄0̄0̄ = −(ẋ0)2 and the string

tension T becomes the particle mass m, the action (3.69) reduces to eqn.(3.27). The action

(3.69) is invariant under world-sheet reparametrizations and the following “stringy” Galilei

symmetries:

δxα = λα
βx

β + ζα, δxi = λi
jx

j + λi
βx

β + ζi , (3.71)

where (ζα , ζi , λi
j , λ

i
α , λ

α
β) parametrize a (constant) longitudinal translation, transverse

translation, transverse rotation, “stringy” boost transformation and longitudinal rotation,

respectively. Notice how the longitudinal space remains relativistic, while the transverse

space exhibits Galilean symmetries. We will see in chapter 5 that this is a consequence

of how one obtains the action (3.69) via a limit procedure applied on the Nambu-Goto

action (3.61), or equivalently, how the contraction procedure on the relativistic algebra is

applied. The equations of motion for {xi} corresponding to the action (3.69) are given by

∂ᾱ

(√−γ̄γ̄ᾱβ̄∂β̄x
i
)

= 0 . (3.72)

The non-relativistic Lagrangian defined by (3.69) is invariant under a stringy boost trans-

formation only up to a total world-sheet divergence. The implications for this fact, namely

an extension of the underlying symmetry algebra, will be treated in chapter 5. The canon-

ical momenta read

pα = −T√−γ̄∂ᾱx
i∂β̄xi

(1

2
γ̄ ǭ0̄γ̄ᾱβ̄ − γ̄ᾱǭγ̄0̄β̄

)

∂ǭxα ,

pi = −T√−γ̄γ̄ᾱ0̄∂ᾱxi . (3.73)

These momenta obey the two primary constraints9

V0 = pαε
αβx′

β +
1

2

(

T−1pipi + Tx′ix′
i

)

= 0 ,

V1 = pαx
′α + pix

′i = 0 , (3.74)

and the Hamiltonian can again be written in the form (3.68). This closes our discussion of

strings, particles and branes. In the next chapter we will discuss how to obtain Newtonian

gravity in the guise of Newton-Cartan theory by applying a gauging procedure to the

Bargmann algebra.

9We define here the two-dimensional epsilon symbol ε10 = −ε01 = 1 of the longitudinal space.
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Chapter 4

Newtonian Gravity and the

Bargmann Algebra

4.1 Introduction

As was mentioned in the Introducion, Einstein’s formulation of gravity can be obtained by

performing a formal gauging procedure of the Poincaré algebra [14,15]. In this procedure

one associates to each generator of the Poincaré algebra a gauge field. Next, one imposes

constraints on the curvature tensors of these gauge fields such that the translational sym-

metries of the algebra get converted into general coordinate transformations. At the same

time the gauge field of the Lorentz transformations gets expressed into (derivatives of)

the Vierbein gauge field which is the only independent gauge field. One thus obtains an

off-shell formulation of Einstein gravity. On-shell Einstein gravity is obtained by imposing

the usual Einstein equations of motion.

One may consider the non-relativistic version of the Poincaré algebra and Einstein grav-

ity independently. It turns out that the relevant non-relativistic version of the Poincaré

algebra is a particular contraction of the Poincaré algebra trivially extended with a 1-

dimensional algebra that commutes with all the generators. This contraction yields the

so-called Bargmann algebra, which is the centrally extended Galilean algebra. On the

other hand, taking the non-relativistic limit of General Relativity leads to the well-known

non-relativistic Newtonian gravity in flat space. The Newton-Cartan theory is a geomet-

ric reformulation of this Newtonian theory, mimicking as much as possible the geometric

formulation of General Relativity [22, 62]. A notable difference with the relativistic case

is the occurrence of a degenerate metric.

The question we pose in this chapter is: can we derive the Newton-Cartan formulation

of Newtonian gravity directly from gauging the Bargmann algebra in the same way that

Einstein gravity may be derived from gauging the relativistic Poincaré algebra as described
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above? 1 The answer will be yes, but there are some subtleties involved. This is partly

due to the fact that the standard procedure leads to spin-connection fields that not only

depend on the temporal and spatial vielbeins but also on the gauge field corresponding to

the central charge generator. These connections have to be fixed appropriately via further

curvature constraints, in order to obtain the Poisson equation.

The outline of this chapter is as follows. In section 2 we first review how Einstein

gravity may be obtained by gauging the Poincaré algebra. To keep the discussion in this

section as general as possible we leave the dimension D of spacetime arbitrary. Next,

we briefly review in section 3 the Newton-Cartan formulation of Newtonian gravity, since

this is the theory we wish to end up with in the non-relativistic case. We next proceed,

in section 4, with gauging the Bargmann algebra. In a first step we introduce a set

of curvature constraints that convert the spatial (time) translational symmetries of the

algebra into spatial (time) general coordinate transformations. We next impose a vielbein

postulate for the vielbeins in the temporal and spatial directions. In a final step we

impose further curvature constraints on the theory in order to recover the non-relativistic

Poisson equation in terms of the boost curvature, plus a similar equation of motion for

the rotational curvature. In the last section we give conclusions.

4.2 Einstein Gravity and Gauging the Poincaré Algebra

In this section we review how the basic ingredients of Einstein gravity may be obtained

by applying a formal gauging procedure to the Poincaré algebra. We leave the dimension

D of spacetime in this section arbitrary.

Our starting point is the D-dimensional Poincaré algebra iso(D−1, 1) with generators

{PA,MAB}, which is the bosonic part of the algebra (2.96):

[PA, PB] = 0 ,

[MBC , PA] = −2ηA[BPC] ,

[MCD,MEF ] = 4η[C[EMF ]D] . (4.1)

Here the indices (A = 0, 1, · · · , D − 1) are regarded as abstract indices of some internal

space, as is usually done in gauge theories; only later these indices will be identified

with tangent-space indices. Associating a gauge field eµ
A to the local P -transformations

with spacetime dependent parameters ζA(x), and a gauge field ωµ
AB to the local Lorentz

transformations with spacetime dependent parameters λAB(x), we obtain from appendix

1The gauging of the Bargmann algebra, from a somewhat different point of view, has been considered

before in [63,64].
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B the transformation rules

δeµ
A = ∂µζ

A − ωµ
ABζB + λABeµ

B , (4.2)

δωµ
AB = ∂µλ

AB + 2λC[Aωµ
B]C . (4.3)

and the curvatures

Rµν
A(P ) = 2

(

∂[µeν]
A − ω[µ

ABeν]
B
)

, (4.4)

Rµν
AB(M) = 2

(

∂[µων]
AB − ω[µ

CAων]
BC
)

. (4.5)

In order to make contact with gravity we wish to replace the local P -transformations of

all gauge fields by general coordinate transformations and to interpret eµ
A as the vielbein,

with the inverse vielbein field eA
µ defined by eqn.(2.47),

eµ
Aeµ

B = δA
B, eµ

Aeν
A = δν

µ . (4.6)

To show how this replacement can be achieved by imposing curvature constraints we first

consider the general identity (B.10) for a gauge algebra and corresponding gauge fields

{Bµ
A}:

0 = δgct(ξ
λ)Bµ

A + ξλRµλ
A −

∑

{C}

δ(ξλBλ
C)Bµ

A . (4.7)

If we now relate the parameters ξλ and ζA via

ξλ = eA
λζA , (4.8)

we can bring the P -transformation of eµ
A in the sum in eqn.(4.7) to the left-hand side of

the equation to obtain

δP (ζB)eµ
A = δgct(ξ

λ)eµ
A + ξλRµλ

A(P ) − δM (ξλωλ
AB)eµ

A . (4.9)

We see that the difference between a P -transformation and a general coordinate transfor-

mation is a curvature term and a Lorentz transformation. More generally, we deduce from

the identity (4.7) that, whenever a gauge field transforms under a P -transformation, the

P -transformations of this gauge field can be replaced by a general coordinate transforma-

tion plus other symmetries of the algebra by putting the curvature of the gauge field to

zero. Since the vielbein is the only field that transforms under the P -transformations, see

(4.2), we are led to impose the following so-called conventional constraint:

Rµν
A(P ) = 0 . (4.10)

Such a conventional constraint also allows one to solve for the Lorentz gauge field ωµ
AB

in terms of (derivatives of) the vielbein and its inverse, and this gives the solution (2.55):

ωµ
AB(e, ∂e) = 2eλ[A∂[λeµ]

B] + eµ
Ceλ Aeρ B∂[λeρ]

C . (4.11)
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What remains is a theory with the vielbein eµ
A as the only independent field transform-

ing under local Lorentz transformations and general coordinate transformations and with

ωµ
AB as the dependent spin connection field.2

A Γ-connection may be introduced by imposing the vielbein postulate (2.51)

∇µeν
A = Dµeν

A − Γρ
µνeρ

A = 0 , (4.12)

where Dµ is the Lorentz-covariant derivative. The antisymmetric part of this equation,

together with the curvature constraint (4.10), shows that the antisymmetric part of the

Γ-connection is zero, i.e. there is no torsion. From the vielbein postulate (4.12) one may

solve the Γ-connection in terms of the vielbein and its inverse as follows:

Γρ
µν = eρ

ADµeν
A . (4.13)

Finally, a non-degenerate metric and its inverse can be defined as

gµν = eµ
Aeν

BηAB , gµν = eA
µeB

νηAB . (4.14)

This concludes our description of the basic ingredients of off-shell Einstein gravity and

the Poincaré algebra. These basic ingredients are an independent non-degenerate metric

gµν and a dependent Γ-connection Γρ
µν or, in the presence of flat indices, an independent

vielbein field eµ
A and a dependent spin-connection field ωµ

AB. The theory can be put on-

shell by imposing the Einstein equations of motion (2.29), in which the Riemann tensor is

expressed via eqn.(2.25) and the vielbein postulate as3

Rµ
νρσ(Γ) = −eµ

AeνBRρσ
AB(M) , (4.15)

where Rρσ
AB(M) is the curvature associated to Lorentz transformations, eqn.(4.5).

Besides the gravitational dynamics, the geodesic equation for a point particle can also

be obtained by applying a gauging procedure to the action of a particle in flat spacetime

(3.23). This procedure is outlined in [72]. It clarifies why the gauge field eµ
A can be

identified with the vielbein and that this identification is only possible if the spacetime

translations are removed.

4.3 Newton-Cartan Gravity

From now on we restrict the discussion to D = 4, i.e. one time and three space directions.

We wish to review Newton-Cartan gravity as a geometric rewriting of Newtonian gravity

2From the variation of eqn.(4.10) one can also solve for the variation δωµ
AB . With this one can check

that a Lorentz transformation on the dependent spin connection is still given by eqn.(4.3).
3Note that via the Bianchi identities and the vielbein postulate this relation give us the familiar condi-

tions Rµ

[νρσ](Γ) = 0 and ∇[λRµν]ρσ(Γ) = 0, see eqns.(2.27).
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[22, 62], which was considered in section 2.2. This geometric re-formulation is motivated

by the following observation. From the Newtonian point of view the equations of motion

(2.15) describe a curved trajectory in a flat three-dimensional space. We now wish to re-

interpret the same equations as a geodesic in a curved four-dimensional spacetime. Indeed,

one may rewrite the equations (2.15) as the geodesic equations of motion

d2xµ

dτ2
+ Γµ

νρ

dxν

dτ

dxρ

dτ
= 0 , (4.16)

provided that one chooses the coordinate {x0} equal to the evolution parameter τ and

takes the following expression for the non-zero connection fields:

Γi
00 = δij∂jφ , (4.17)

where we have used the Euclidean three-metric. At this point Γµ
νρ is a symmetric connec-

tion independent of the metric. The coordinate choice x0 = τ corresponds to choosing the

static gauge. The corresponding D-dimensional spacetime is called the Newton-Cartan

spacetime M . The only non-zero component of the Riemann tensor corresponding to the

connection (4.17) is

Ri
0j0 = δik∂k∂jφ . (4.18)

If one now imposes the equations of motion R00 = 4πGρ one obtains the Poisson equation

(5.42). To write the Poisson equation in a covariant way we first must introduce a metric.

As it stands, the Γ-connection defined by (4.17) cannot follow from a non-degenerate

four-dimensional metric. One way to see this is to consider the Riemann tensor that is

defined by this Γ-connection. The Riemann tensor, defined in terms of a metric connection

based upon a non-degenerate metric, satisfies the symmetry properties (2.27). One may

easily verify that these properties are not satisfied by the Riemann tensor (4.18). Another

way to see that a degenerate metric is unavoidable is to consider the relativistic Minkowski

metric and its inverse

ηµν/c
2 =

(

−1 0

0 13/c
2

)

, ηµν =

(

−1/c2 0

0 13

)

. (4.19)

Taking the limit c → ∞ naturally leads to a degenerate covariant temporal metric τµν

with three zero eigenvalues and a degenerate contra-variant spatial metric hµν with one

zero eigenvalue. We conclude that the Galilei group keeps invariant two metrics τµν and

hµν which are degenerate, i.e. hµντνρ = 0. This is precisely the Galilean metric structure

derived in section 2.8. Since τµν is effectively a 1 × 1 matrix we will below use its vielbein

version which is defined by a covariant vector τµ defined by τµν = τµτν .

Looking at section 2.8, a degenerate spatial metric hµν of rank 3 and a degenerate

temporal vielbein τµ of rank 1, together with a symmetric connection Γρ
µν on M , that
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depends on these two degenerate metrics, can be introduced as follows [65]. First of all,

the degeneracy implies that

hµντν = 0 . (4.20)

We next impose metric compatibility:4

∇ρh
µν = 0 , ∇ρτµ = 0 . (4.21)

The covariant derivative ∇ is with respect to a connection Γρ
µν . The second of these

conditions indicates that

τµ = ∂µf(x) (4.22)

for a scalar function f(x). In General Relativity metric compatibility and the absence of

torsion allows one to write down the connection in terms of the metric and its derivatives

in a unique way, see eqn. (4.13). In the present analysis, the connection Γρ
µν is not uniquely

determined by the metric compatibility conditions (4.21). This can be seen from the fact

that these conditions are preserved by the shift

Γρ
µν → Γρ

µν + hρλKλ(µτν) (4.23)

for an arbitrary two-form Kµν [52]. Using this arbitrary two-form it is possible to write

down the most general connection which is compatible with (4.21). In order to do this, one

needs to introduce new tensors, the spatial inverse metric hµν and the temporal inverse

vielbein τµ which are defined by the following properties:

hµνhνρ = δµ
ρ − τµτρ, τµτµ = 1 ,

hµντν = 0, hµντ
ν = 0 . (4.24)

Geometrically the tensor hµνhνρ is a projection operator from the spacetime to the spatial

sections, whereas τµτρ is a projection operator from spacetime to the temporal direction.

Note that from the conditions (4.24) it follows that

∇ρhµν = −2τ(µhν)σ∇ρτ
σ (4.25)

which is not zero in general. The most general connection compatible with (4.21) is

then [52]

Γσ
µν = τσ∂(µτν) +

1

2
hσρ
(

∂νhρµ + ∂µhρν − ∂ρhµν

)

+ hσλKλ(µτν) . (4.26)

We note that the original independent connection (4.17) is quite different from the metric

connection defined in (4.26). Nevertheless, given extra conditions discussed below, the

Newton-Cartan theory with the metric connection (4.26) reproduces Newtonian gravity.

4Note that we do not impose metric compatibility on hµν and τµ!
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To see how this goes, it is convenient to use adapted coordinates f(x) = x0 in the condition

(4.22). The metric relations (4.24) then imply

τµ = δ0
µ, τµ = (1, τ i) ,

hµ0 = 0, hµ0 = −hµiτ
i , (4.27)

or in explicit matrix form

hµν =

(

0 0

0 hij

)

, τµν =

(

1 0

0 0

)

,

hµν =

(

hijτ
iτ j −hijτ

j

−hijτ
j hij

)

, τµν =

(

1 τ i

τ i τ iτ j

)

. (4.28)

The choice of adapted coordinates is preserved by the coordinate transformations

x0 → x0 + ζ0 ,

xi → xi + ξi(x) , (4.29)

where ζ0 is a constant and ξi(x) depends on both space and time. The finite spatial

transformation generated by ξi(x) is invertible. In adapted coordinates f(x) = x0 the

connection coefficients (4.26) are given by [52]

Γi
00 = hij(∂0hj0 − 1

2∂jh00 +Kj0) ≡ hijΦj ,

Γi
0j = hik(1

2∂0hjk + ∂[jhk]0 − 1
2Kjk) ≡ hik(1

2∂0hjk + Ωjk) ,

Γi
jk = { i

jk} , Γ0
µν = 0 , (4.30)

where { i
jk} are the usual Christoffel symbols (2.24) with respect to the metric hij with

inverse hij .

We now replace the original equations of motion R00 = 4πGρ by the covariant Ansatz

Rµν = 4πGρ τµτν (4.31)

and verify that this leads to Newtonian gravity. In adapted coordinates these equations

imply that

Rij = Ri0 = 0 . (4.32)

The condition Rij = 0 implies that the spatial hypersurfaces are flat,5 i.e. one can choose

a coordinate frame with Γi
jk = 0 such that the spatial metric is given by

hij = δij , hij = δij . (4.33)

5Note that only in three dimensions a vanishing Ricci tensor implies a vanishing Riemann tensor, due

to the three-dimensional identity (2.35), which for spatial indices reads Rijkl = 4g[i[kRl]j] −Rg[i[kgl]j].
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This implies

Γi
0j = hikΩjk ↔ Ωij = hk[jΓk

i]0 ,

Γi
00 = hijΦj ↔ Φi = hijΓj

00 . (4.34)

The choice of a flat metric further reduces the allowed coordinate transformations (4.29)

to6

t → t+ ζ0 , xi → Ai
j(t)xj + ξi(t), (4.35)

where Ai
j(t) is an element of SO(3).

To derive the Poisson equation from the Ansatz (4.31) two additional conditions must

be invoked. The first is the Trautman condition [66]:

hσ[λR
µ]
(νρ)σ(Γ) = 0 . (4.36)

In General Relativity this condition is automatically satisfied for the metric gµν , as can be

checked via the identities (2.27). In adapted coordinates the Trautman condition (4.36)

implies

∂0Ωmi − ∂[mΦi] = 0 , ∂[kΩmi] = 0 . (4.37)

Although Φi and Ωij are not tensors under general coordinate transformations7 as they

are part of Christoffel symbols, both equations of (4.37) are separately covariant under

(4.35) which can be checked explicitly. Using the definitions (4.34) of Φi and Ωij one may

verify that the conditions (4.37) are equivalent to the manifestly tensorial equation

∂[ρKµν] = 0 → Kµν = 2∂[µmν] , (4.38)

where mµ is a vector field determined up to the derivative of some scalar field.

The second condition we need is that Ωij , see (4.30), depends only on time, not on

space coordinates [52, 65]. In [65] three possible conditions on the Riemann tensor are

discussed that lead to the desired restriction on Ωij :

hρλRµ
νρσ(Γ)Rν

µλς(Γ) = 0 , or

τ[λR
µ
ν]ρσ(Γ) = 0 , or

hσ[λRµ]
νρσ(Γ) = 0. (4.39)

These three conditions are the so-called Ehlers conditions. Each condition separately leads

to the condition ∂kΩij = 0 in adapted coordinates and thus Ωij = Ωij(t). One can next set

6We write {x0 = t}.
7See also [73] for a detailed discussion on accelerations in Newton-Cartan theory.
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Ω′
ij ≡ 0, or equivalently Γ

′i
0j ≡ 0, see (4.34), by a time-dependent rotation x

′i = Ai
j(t)xj

[52]. The conditions (4.37) imply that in the new coordinate system ∂′
[iΦ

′
j] = 0 and hence

that Φ′
i = ∂′

iΦ for some scalar field Φ. This implies that

Γ
′i
00 = δij∂

′
jΦ (4.40)

in this coordinate system. The equations (4.31) thus lead to the Poisson equation:

R00 = ∂iΓ
i
00 = δij∂i∂jφ = 4πGρ . (4.41)

Finally, we should also recover the geodesic equation (4.16). Using adapted coordinates

and performing the above time-dependent rotation indeed gives the desired equations:8

ẍ
′0(τ) = 0, ẍ

′i(τ) + ∂
′iΦ = 0 . (4.42)

This completes the proof that Newton-Cartan gravity, formulated in terms of two de-

generate metrics (see eqn. (4.20)), and supplied with the Trautman condition (4.36) and

the Ehlers conditions (4.39), precisely leads to the equations of Newtonian gravity. The

differences between Newton-Cartan gravity and General Relativity are summarized in the

following table:

Newton-Cartan theory General Relativity

Metric: Degenerate due to absolute time Non-degenerate

Connection: Determined up to arbitrary two-form Uniquely determined

Curvature: Only in space-time direction Spacetime

Table 4.1: The differences between Newton-Cartan theory and General Relativity.

In the next section we will show how the same Newton-Cartan theory, including the

Trautman and Ehlers conditions, follows from gauging the Bargmann algebra.

4.4 The Bargmann algebra

The Bargmann algebra is the Galilean algebra augmented with a central generator 9 Z

and can be obtained as follows. We first extend the Poincaré algebra iso(D − 1, 1) to the

direct sum of the Poincaré algebra and a commutative subalgebra gM spanned by Z:

iso(D − 1, 1) → iso(D − 1, 1) ⊕ gM . (4.43)

8Notice the difference with the Newtonian limit on General Relativity as discussed in section 2.7, where

space is curved but the (ẋi-terms drop out of the geodesic equation because these are considered to be

negligible.
9In D = 3 dimensions three such central generators can be introduced [67,68].
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We next perform a Inönü-Wigner contraction [54] on this algebra. Such a contraction is

a singular transformation on the Lie algebra, which is a vector space. This contraction

reads

P0 → 1

ω2
Z +H , Pa → 1

ω
Pa , Ja0 → 1

ω
Ga , ω → 0 , (4.44)

which is then interpreted as the non-relativistic limit. Notice that in the contraction of

the commutator [Ja0 , P0] one obtains the potentially dangerous term ω−3[Ga, Z], which

is however zero because Z is assumed to be a central element and as such commutes with

all the other Galilei generators. The contraction of P0 is motivated by considering the

non-relativistic approximation of P0 for a massive free particle,10

P0 = +
√

c2PaP a +M2c4 ≈ Mc2 +
PaP

a

2M
, (4.45)

where ω = c−1. The contracted algebra is the so-called Bargmann algebra b(D − 1, 1)

which has the following non-zero commutation relations:

[Jab, Jcd] = 4δ[a[cJd]b] , [Jab, Pc] = −2δc[aPb] ,

[Jab, Gc] = −2δc[aGb] , [Ga, H] = −Pa ,

[Ga, Pb] = −δabZ . (4.46)

For Z = 0 this is the Galilean algebra. Note that the last commutator is in line with the

Poisson brackets (3.47).

4.5 Gauging the Bargmann algebra

We now gauge the Bargmann algebra (4.46) following the same procedure we applied to

the Poincaré algebra (4.1) in Section 4.2.

Compared to the Poincaré case the gauge fields and parameters corresponding to the

Bargmann algebra split up into a spatial and temporal part:

eµ
A → {eµ

0, eµ
a} , ωµ

AB → {ωµ
ab, ωµ

a
0 ≡ ωµ

a}
ζA → {ζ0, ζa} , λAB → {λab, λa

0 ≡ λa} . (4.47)

The gauge field corresponding to the generator Z will be called mµ and its gauge param-

eter will be called σ. We label eµ
0 = τµ and ζ0 = τ , where the parameter τ shouldn’t

be confused with the evolution parameter τ we use in the point particle actions. The

10Note that there are more contractions which lead to the same algebra.
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variations of the gauge fields corresponding to the different generators are given by

H : δτµ = ∂µτ ,

P : δeµ
a = ∂µζ

a − ωµ
abζb + λabeµ

b + λa τµ − τωµ
a ,

G : δωµ
a = ∂µλ

a − λbωµ
ab + λabωµ

b ,

J : δωµ
ab = ∂µλ

ab + 2λc[aωµ
b]c ,

Z : δmµ = ∂µσ − ζaωµ
a + λaeµ

a . (4.48)

One can notice the non-relativistic nature of these variations by the boost transformations

G. Namely, under a boost the spatial vielbein eµ
a transforms to a temporal vielbein τµ

but not vice versa. It is now the vector field mµ of the central extension which transforms

under a boost to the spatial vielbein.

The curvatures of the gauge fields read

Rµν(H) = 2∂[µτν] , (4.49)

Rµν
a(P ) = 2(D[µeν]

a − ω[µ
aτν]) (4.50)

= 2(∂[µeν]
a − ω[µ

abeν]
b − ω[µ

aτν]) ,

Rµν
ab(J) = 2(∂[µων]

ab − ω[µ
caων]

bc) (4.51)

Rµν
a(G) = 2D[µων]

a , (4.52)

= 2(∂[µων]
a − ω[µ

abων]
b) ,

Rµν(Z) = 2(∂[µmν] − ω[µ
aeν]

a) . (4.53)

The derivative Dµ is covariant with respect to the J-transformations and as such only

contains the ωµ
ab gauge field. Using the general formula (4.7) we convert the P and H

transformations into general coordinate transformations in space and time. We write the

parameter of the general coordinate transformations ξλ in (4.7) as

ξλ = eλ
aζ

a + τλτ . (4.54)

Here we have used the inverse spatial vielbein eλ
a and the inverse temporal vielbein τλ

defined by

eµ
aeµ

b = δa
b , τµτµ = 1 , (4.55)

τµeµ
a = 0, τµe

µ
a = 0 , (4.56)

eµ
aeν

a = δν
µ − τµτ

ν . (4.57)

These conditions are the vielbein version of the conditions (4.24), and imply the varia-

tions11

δeµ
a = −eµ

be
ν

aδeν
b − τµeν

aδτν , (4.58)

δτµ = −τµτνδτν − eµ
bτ

νδeν
b . (4.59)

11Using the explicit forms (4.28) we can now do a check of counting, as we did in the relativistic case
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Now we observe that only the gauge fields eµ
a , τµ and mµ transform under the P and H

transformations. These are the fields that should remain independent. Namely, the fields

eµ
a , τµ are going to be interpreted as vielbeins. The field mµ cannot be solved for; it is

associated to a central extension, and as such does not occur with vielbeins in any of the

gauge curvatures. The spin connections are expected to become dependent fields. These

demands motivate the following constraints:

Rµν(H) = Rµν
a(P ) = Rµν(Z) = 0 , (4.60)

of which the last two are called conventional. The Bianchi identities, see appendix C, then

lead to additional relations between curvatures:

R[λµ
ab(J)eν]

b = −R[λµ
a(G)τν] , e[λ

aRµν]
a(G) = 0 . (4.61)

The constraint Rµν(H) = 0 gives the condition ∂[µτν] = 0 and hence we may take τµ as

in the condition (4.22). The other two conventional constraints, Rµν
a(P ) = Rµν(Z) = 0,

enable us to solve for the spin connection gauge fields {ωµ
ab, ωµ

a} in terms of the other

gauge fields, so that indeed only eµ
a , τµ and mµ remain as independent fields.

To solve for ωµ
ab, we write

Rµν
a(P )eρ

a +Rρµ
a(P )eν

a −Rνρ
a(P )eµ

a = 0 . (4.62)

From this it follows that

ωµ
ab = 2eν [a∂[νeµ]

b] + eµ
ceν aeρ b∂[νeρ]

c − τµe
ρ [aωρ

b] . (4.63)

Next we solve for ωµ
a. We substitute (4.63) into Rµν

a(P ) = 0 and contract this with eµ
b

and τν . This gives the condition

eµ (aωµ
b) = 2 eµ (a∂[µeν]

b)τν . (4.64)

Furthermore, Rµν(Z) = 0 can be contracted with eµ
a and τµ to give the following condi-

tions:

eµ [aωµ
b] = eµ aeν b∂[µmν] , τµωµ

a = 2τµeν a∂[µmν] . (4.65)

Using the constraints (4.64) and (4.65) one arrives at the following solution for ωµ
a:

ωµ
a = eνa∂[µmν] + eν aτρeµ

b∂[νeρ]
b + τµτ

νeρ a∂[νmρ] + τν∂[µeν]
a . (4.66)

At this point we are left with the independent fields eµ
a, τµ and mµ. Furthermore, the

theory is still off-shell; no equations of motion have been imposed.

after eqn.(2.49). The number of independent components of hµν is given by those of hij and τ i, which is
1
2
(D+ 2)(D− 1) in total. This equals the number of independent components of eµ

a minus the number of

components of λa
b, namely D(D− 1) − 1

2
(D− 1)(D− 2). We don’t subtract the number of components of

the boost parameter, because hµν is not invariant under δeµ
a = λaτµ. The metric hµν , which is effectively

a symmetric (D − 1) × (D − 1) matrix, is invariant under both boost and rotation transformations of the

inverse vielbein eµ
a, and one gets the equality 1

2
D(D − 1) = D(D − 1) − 1

2
(D − 1)(D − 2) − (D − 1).
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4.6 Newton-Cartan Gravity

To make contact with the formulation of Newton-Cartan gravity presented in Section 4.3

we need to introduce a Γ-connection. First a vielbein postulate for the spatial vielbein is

imposed,

∂µeν
a − ωµ

abeν
b − ωµ

aτν − Γρ
µνeρ

a = 0 . (4.67)

Notice that this postulate implies that ∇µeν
a = ωµ

aτν , or

∇ρhµν = 2ωρ
ae(µ

aτν) , (4.68)

which can be compared with eqn.(4.25). The second vielbein postulate is for the temporal

vielbein,

∂µτν − Γλ
µντλ = 0 , (4.69)

which is the second condition of (4.21). Note that invariance of the first vielbein postulate

(4.67) under local Galilei boosts is guaranteed by the second vielbein postulate (4.69).

These two vielbein postulates together imply

Γρ
µν = τρ∂(µτν) + eρ

a

(

∂(µeν)
a − ω(µ

abeν)
b − ω(µ

aτν)

)

. (4.70)

This connection is symmetric due to the curvature constraints Rµν
a(P ) = Rµν(H) = 0,

and satisfies the metric conditions (4.21).

An important difference between the metric compatibility conditions given in (4.21)

and in (4.67, 4.69) is that the latter define the connection Γ uniquely. From (4.26) and

(4.70) we find that

Kµν = 2ω[µ
aeν]

a , (4.71)

with ωµ
a given by (4.66). This implies via the R(M) = 0 constraint that

Kµν = 2∂[µmν] , (4.72)

which solves the condition (4.38). The Riemann tensor corresponding to (4.70) can now

be expressed in terms of the curvature tensors of the gauge algebra:

Rµ
νρσ(Γ) = ∂ρΓµ

νσ − ∂σΓµ
νρ + Γλ

νσΓµ
λρ − Γλ

νρΓµ
λσ

= −eµ
a

(

Rρσ
a(G)τν +Rρσ

ab(J)eνb

)

. (4.73)

Here we have used (4.60). The Trautman condition (4.36), applied to (4.73), is equivalent

to the first constraint of (4.61).

We know from the analysis in section 3 that, in order to make contact with the Newton-

Cartan formulation, we must impose the Ehlers conditions (4.39). One can show that each

of the three Ehlers conditions (4.39) is equivalent to the single curvature constraint

Rµν
ab(J) = 0 . (4.74)



70 Newtonian Gravity and the Bargmann Algebra

Substituting this result into (4.61) leads to the following constraints on Rµν
a(G):

R[λµ
a(G)τν] = 0 , e[λ

aRµν]
a(G) = 0 . (4.75)

The contraction of (4.75) with eµ
a and τµ gives

eµ
ae

ν
bRµν

c(G) = 0 , τµeν [aRµν
b](G) = 0 . (4.76)

This implies that the only non-zero component of Rµν
a(G) is

τµeν (aRµν
b)(G) = δc(aR

b)
0c0(Γ) (4.77)

which in flat coordinates is precisely the only non-zero component (4.18) of the Riemann

tensor that occurs in the Newton-Cartan formulation. Under a local boost this equation

transforms, upon using the first Bianchi identy of (4.61), to an equation of motion for the

rotational curvature.12 The full set of equations of motion are

τµeν aRµν
a(G) = 4πGρ , τµeν aRµν

ab(J) = 0 . (4.78)

Similarly to the relativistic case, one can also obtain the geodesic equation from a gauging

procedure similar to the analysis in [72]. For that it is important that one starts with the

point particle action (3.40) which is invariant under the Galilei group instead of quasi-

invariant.

At this point we have made contact with the Newton-Cartan gravity theory presented

in Section 4.3. We have the same Γ-connection and (degenerate) metrics. It can be shown

that these lead to the desired Poisson equation following the same steps as in Section 4.3.

The explicit form of the Newton potential in terms of the gauge fields will be considered

in the next chapter.

4.7 Conclusions

In this chapter we have shown how, just like Einstein gravity, the Newton-Cartan formu-

lation of Newtonian gravity can be obtained by a gauging procedure. The Lie algebra

underlying this procedure is the Bargmann algebra given in (4.46). To obtain the correct

Newton-Cartan formulation we need to impose constraints on the curvatures. In a first

step we impose the curvature constraints (4.60). They enable us to convert the spatial

(time) translational symmetries of the Bargmann algebra into spatial (time) general coor-

dinate transformations. At the same time they enable us to solve for the spin-connection

12We already have imposed the constraint (4.74), but we should make a distinction between constraints

and equations of motion. Note that the inverse vielbein τµ transforms under a local boost, δτµ = −λaeµ
a,

while eµ
a is boost-invariant.
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gauge fields ωµ
a and ωµ

ab in terms of the remaining gauge fields eµ
a , τµ and mµ, see

eqs. (4.63) and (4.66). For this to work it is essential that we work with a non-zero central

element Z in the algebra. Sofar, we work off-shell without comparing equations of motion.

In a second step we impose the vielbein postulates (4.67) and (4.69). These enable

us to solve for the Γ connection thereby solving the Trautman condition (4.36) automat-

ically. In order to obtain the correct Poisson equation we impose in a third step the

additional curvature constraints (4.74) which are equivalent to each of the three Ehlers

conditions (4.39). The Poisson equation is obtained from the relation (4.77) between the

curvature of the dependent field ωµ
a and the Newton-Cartan Riemann tensor in the form

(4.18) and gives also a similar equation of motion of the rotational curvature.. The inde-

pendent gauge fields eµ
a and τµ describe the degenerate metrics of Newton-Cartan gravity.

One of the original motivations of this analysis was the possible role of Newton-Cartan

gravity in non-relativistic applications of the AdS-CFT correspondence. In most appli-

cations the relativistic symmetries of the AdS bulk theory are broken by the vacuum

solution one considers.13 This is the case if one considers the Schrodinger or Lifshitz alge-

bras. The situation changes if one considers the Galilean Conformal Algebra instead. It

has been argued that in that case the bulk gravity theory is given by an extension of the

Newton-Cartan theory where the spacetime metric is degenerate with two zero eigenvalues

corresponding to the time and the radial directions [92]. This leads to a foliation where the

time direction is replaced by a two-dimensional AdS2 space. This requires a contraction

of the Poincaré algebra in which the Bargmann algebra is replaced by a deformed string

Galilean algebra or, if one includes the cosmological constant, by a stringy Newton-Hooke

algebra [82,86].14 This construction will be considered in the next chapter.

13For other aspects of Newton-Cartan gravity, see, e.g., [76, 90]
14For other applications of the Newton-Hooke algebra see, e.g., [77,78].
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Chapter 5

“Stringy” Newton-Cartan gravity

5.1 Introduction

To apply General Relativity in practical situations it is often convenient to consider the

Newtonian limit which is defined as the limit of small velocities v << c with respect to

the speed of light c, and a slowly varying and weak gravitational field. This limit was

discussed in section 2.7, but is not the unique non-relativistic limit of General Relativity.

It is a specific limit which is based upon the assumption that particles are the basic entities

and it further makes the additional assumption of a slowly varying and weak gravitational

field. In this chapter we will encounter different limits which are based upon strings or,

more general, branes, as the basic objects, and which do not necessarily assume a slowly

varying and weak gravitational field.

For practical purposes, it is convenient in the Newtonian limit to consider not only

free-falling frames but to include all frames corresponding to a so-called “Galilean ob-

server” [5,64]. These are all frames that are accelerated, with arbitrary (time-dependent)

acceleration, with respect to a free-falling frame. An example of a frame describing a

Galilean observer with constant acceleration [61] is the one attached to the Earth’s sur-

face, thereby ignoring the rotation of the Earth. Newton showed that in the constant-

acceleration frames the gravitational force is described by a time-independent scalar po-

tential Φ(xi) (i = 1, · · · , D− 1). In frames with time-dependent acceleration the potential

becomes an arbitrary function Φ(x) of the spacetime coordinates. A noteworthy difference

between General Relativity and Newtonian gravity is that, while in General Relativity any

observer can locally in spacetime use a general coordinate transformation to make the met-

ric flat, in Newtonian gravity only the Galilean observers can use an acceleration to make

the Newton potential disappear.

The equations of motion corresponding to a Galilean observer are invariant under the

so-called “acceleration-extended” Galilei symmetries. This corresponds to an extension of
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the Galilei symmetries in which the (constant) space translations and boost transforma-

tions have been gauged resulting into a theory which is invariant under spatial translations

having an arbitrary time-dependency. 1 The gravitational potential can be viewed as the

“background gauge field” necessary to realize these time-dependent translations. Starting

from a free particle in a Newtonian spacetime, there are now two ways to derive the equa-

tions of motion for a Galilean observer from a gauging principle. If one is only interested

in the physics observed by a Galilean observer it is sufficient to gauge the constant space

translations by promoting the corresponding (constant) parameters to arbitrary functions

of time. This automatically includes the gauging of the boost transformations. The equa-

tion of motion of a particle is then obtained by deforming the free equation of motion with

the background gravitational potential Φ(x) such that the resulting equation is invariant

under the acceleration-extended Galilei symmetries. The Poisson equation of Φ(x) can be

obtained by realizing that it is the only equation, of second order in the spatial derivatives,

that is invariant under the acceleration-extended Galilei symmetries.

It is natural to extend the above ideas and the gauging procedure of chapter 4 to

strings. This will give us information about the gravitational forces as experienced by a

non-relativistic string instead of a particle. Although the symmetries involved are differ-

ent, the ideas are the same as in the particle case discussed above. The starting point in

this case is a string moving in a flat Minkowski background. Taking the non-relativistic

limit leads to the action for a non-relativistic string [80, 81, 83] that is invariant under a

“stringy” version of the Galilei symmetries. The transformations involved, which will be

specified later, are similar to the particle case except that now not only time but also the

spatial direction along the string plays a special role. This leads to an M1,1-foliation of

spacetime. Again, the Lagrangian is only invariant up to a total derivative (in the world-

sheet coordinates) and hence we obtain an extension of the “stringy” Galilei algebra which

involves two additional generators Za and Za′b′ = −Zb′a′ (a′ = 0, 1). Due to the extra

index structure these generators provide general extensions rather than central extensions

of the stringy Galilei algebra [86].

Any two free-falling frames are now connected by a stringy Galilei transformation. A

“stringy” Galilean observer is then defined as an observer with respect to any frame that

is accelerated, with arbitrary (time and longitudinal coordinate dependent) acceleration,

with respect to a free-falling frame. The corresponding acceleration-extended “stringy”

Galilei symmetries are obtained by gauging the translations in the spatial directions trans-

verse to the string by promoting the corresponding parameters to arbitrary functions of

the world-sheet coordinates. These transformations involve the constant transverse trans-

1The group of acceleration-extended Galilei symmetries is also called the Milne group [96]. It is gener-

ated by the algebra (3.57).
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lations and the stringy boost transformations, which are linear in the world-sheet coordi-

nates.

Again, there are two ways to obtain the equations of motion for a stringy Galilean

observer. Either we start from the string in a Minkowski background and gauge the

transverse translations. In the string case this requires the introduction of a background

gravitational potential Φαβ(x) = Φβα(x) (α = 0, 1), as was also pointed out in [92]. This

is a striking difference with General Relativity where, independent of whether particles or

strings are the basic objects, one always ends up with the same metric function gµν(x).

This is related to the fact that in the non-relativistic case spacetime is a foliation and that

the dimension of the foliation space depends on the nature of the basic object (particles,

strings or branes).

The equation of motion for Φαβ(x) can be obtained by requiring that it is of second

order in the transverse spatial derivatives and invariant under the acceleration-extended

stringy Galilei transformations. Alternatively, one gauges the full deformed stringy Galilei

algebra and imposes a set of kinematical constraints, like in the particle case. In the string

case one requires that both the curvature of spatial rotations transverse to the string as

well as the curvature of rotations among the foliation directions vanishes. This leads to a

flat foliation corresponding to an M1,1-foliation of spacetime as well as to flat transverse

directions. One next introduces the equations of motion making use of the (non-invertable)

temporal and spatial metric and Christoffel symbols corresponding to the stringy Newton-

Cartan spacetime. To make contact with a stringy Galilean observer one imposes gauge-

fixing conditions which reduce the symmetries to the acceleration-extended stringy Galilei

ones. As expected, the two approaches lead to precisely the same expression for the equa-

tion of motion of a fundamental string as well as of the gravitational potential Φαβ(x) itself.

This chapter is organized as follows. In section 2 we review, as a warming-up exer-

cise, the particle case for zero cosmological constant. In section 3 we derive the relevant

expressions for the stringy extension. In section 4 we apply the gauging procedure of the

last chapter to the full (deformed) stringy Galilei symmetries. To study applications of

the AdS/CFT correspondence based on the symmetry algebra corresponding to a non-

relativistic string it is necessary to include a (negative) cosmological constant Λ. We will

address this issue both for particles and strings in the last section.

5.2 The Particle Case

Our starting point is the action (3.14). Following [81,82] we take the non-relativistic limit

by rescaling the longitudinal coordinate x0 ≡ t and the mass m with a parameter ω and
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taking ω >> 1:

x0 → ωx0, m → ωm, ω >> 1 . (5.1)

This rescaling is such that the kinetic term remains finite. This results into the following

action:

S ≈ −mω2

∫

ẋ0
(

1 − ẋiẋi

2ω2(ẋ0)2

)

dτ , i = 1, · · · , D − 1 . (5.2)

The first term on the right-hand-side, which is a total derivative, can be cancelled by

coupling the particle to a constant background gauge field Aµ by adding a term

SI = m

∫

Aµẋ
µdτ , (5.3)

and choosing A0 = ω2 and Ai = 0 [83]. Because this Aµ can be written as a total derivative

the associated field-strength vanishes, such that no dynamics for the background gauge

field is introduced. However, this gauge field shifts the energy spectrum of all the particles

which couple to it; the energy p0 of such a particle is shifted with an amount of mω2, such

that it cancels the divergent rest energy. The limit ω → ∞ then yields the non-relativistic

action (3.27):

S =
m

2

∫

ẋiẋjδij

ẋ0
dτ . (5.4)

This action is invariant under worldline reparametrizations and the Galilei symmetries

(3.27). The equations of motion corresponding to the action (5.4) are given by eqn.

(3.31): 2

ẍi =
ẍ0

ẋ0
ẋi . (5.5)

The non-relativistic Lagrangian (5.4) is invariant under boosts only up to a total τ -

derivative, i.e.,

δL =
d

dτ
(mxiλj δij) . (5.6)

This leads to a modified Noether charge giving rise to a centrally extended Galilei alge-

bra containing an extra so-called central charge generator Z, as we saw in the last chapter.

The above results apply to free-falling frames without any gravitational interactions.

Such frames are connected to each other via the Galilei symmetries. We now wish to extend

these results to include frames that apply to a Galilean observer, i.e. that are accelerated

with respect to the free-falling frames, with arbitrary (time-dependent) acceleration. As

explained in the introduction we can do this via two distinct gauging procedures. The first

procedure is convenient if one is only interested in the physics experienced by a Galilean

observer. In that case it is sufficient to gauge the transverse translations by replacing

the constant parameters ζi by arbitrary time-dependent functions ζi → ξi(x0). From

2As was mentioned after eqn.(3.31), the equation of motion for {x0} and {xi} corresponding to the

action (5.4) are not independent. When we will include gravity in (5.4) via the worldline-reparametrization

invariant coupling ẋ0Φ(x), see (5.8), this will again be the case, as was mentioned after eqn.(3.54).
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the worldline point of view, usually such a gauging would consist in introducing (D − 1)

worldine gauge fields Ai(τ), assigning them the gauge transformations δAi = ξ̇i which

makes them Stückelberg fields, and defining covariant derivatives Dτx
i = ẋi(τ) − Ai(τ),

such that the action (5.4) becomes

S =
m

2

∫

Dτx
iDτx

jδij

ẋ0
dτ . (5.7)

However, we don’t want to obtain (D− 1) fundamental worldine fields Ai(τ), but a back-

ground field Φ(x). As such the gauging we will consider results in a pseudo-symmetry, as

discussed in section 3.1. Introducing the background field Φ(x) to the action (5.4) leads

to the following “gauged” action containing the gravitational potential Φ(x): 3

S =
m

2

∫

dτ
( ẋiẋjδij

ẋ0
− 2ẋ0Φ(x)

)

. (5.8)

The action (5.8) is invariant under worldline reparametrizations and the acceleration-

extended symmetries (we write x0 as t from now on)

δt = ζ0, δxi = λi
jx

j + ξi(t) , (5.9)

provided that the “background gauge field” Φ(x) transforms as follows:

δΦ(x) = −1

ṫ

d

dτ

( ξ̇i

ṫ

)

xi + ∂0g(t) . (5.10)

The second term with the arbitrary function g(t) represents a standard ambiguity in any

potential describing a force and gives a boundary term in the action (5.8). This action leads

to the following modified equation of motion describing a particle moving in a gravitational

potential:

ẍi + (ṫ)2δij∂jΦ(x) =
ẗ

ṫ
ẋi . (5.11)

Notice how (5.10) and (5.11) simplify if one takes the static gauge

t = τ , (5.12)

for which ṫ = 1 and ẗ = 0. Using this static gauge we see that for constant accelerations

ξ̈i = constant, it is sufficient to introduce a time-independent potential Φ(xi) but that for

time-dependent accelerations we need a potential Φ(x) that depends on both the time and

the transverse spatial directions.

The equation of motion of Φ(x) itself is easiest obtained by requiring that it is second or-

der in spatial derivatives and invariant under the acceleration-extended Galilei symmetries

3Note that Φ(x) is a background field representing a set of coupling constants from the world-line point

of view. Since these coupling constants also transform we are dealing not with a “proper” symmetry but

with a “pseudo” or “sigma-model” symmetry, see section 3.1.
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(5.9) and (5.10). Since the variation of Φ(x), see eqn. (5.10), contains an arbitrary function

of time and is linear in the transverse coordinate, it is clear that the unique second-order

differential operator satisfying this requirement is the Laplacian ∆ ≡ δij∂i∂j . Requiring

that the source term is provided by the mass density function ρ(x), which transforms as

a scalar with respect to (5.9), this leads to the following Poisson equation

△Φ(x) = SD−2Gρ(x) , (5.13)

where we have introduced Newton’s constant G for dimensional reasons, and SD−2 is the

volume of a (D − 2)-dimensional sphere.

The second gauging procedure is relevant if one is interested in describing the physics

in more frames than the set of accelerated ones. In that case one needs to gauge all

the symmetries of the Bargmann algebra, as was explained in the last chapter. After

eqn.(4.73) the independent gauge fields are given by {τµ, eµ
a,mµ}. The dynamics of the

Newton-Cartan point particle is now described by the following action [5]:

L =
m

2

(hµν ẋ
µẋν

τρẋρ
− 2mµẋ

µ
)

. (5.14)

Alternatively, this action can be written as

L =
m

2
N−1ẋµẋν

(

hµν − 2mµτν

)

(5.15)

with N ≡ τµẋ
µ.

The first term in this Lagrangian can be seen as the covariantization of the Lagrangian

of (5.4) with the Newton-Cartan metrics hµν and τµ. The presence of the central charge

gauge field mµ represents the ambiguity when trying to solve the Γ-connection in terms

of the (singular) metrics of Newton-Cartan spacetime. The Lagrangian (5.14) is quasi-

invariant under the gauged Bargmann algebra; under Z-transformations δmµ = ∂µσ the

Lagrangian (5.14) transforms as a total derivative, while for the other transformations the

Lagrangian is invariant. In fact, the mµẋ
µ term in (5.14) is needed in order to render the

action invariant under boost transformations which transform both the spatial metric hµν

and the central charge gauge field mµ as follows:

δhµν = 2λa e(µ
aτν) , δmµ = λa eµ

a . (5.16)

Varying the Lagrangian (5.14) gives, after a lengthy calculation,4 the geodesic equation

ẍµ + Γµ
νρẋ

ν ẋρ =
Ṅ

N
ẋµ . (5.17)

Here N ≡ τµẋ
µ = ḟ , which in adapted coordinates becomes N = ṫ. In these adapted

coordinate one obtains the geodesic equation (4.16), as was given in the last chapter. The

4Some details are given in appendix D.1.
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Γ-connection is given by (4.70). The geodesic equation (5.17) can be regarded as the

covariantization of (5.11).

Unlike the particle dynamics, the gravitational dynamics cannot be obtained from an

action in a straightforward way, see e.g. [93,112]. The equation describing the dynamics of

Newton-Cartan spacetime may be written in terms of the Ricci-tensor of the Γ-connection

as follows:

Rµν(Γ) = SD−2Gρτµν . (5.18)

In terms of the curvatures we can write down the equations of motion as eqn.(4.78). To

make contact with the equations for a Galilean observer, derived in the first gauging

procedure, one must impose the kinematical constraint (4.74), i.e. that the curvature cor-

responding to the (D−1)-dimensional spatial rotations vanishes. It should be stressed that

one is not forced to impose this curvature constraint, and one could stay more general and

try to solve the resulting theory of gravity for a curved transverse space. We will see that

the constraint (4.74) can be considered as an Ansatz for the transverse Newton-Cartan

metric hµν to be flat. It is also convenient to choose adapted coordinates f(x) = t in

eqn.(4.22). This reduces the general coordinate transformations to constant time transla-

tions and spatial translations with an arbitrary space-time dependent parameter.

The kinematical constraint (4.74) enables us to do two things. First, we can now

choose a flat Cartesian coordinate system in the (D − 1) spatial dimensions, because the

transverse space is flat as can be seen from eqn.(4.73):

Ri
jkl(Γ) = 0 . (5.19)

The solution (4.63) implies that the spatial components ωi
ab of the gauge field of spatial

rotations is zero in such a coordinate system, which expresses the fact that the transverse

Christoffel symbols vanish:

Γi
jk ∼ δi

aδ
j
b ωk

ab = 0 . (5.20)

This choice of coordinates restricts the spatial rotations to those that have a time-dependent

parameter only. Second, due to the same kinematical constraint (4.74) the time compo-

nent ω0
ab of the same gauge field is a pure gauge; Rµν

ab(J) is the field-strength of an

SO(D − 1) gauge theory and contains only ωµ
ab, as can be seen from (5.49). As such

the constraint (4.74) allows one to gauge-fix ωµ
ab to zero,5 and this restricts the spatial

rotations to having constant parameters only. Via (4.70) one can show that this implies

Γi
0j ∼ δi

aδ
j
b ω0

ab = 0 . (5.21)

5Explicitly, one can write Rµν
ab(J) = 2D[µων]

ab and δωµ
ab = Dµλ

ab, where Dµ is the gauge covariant

derivative. Putting Rµν
ab(J) = 0 imposes the constraint ωµ

ab = Dµf
ab on the gauge field for some function

fab. Performing then a gauge transformation on ωµ
ab and choosing the gauge parameter to be λab = −fab,

the result follows.
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The same choice of a Cartesian coordinate system also restricts the spatial translations

to having only time-dependent parameters. This reduces the symmetries acting on the

spacetime coordinates to the acceleration-extended Galilei symmetries given in eqn. (5.9).

The central charge transformations now only depend on time and do not act on the

spacetime coordinates. The vielbein postulate tells us that the only remaining connection

component Γi
00 can be written as Γi

00 = ∂iΦ(x), where

Φ(x) = m0(x) − 1
2δijτ

i(x)τ j(x) + ∂0m(x) . (5.22)

Here m0 and ∂im are the time component and spatial gradient components of the exten-

sion gauge field mµ, and τ i are the space components of the inverse temporal vielbein τµ.

Using the transformation properties of Γi
00 one can show that Φ(x), defined by eqn. (5.22),

indeed transforms like in eqn. (5.10) under the acceleration-extended Galilei symmetries. 6

One can show that after gauge-fixing the Newton-Cartan symmetries to the accele-

ration-extended Galilei symmetries, as described above, the Lagrangian (5.14) reduces

to

L =
m

2

(δij ẋ
iẋj

ẋ0
+ ẋ0(δijτ

iτ j − 2m0 − 2∂0m)
)

, (5.23)

where a boundary term has been discarded.7 Upon comparison with the action (5.8) this

again identifies the potential as in (5.22). Note that the τ iẋi terms cancel, reflecting the

choice of gauge (5.21) and indicating that this particular reference frame is non-rotating.

Similarly, eqn.(5.18) reduces in this gauge to the Poisson equation (5.13).

As expected, having the same symmetries, the equations of motion (5.17) and (5.18)

reduce to precisely the equations of motion (5.11) and (5.13) we obtained in the first gaug-

ing procedure.

5.3 From Particles to Strings

We now consider instead of particles of mass m strings with tension T moving in a D-

dimensional Minkowski spacetime, with metric ηµν (µ = 0, 1, · · · , D − 1). The action

describing the dynamics of such a string is given by the Nambu-Goto action (3.61)(we

take c = 1):

S = −T
∫

d2σ
√−γ , (5.24)

6The fact that Φ transforms with the double time derivative of ξi shows that it indeed transforms as a

component of the Γ-connection; see also eqn.(2.83).
7We have made use of the fact that, because xµ = xµ(τ), the τ -derivative of a general function f(x) can

be written as ḟ(x) = ẋ0∂0f(x) + ẋi∂if(x), which in the static gauge becomes ḟ(x) = ∂0f(x) + ẋi∂if(x).
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where σᾱ (ᾱ = 0, 1) are the world-sheet coordinates and γ is the determinant of the

induced world-sheet metric γᾱβ̄ :

γᾱβ̄ = ∂ᾱx
µ∂β̄x

νηµν . (5.25)

The action (5.24) is invariant under world-sheet reparametrizations. Like in the particle

case, the Lagrangian corresponding to this action is invariant under Poincaré transforma-

tions in the target spacetime.

Following [81, 82] we take the non-relativistic limit by rescaling the longitudinal coor-

dinate xα = (x0 ≡ t, x1) with a parameter ω and taking ω >> 1: 8

xα → ωxα , ω >> 1 . (5.26)

This results into the following action (i = 2, · · · , D − 1):

S ≈ −Tω2

∫

d2σ
√−γ̄

(

1 +
1

2ω2
γ̄ᾱβ̄∂ᾱx

i∂β̄x
jδij

)

, (5.27)

where γ̄ᾱβ̄ is the pull-back of the longitudinal metric ηαβ , i.e.

γ̄ᾱβ̄ = ∂ᾱx
α∂β̄x

βηαβ . (5.28)

Unlike the world-sheet metric (5.25), the pull-back used in (5.28) is given by a 2×2-matrix,

and as such is invertible. This means that the inverse metric γ̄ᾱβ̄ can be explicitly given:

it is the pull-back of the longitudinal inverse metric ηαβ ,

γ̄ᾱβ̄ = ∂ασ
ᾱ∂βσ

β̄ηαβ , (5.29)

such that γ̄ᾱβ̄ γ̄β̄ǭ = δᾱ
ǭ .

The divergent term on the right hand side of eqn. (5.27) is a total world-sheet derivative

[81]. This can be seen by using the identity η[β[αηγ]δ] = −1
2εβδεαγ , which holds in two

dimensions and in which εαγ is the two-dimensional epsilon symbol. This allows one to

write

√−γ̄ = 1
2ε

ᾱβ̄εαβ∂ᾱx
α∂β̄x

β

= ∂ᾱ

(

1
2ε

ᾱβ̄εαβx
α∂β̄x

β
)

. (5.30)

The divergent term can be canceled by coupling the string to a constant background 2-form

potential Bµν via the following Wess-Zumino term:

SI = T

∫

d2σεᾱβ̄∂ᾱx
µ∂β̄x

νBµν , (5.31)

8Note that, unlike the particle mass, the tension T does not get rescaled.
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and choosing the constant field components Bµν such that

Bαβ =
1

2
ω2εαβ , Biα = Bij = 0 . (5.32)

The resulting field-strength of Bµν is zero, similar to the particle case. The limit ω → ∞
of the sum of (5.27) and (5.31) then leads to the following non-relativistic action:

S = −T
2

∫

d2σ
√−γ̄

(

γ̄ᾱβ̄∂ᾱx
i∂β̄x

jδij

)

. (5.33)

This action is invariant under world-sheet reparametrizations and the following “stringy”

Galilei symmetries:

δxα = λα
βx

β + ζα, δxi = λi
jx

j + λi
βx

β + ζi , (5.34)

where (ζα , ζi , λi
j , λ

i
α , λ

α
β) parametrize a (constant) longitudinal translation, transverse

translation, transverse rotation, “stringy” boost transformation and longitudinal rotation,

respectively. As for the point particle, the equations of motion for the longitudinal and

transverse components are not independent. The equations of motion for {xi} correspond-

ing to the action (5.33) are given by

∂ᾱ

(√−γ̄γ̄ᾱβ̄∂β̄x
i
)

= 0 . (5.35)

The non-relativistic Lagrangian defined by (5.33) is invariant under a stringy boost trans-

formation only up to a total world-sheet divergence:

δL = ∂ᾱ

(

−T√−γ̄ ∂σ
ᾱ

∂xα
λi

αxi
)

, (5.36)

where (5.29) has been used. This leads to a modified Noether charge giving rise to

an extension of the stringy Galilei algebra containing two extra generators: Za′ and

Za′b′ (a′ = (0, 1)) [86]. The corresponding extended stringy Galilei algebra will be given

later.

We now wish to connect to the physics as experienced by a “stringy” Galilean observer

by gauging the translations in the spatial directions transverse to the string. In this

procedure we replace the constant parameters ζi by functions ξi(xα) depending only on

the foliation coordinates. Applying this gauging to the non-relativistic action (5.33) leads

to the following gauged action containing a gravitational potential Φαβ :

S = −T
2

∫

d2σ
√−γ̄

(

γ̄ᾱβ̄∂ᾱx
i∂β̄x

jδij − 2ηαβΦαβ

)

. (5.37)

This action can be compared with the point particle action (5.8). 9 The string action (5.37)

is invariant under world-sheet reparametrizations and the acceleration-extended stringy

Galilei symmetries [86]

δxα = λα
βx

β + ζα, δxi = λi
jx

j + ξi(xα) . (5.38)

9Note that γ̄ᾱβ̄ corresponds to a factor −(ẋ0)2 in the particle action.
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The local transverse translations are only realized provided that the background potentials

Φαβ transform as follows:

δΦαβ = − 1

2
√−γ̄ ηαβ ∂ᾱ

(√−γ̄ γ̄ᾱβ̄ ∂β̄ξi

)

xi + ∇(αgβ)(x
ǫ) , (5.39)

for arbitrary gβ(xǫ). Eqn. (5.39) is the string analog of eqn. (5.10). The action (5.37)

leads to the following modified equations of motion for the transverse coordinates {xi}:

∂ᾱ

(√−γ̄γ̄ᾱβ̄∂β̄x
i
)

+
√−γ̄ηαβ∂iΦαβ = 0 . (5.40)

These equations of motion simplify if we choose the static gauge

xα = σᾱ . (5.41)

In this gauge we have that γ̄ᾱβ̄ = ηαβ .

The equation of motion of Φαβ(x) itself is easiest obtained by requiring that it is second

order in spatial derivatives and invariant under the acceleration-extended stringy Galilei

symmetries (5.38) and (5.39). Since the variation of Φαβ(x), see eqn. (5.39), contains an

arbitrary function of the longitudinal coordinates and is linear in the transverse coordi-

nates, it follows that the unique second-order differential operator satisfying the above

requirement is the Laplacian ∆ ≡ δij∂i∂j . Requiring that the source term is provided by

the mass density function ρ(x), which transforms as a scalar with respect to (5.38), this

leads to the following Poisson equation:

△Φαβ(x) = SD−2Gρ(x)ηαβ . (5.42)

This finishes our first approach where we only gauge the transverse translations. In this

approach we have presented both the equations of motion for the transverse coordinates

{xi} of a string, see eqn. (5.40), as well as the bulk equations of motion for the gravita-

tional potential Φαβ , see eqn. (5.42).

5.4 Gauging the stringy Galilei algebra

We now proceed with the second gauging procedure in which we gauge the full deformed

stringy Galilei algebra. This algebra consists of longitudinal translations, transverse trans-

lations, longitudinal Lorentz transformations, “boost” transformations, transverse rota-

tions and two distinct extension transformations. As a first step one associates a gauge
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field to each of these symmetries:

τµ
a′

: longitudinal translations

eµ
a : transverse translations

ωµ
a′b′

: longitudinal Lorentz transformations (5.43)

ωµ
aa′

: “boost” transformation

ωµ
ab : transverse rotations

mµ
a′
,mµ

a′b′
: extension transformations .

At the same time the constant parameters describing the transformations are promoted

to arbitrary functions of the spacetime coordinates {xµ}:

τa′
(xµ) : longitudinal translations

ζa(xµ) : transverse translations

λa′b′
(xµ) : longitudinal Lorentz transformations

λaa′
(xµ) : “boost” transformations

λab(xµ) : transverse rotations

σa′
(xµ) , σa′b′

(xµ) : extension transformations . (5.44)

The nonzero commutators of the undeformed stringy Galilei algebra read

[Gbc′ , Ha′ ] = ηa′c′Pb , [Jbc, Pa] = −2ηa[bPc] ,

[Gcd′ ,Me′f ′ ] = 2ηd′[e′G|c|f ′] , [Jcd, Gef ′ ] = −2ηe[cGd]f ′ , (5.45)

[Jcd, Jef ] = 4η[c[eJf ]d] [Mb′c′ , Ha′ ] = −2ηa′[b′Hc′] ,

where a′ = 0, 1 are the two longitudinal foliating directions and a = 2, · · · , D − 1 are the

D− 2 transverse directions. Note that the Lorentz algebra so(1, 1) of the two-dimensional

foliation space is Abelian while for general p-branes, where the symmetries of the foliation

space are generated by the algebra so(1, p), this would not be the case. The extensions

suggested by the Poisson brackets corresponding to the non-relativistic string action (5.33)

are given by [87]

[Pa, Gbb′ ] = ηabZb′ , [Gaa′ , Gbb′ ] = −ηabZa′b′ ,

[Ha′ , Zb′c′ ] = 2ηa′[b′Zc′] , [Za′b′ ,Mc′d′ ] = 4η[a′[c′Zd′]b′] , (5.46)

[Za′ ,Mb′c′ ] = 2ηa′[b′Zc′] .
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The gauge transformations of the gauge fields (5.43) corresponding to the generators of

the deformed stringy Galilei algebra are given by

δτµ
a′

= ∂µτ
a′ − τ b′

ωµ
a′b′

+ λa′b′
τµ

b′
,

δeµ
a = ∂µζ

a − ζbωµ
ab + λabeµ

b + λaa′
τµ

a′ − τa′
ωµ

aa′
,

δωµ
a′b′

= ∂µλ
a′b′

,

δωµ
aa′

= ∂µλ
aa′ − λab′

ωµ
a′b′

+ λa′b′
ωµ

ab′
+ λabωµ

ba′ − λba′
ωµ

ab , (5.47)

δωµ
ab = ∂µλ

ab + 2λc[aωµ
b]c ,

δmµ
a′

= ∂µσ
a′

+ λaa′
eµ

a − ζaωµ
aa′

+ λa′b′
mµ

b′ − σb′
ωµ

a′b′
+ τ b′

mµ
a′b′ − σa′b′

τµ
b′
,

δmµ
a′b′

= ∂µσ
a′b′ − λaa′

ωµ
ab′

+ λab′
ωµ

aa′
+ σc′[a′

ωµ
b′]c′

+ λc′[a′
mµ

b′]c′
,

where we have used the gauge parameters (5.44). The corresponding curvatures are given

by10

Rµν
a′

(H) = 2D[µτν]
a′
,

Rµν
a(P ) = 2

(

D[µeν]
a − ω[µ

aa′
τν]

a′
)

,

Rµν
a′b′

(M) = 2 ∂[µων]
a′b′

,

Rµν
aa′

(G) = 2D[µων]
aa′
, (5.48)

Rµν
ab(J) = 2

(

∂[µων]
ab − ω[µ

caων]
bc
)

,

Rµν
a′

(Z) = 2
(

D[µmν]
a′

+ e[µ
aων]

aa′ − τ[µ
b′
mν]

a′b′
)

,

Rµν
a′b′

(Z) = 2
(

D[µmν]
a′b′

+ ω[µ
aa′
ων]

ab′
)

,

where M , G and J indicate the generators corresponding to longitudinal Lorentz transfor-

mations, “boost” transformations and transverse rotations, respectively. The derivative

Dµ is covariant with respect to these three transformations. Besides the gauge transforma-

tions all gauge fields transform under general coordinate transformations with parameters

ξµ(xµ) = (ξα(xµ) , ξi(xµ)).

Like in the particle case we would like to express the Γ-connection in terms of the

previous gauge fields. In order to do that we first impose a set of so-called conventional

constraints on the curvatures of the gauge fields:

Rµν
a′

(H) = Rµν
a(P ) = Rµν

a′
(Z) = 0 . (5.49)

10For general p-branes we would have δωµ
a′b′

= ∂µλ
a′b′

+ 2λc′[a′

ωµ
b′]c′

and

Rµν
a′b′

(M) = 2
(

∂[µων]
a′b′ −ω[µ

c′a′

ων]
b′c′

)

. In two spacetime dimensions one can write the single Lorentz

boost as λa′b′

= λεa′b′

indicating that the Lorentz algebra is trivially Abelian.
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These constraints are required to convert the local H and P transformations into general

coordinate transformations via the identity (B.10). Besides this, the constraints (5.49)

also imply that the gauge fields ωµ
ab , ωµ

aa′
and ωµ

a′b′
become dependent:

ωµ
ab = ∂[µeν]

aeν b − ∂[µeν]
beν a + eµ

c∂[νeρ]
ceν aeρ b − τµ

a′
eρ [aωρ

b]a′
, (5.50)

ωµ
aa′

= 2τµ
b′
(

τνb′
eρa[∂[νmρ]

a′ − ω[ν
a′c′
mρ]

c′
] − eνamν

a′b′
)

+ 2eµ
bτρa′

eν(b∂[νeρ]
a) + eµ

beνbeρa[∂[νmρ]
a′ − ω[ν

a′b′
mρ]

b′
] , (5.51)

ωµ
a′b′

= ∂[µτν]
a′
τνb′ − ∂[µτν]

b′
τνa′

+ τνa′
τρb′

τµ
c′
∂[ντρ]

c′
. (5.52)

The solution for ωµ
a′b′

is familiar from the Poincaré theory, see (2.55), and reflects the fact

that the foliation space is given by a two-dimensional Minkowski spacetime. The same

constraints have a third effect, namely that they lead to constraints on the curl of the

gauge field τµ
a′

. More precisely, the conventional constraint Rµν
a′

(H) = 0 can not only

be used to solve for the spin connection ωµ
a′b′

, see eqn. (5.52). Substituting this solution

back into the constraint also implies that the following projections of ∂[µτν]
a′

vanish:

eµaτν(a′
∂[µτν]

b′) = 0 , eµ
ae

ν
b∂[µτν]

a′
= 0 . (5.53)

It is instructive to verify how the other two spin connections are solved for. First, the

conventional constraints Rµν
a(P ) = 0 can not only be used to solve for the spin connection

ωµ
ab, see eqn. (5.50), but also for the following projections of the spin connection field

ωµ
aa′

:

eµ(aωµ
b)b′

= 2τνb′
eµ(a∂[µeν]

b) , ωρ
a[a′
τ b′]ρ = −τµa′

τνb′
∂[µeν]

a . (5.54)

Making different contractions of the third conventional constraint Rµν
a′

(Z) = 0 one can

solve for two more projections of the same spin connection field:

τµb′
ωµ

aa′
= 2τµb′

eνa
(

∂[µmν]
a′ − ω[µ

a′c′
mν]

c′
)

− 2eµamµ
a′b′

, (5.55)

eµ[aωµ
b]a′

= eµaeνb
(

∂[µmν]
a′ − ω[µ

a′b′
mν]

b′
)

. (5.56)

Combining the solutions (5.54), (5.55) and (5.56) for the different projections and using

the decomposition

ωµ
aa′

= τµ
b′
τνb′

ων
aa′

+ eµ
beν(bων

a)a′
+ eµ

beν[bων
a]a′

, (5.57)

one can solve for the spin connection field ωµ
aa′

, see (5.51). Finally, it turns out that be-

yond the contractions already considered there is one more contraction of the conventional

constraint Rµν
a′

(Z) = 0. It leads to the following constraint on the gauge field mµ
a′b′

:

τµ[c′
mµ

d′]a′
= τµc′

τνd′
(

∂[µmν]
a′ − ω[µ

a′b′
mν]

b′
)

. (5.58)
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This constraint relates the longitudinal projection ofD[µmν]
a′

to a certain projection of the

gauge field mµ
a′b′

, but does not allow one to solve mµ
a′b′

completely; the other projections

remain unspecified! We will return to the meaning of the constraint (5.58) after eqn.(5.74).

At this point the symmetries of the theory are the general coordinate transformations,

the longitudinal Lorentz transformations, “boost” transformations, transverse rotations

and extension transformations, all with parameters that are arbitrary functions of the

spacetime coordinates. The gauge fields τµ
a′

of longitudinal translations and eµ
a of trans-

verse translations are identified as the (singular) longitudinal and transverse vielbeins.

One may also introduce their inverses (with respect to the longitudinal and transverse

subspaces) τµ
a′ and eµ

a:

eµ
aeµ

b = δa
b , eµ

aeν
a = δν

µ − τµ
a′
τν

a′ , τµ
a′τµ

b′
= δb′

a′ ,

τµ
a′eµ

a = 0, τµ
a′
eµ

a = 0 . (5.59)

The spatial and temporal vielbeins are related to the spatial metric hµν with “inverse”

hµν , and the temporal metric τµν with “inverse” τµν , as follows:

τµν = τµ
a′
τν

b′
ηa′b′ , τµν = τµ

a′τν
b′ ηa′b′

,

hµν = eµ
aeν

b δab , hµν = eµ
ae

ν
b δ

ab . (5.60)

These tensors satisfy the Newton-Cartan metric conditions

hµνhνρ + τµντνρ = δµ
ρ , τµντµν = 2 ,

hµντνρ = hµντ
νρ = 0 . (5.61)

We note that for the point particle one would have τµντµν = 1 instead of τµντµν = 2.

A Γ-connection can be introduced by imposing the following vielbein postulates:

∂µeν
a − ωµ

abeν
b − ωµ

aa′
τν

a′ − Γλ
νµeλ

a = 0 ,

∂µτν
a′ − ωµ

a′b′
τν

b′ − Γρ
νµτρ

a′
= 0 . (5.62)

These vielbein postulates allow one to solve for Γ uniquely. The torsion Γρ
[νµ], given by

Γρ
[νµ] = τρ

a′Rµν
a′

(H) + eρ
aRµν

a(P ) , (5.63)

vanishes because of the constraints R(P ) = R(H) = 0, and with this the vielbein postu-

lates give the solution

Γρ
νµ = τρ

a′

(

∂(µτν)
a′ − ω(µ

a′b′
τν)

b′
)

+ eρ
a

(

∂(µeν)
a − ω(µ

abeν)
b − ω(µ

aa′
τν)

a′
)

(5.64)
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in terms of the dependent spin connections ωµ
ab , ωµ

aa′
and ωµ

a′b′
. If one plugs in the

explicit solutions of these spin connections, one obtains

Γρ
µν =

1

2
τρσ
(

∂ντσµ + ∂µτσν − ∂στµν

)

+
1

2
hρσ
(

∂νhσµ + ∂µhσν − ∂σhµν

)

+ hρσKσ(µ
a′
τν)

a′
, (5.65)

where Kµν
a′

= −Kνµ
a′

is given by the covariant curl of mµ
a′

:

Kµν
a′

= 2D[µmν]
a′
. (5.66)

An important observation is that mµ
a′b′

does not appear in (5.65). The origin of this

absence is the fact that the expression (5.64) is invariant under the shift transformations

ωµ
aa′ → ωµ

aa′
+ τµ

b′
Xa

a′b′ , (5.67)

where Xa
a′b′ = Xa

[a′b′] is an arbitrary shift parameter. The field mµ
a′b′

appears in the form

Xa
a′b′ = eλ

amλ
a′b′

in the solution of ωµ
aa′

, and as such mµ
a′b′

will drop out of the connec-

tion (5.64), and thus out of (5.65).

The Riemann tensor can be obtained, using the vielbein postulates, from the curvatures

of the spin connection fields:

Rµ
νρσ(Γ) = −τµ

a′Rρσ
a′b′

(M)τν
b′ − eµ

aRρσ
ab(J)eνb − eµ

aRρσ
aa′

(G)τνa′ . (5.68)

Note that this Riemann tensor has no dependence on the gauge field mµ
a′b′

, as was argued.

At this stage the independent fields are given by {τµ
a′
, eµ

a,mµ
a′}, whereas we saw that

mµ
a′b′

was partially solved for via eqn. (5.58) and does not enter the dynamics.11 The

dynamics of a Newton-Cartan string is now described by the following Lagrangian:

L = −T
2

√

−det(τ)τ ᾱβ̄∂ᾱx
µ∂β̄x

ν
(

hµν − 2mµ
a′
τν

a′
)

, (5.69)

where the induced world-sheet metric τᾱβ̄ is given by

τᾱβ̄ ≡ ∂ᾱx
µ∂β̄x

ντµν . (5.70)

eqn. (5.69) is the stringy generalization of the particle action (5.15). The first term

in eqn. (5.69) can be seen as the covariantization of the Lagrangian of (5.33) with the

Newton-Cartan metrics hµν and τµν , where the induced world-sheet metric (5.70) is the

covariantization of (5.28) with τµν . Analogously to the point particle, the Lagrangian

(5.69) is quasi-invariant under the gauged deformed stringy Galilei algebra. Under Za′-

transformations δmµ
a′

= ∂µσ
a′

the Lagrangian (5.69) transforms as a total derivative,

11An analogous results holds for the dynamics of the non-relativistic string, see eqn. (32) of [87].
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while the other transformations leave the Lagrangian invariant. In particular, this applies

to the Za′b′ -transformations which are given by

δmµ
a′

= −σa′b′
τµ

b′
or τµ[a′

δmµ
b′] = σa′b′

. (5.71)

The latter way of writing shows that the projection τµ[a′
mµ

b′] of the gauge field mµ
a′

can

be gauged away. The m(µ
a′
τν)

a′
term in the Lagrangian (5.69) is needed in order to render

the action invariant under boost transformations which transform both the spatial metric

hµν and the extension gauge field mµ
a′

as follows:

δhµν = 2λaa′
e(µ

aτν)
a′
, δmµ

a′
= λaa′

eµ
a . (5.72)

Like in the particle case, the presence of the extension gauge field mµ
a′

represents an

ambiguity when trying to solve the Γ-connection in terms of the (singular) metrics (5.60)

of Newton-Cartan spacetime. Namely, the metric compatibility conditions on hµν and τµν ,

∇ρh
µν = ∇ρτµν = 0 , (5.73)

give the solution (5.65), but Kµν
a′

= −Kνµ
a′

is an ambiguity which is not fixed by the

metric compatibility conditions. It is the specific solution (5.64) of the vielbein postulates

which fixes this ambiguity to be (5.66). A new feature of the string case is that the

ambiguity Kµν
a′

has its own ambiguity. In other words: there is an ambiguity in the

ambiguity! To show how this works we first note that from eqn. (5.65) it follows that

the longitudinal projection of (5.66) does not contribute to the connection because it is

multiplied by hρσ. This is equivalent to saying that the expression (5.65) is invariant under

the shift transformations

Kµν
a′ → Kµν

a′
+ τ[µ

c′
τν]

b′
Y a′

b′c′ (5.74)

for arbitrary parameters Y a′
b′c′. We will now argue that this ambiguity in Kµν

a′
is related

to the second extension gauge field, mµ
ab, which in contrast to mµ

a′
does not enter the

Lagrangian (5.69). We have seen that the absence of mµ
a′b′

in the dynamics follows from

the shift symmetry (5.67), which prevents the field mµ
a′b′

to enter the Γ-connection. We

now come back to the role of the constraint (5.58). Using eqn. (5.66) we see that this

constraint relates a certain projection of mµ
a′b′

to the longitudinal projection of the ambi-

guity Kµν
a′

. This longitudinal projection of the ambiguity is precisely the part that drops

out of the expression for Γ corresponding to the shift invariance of (5.65) under (5.74).

Therefore, the constraint (5.58) implies that a certain projection of the extension gauge

field mµ
a′b′

can be regarded as an “ambiguity in the ambiguity”.

Summarizing, we conclude that the extension gauge field mµ
a′

, like in the particle

case, corresponds to an ambiguity in the Γ-connection. This gauge field occurs in the

string action (5.69). A new feature, absent in the particle case, is that the extension of

the algebra contains also a generator Za′b′ , which is needed in order to close the extended
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stringy Galilei algebra.12 As a result there is a second extension gauge field mµ
a′b′

, which

corresponds to an ambiguity in the ambiguity. This extension gauge field does not occur

in the string action (5.69).

Having clarified the role of the extension gauge fields we now vary the Lagrangian

(5.69) which gives, after a calculation13 similar to the one leading to (5.17),

τ ᾱβ̄
(

∇ᾱ ∂β̄ x
ρ + ∂ᾱx

µ∂β̄x
ν Γρ

µν

)

= 0 , (5.75)

where the Γ-connection is given by (5.64). This geodesic equation can be seen as the

covariantization of (5.40), and in the particle case reduces to (5.17) as one would expect.

The equations describing the dynamics of stringy Newton-Cartan spacetime are given by

Rµν(Γ) = SD−2Gρτµν , (5.76)

just as for the point particle. The Ricci tensor however now is given in terms of the Γ-

connection (5.64). As for the particle case (4.78) we can write down the bulk dynamics

eqn.(5.76) also in term of the gauge curvatures by contracting eqn.(5.76) with vielbeine

and using eqn.(5.68):

Ra′c′ a′d′
(M) +Rac′ ad′

(G) = −SD−2Gρηc′d′ ,

Rac
ad(J) = 0 ,

Ra′c
a′c′

(M) +Rac′ ac(J) +Rac
ac′

(G) = 0 . (5.77)

To make contact with a Galilean observer we now impose the additional kinematical

constraints

Rµν
a′b′

(M) = Rµν
ab(J) = 0 . (5.78)

Here J refers to the generators of spatial rotations, whereas M refers to the generator of

a longitudinal boost which was absent for the particle. It should be stressed that one is

not forced to impose these curvature constraints, and one could stay more general and try

to solve the resulting theory of gravity for a curved longitudinal and transverse space. In

particular, in adding a cosmological constant in the next section, we will impose a different

constraint for the longitudinal space. The first constraint of (5.78) allows one to gauge-fix

ωµ
a′b′

= 0, expressing the flatness of the longitudinal space. This solves the constraints

(5.53) and allows one to go to the so-called adapted coordinates, in which τµ
a′

is given by

τµ
a′

= δµ
a′
. (5.79)

12I.e. one cannot extend the algebra with only Za′ ; the algebra extension is a package deal, giving also

Za′b′ .
13Some details are given in appendix D.1.
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In terms of these adapted coordinates the longitudinal and transverse vielbeins and their

inverses are given by

τµ
a′

=
(

δa′
α , 0

)

, eµ
a =

(

−ek
aτk

a′ , ei
a
)

,

τµ
a′ =

(

δα
a′ , τ i

a′
)

, eµ
a =

(

0 , ei
a

)

, (5.80)

in terms of the independent components τ i
a′ and the transverse vielbeins ei

a together with

their inverse ei
a. Note that in adapted coordinates the transverse vielbein is non-singular

in the transverse space, i.e.

ei
a ej

a = δj
i , ei

a ei
b = δa

b . (5.81)

The second kinematical constraint of (5.78) expresses the choice of flat transverse direc-

tions. It implies, using eqn. (5.68), that Ri
jkl(Γ) = 0 and allows us to choose a flat

Cartesian coordinate system in the transverse space such that

ei
a = δi

a , ei
a = δi

a . (5.82)

As such the constraints (5.78) can be regarded as metric Ansätze in which one is looking

for solutions of the metrics describing both a flat transverse space and a flat foliation space.

All metric components can now be expressed in terms of the only nontrivial components

τ i
a′ :

τµ
a′

=
(

δa′
α , 0

)

, eµ
a =

(

−τa
a′ , δi

a
)

,

τµ
a′ =

(

δα
a′ , τ i

a′
)

, eµ
a =

(

0 , δi
a

)

, (5.83)

where we do not distinguish anymore between (longitudinal, transverse) curved indices

(α, i) and (longitudinal, transverse) flat indices (a′, a).

Plugging the conventional constraints (5.49) and the kinematical constraints (5.78)

into the Bianchi identities (C.6) we find that

Rαβ(Γ) = −δa′
(αδ

b′
β)e

ρ
aτ

σ
b′Rρσ

aa′
(G) (5.84)

are the only nonzero components of the Ricci tensor. Furthermore, the remaining nonzero

curvatures R(J) and R(Z) are constrained by the following algebraic identities:

R[λµ
aa′

(G)τν]
a′

= R[λµ
aa′

(J)eν]
a −R[λµ

a′b′
(Z)τν]

b′
= 0 . (5.85)

The kinematical constraint Rµν
ab(M) = 0 also allows one to gauge-fix ωµ

ab = 0. We will

now show that in this gauge

Γi
αj = 0 , Γi

αβ = ∂iΦαβ , (5.86)
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where the latter equation defines the gravitational potential Φαβ .

We first show that Γi
αj = 0. Using the expressions (5.83), eqn. (5.64) and the fact that

ωj
a′b′

= ωµ
ab = 0 we find that Γi

αj is given by

Γi
a′j =

1

2

(

−∂jτ
i
a′ − ωj

ia′)
. (5.87)

Next, using expressions (5.50)-(5.52), we find that

ωj
ia = −∂[imj]a − ∂(iτ j)a , (5.88)

where we have used that ωi
a′b′

= 0. Furthermore, the gauge-fixing condition ωk
ij = 0 is

already satisfied but the gauge-fixing condition ωα
ab = 0 leads to the constraint

ωa′ ij = −∂[imj]a′ − ∂[iτ j]a′
= 0 . (5.89)

This constraint equation implies that mia′ can be written as

mia′ = −τ i
a′ − ∂ima′ , (5.90)

where ma′ are the transverse spatial gradient components of mia′ . Substituting the ex-

pression for ωj
ia′

into that of Γi
a′j the result becomes proportional to the righthand-side

of the constraint equation (5.89) and hence we find Γi
a′j = 0.

We next show that Γi
αβ can be written as ∂iΦαβ defining a gravitational potential Φαβ .

Using (5.64) we derive the following expression: 14

Γi
a′b′ = −∂(a′τ i

b′) − ω(a′ i
b′) , (5.91)

where we have used that ωα
a′b′

= ωα
ij = 0. Following eqs. (5.50)-(5.52) we find that ωa′ ib′

is given by

ωa′ ib′
= ∂a′mib′ − ∂ima′b′ + τk

a′∂[kmi]b′ +
1

2
τk

a′
(

∂iτ
k

b′
)

+
1

2
τk

a′∂kτ
i
b′ + 2mi

a′b′
. (5.92)

Substituting this expression for ωa′ ib back into that of Γi
a′b′ and using (5.90) we indeed

find that Γi
a′b′ = ∂iΦa′b′ with

Φαβ(x) = m(αβ)(x) − 1

2
δijτ

i
α(x)τ j

β(x) + ∂(αmβ)(x) , (5.93)

where m(αβ) = m(α
a′
δa′

β). This is the stringy generalisation of eqn. (5.22).

Using the expressions for the components of the Γ-connection calculated above we may

now verify that the Newton-Cartan geodesic equation (5.75) and the Poisson equation

14Remember that we do not distinguish anymore between flat indices a′ and curved indices α.
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(5.76) corresponding to the second gauging procedure reduce to the equations (5.40) and

(5.42) derived in the first gauging procedure. After gauge-fixing the Newton-Cartan sym-

metries to the acceleration-extended Galilei symmetries as described above, the Lagrangian

(5.69) reduces to the Lagrangian associated to the action (5.37), with the potential Φαβ

given by (5.93) and γ̄ᾱβ̄ = τᾱβ̄:15

L = −T
2

√

−det(τ) τ ᾱβ̄
(

∂ᾱx
i∂β̄x

jδij +∂ᾱx
α∂β̄x

β[τ i
ατ

j
βδij − 2m(αβ) − 2∂(αmβ)]

)

. (5.94)

The longitudinal components Rαβ(Γ) of the Ricci tensor become

Rαβ(Γ) = −δa′
(αδ

b′
β)e

ρ
aτ

σ
b′Rρσ

aa′
(G) = δij∂i∂jΦαβ , (5.95)

such that indeed (5.76) gives the stringy Poisson equation (5.42). This finishes our dis-

cussion of the string moving in a flat Minkowski spacetime. In the next section we will

consider the addition of a cosmological constant.

5.5 Adding a Cosmological Constant

To discuss Anti-de Sitter (AdS) backgrounds we first take a look at the particle case.

In the relativistic case the addition of a negative cosmological constant means that the

Poincaré algebra is replaced by an AdS algebra. In the non-relativistic case the Bargmann

algebra is replaced by the so-called Newton-Hooke algebra. However, instead of gauging

this algebra we will take another approach.16 It turns out that, when taking the non-

relativistic limit of a particle moving in an AdS background, which is a Λ-deformation

of the Minkowski background, one ends up with a non-relativitic particle action which is

a particular case of the non-relativistic particle action for a Galilean observer with zero

cosmological constant but with the following non-zero-value of the gravitational potential:

Φ(xi) = −1
2Λxixjδij , (5.96)

where {xi} are the transverse coordinates. The action is invariant under the so-called

Newton-Hooke symmetries which are a Λ-deformation of the Galilei symmetries. The

Newton-Hooke algebra can be obtained by performing a Inönü-Wigner contraction on the

algebra, which schematically looks like the following:

15After the gauge-fixing one has τᾱβ̄ = ∂ᾱx
α∂β̄x

βηαβ .
16For the explicit gauging of the Newton-Hooke algebra, see [115]. Note that in the relativistic case the

conventional constraint also removes the local translations from the spin connection. Non-relativistically,

something similar happens for the spin connection of the boosts.
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AdS

PoincaréNH

Galilei/Bargmann

R → ∞c → ∞

c → ∞R → ∞

Figure 5.1: The different contractions one can take on the AdS algebra in D spacetime dimensions,

so(2,D − 2). The parameter R is the radius of curvature, whereas c is the speed of light.

All Newton-Hooke symmetries can be viewed as particular time-dependent transverse

translations. Therefore, when gauging the transverse translations, it does not matter

whether one gauges the Galilei or Newton-Hooke symmetries, in both cases one ends up

with the same theory but with a different interpretation of the potential. When gauging

the Galilei symmetries one interprets the potential Φ(x) as a purely gravitational potential

φ(x), i.e. Φ(x) = φ(x). On the other hand, when gauging the Newton-Hooke symmetries

one writes Φ(x) as the sum of a purely gravitational potential φ(x) and a Λ-dependent

part, i.e.

Φ(x) = φ(x) − 1
2Λxixjδij . (5.97)

In both cases, turning off gravity amounts to setting φ(x) = 0. For Λ = 0 this implies

Φ(x) = 0 but for Λ 6= 0 this implies Φ(xi) = 1
2Λxixjδij . These different conditions lead to

different surviving symmetries: (centrally extended) Galilei symmetries for Λ = 0 versus

(centrally extended) Newton-Hooke symmetries [88, 89] for Λ 6= 0.

It is now a relatively straightforward task to generalize the above discussion to a string

moving in an AdS background. Taking the non-relativistic limit of a string moving in such

a background leads to a non-relativistic action that is invariant under a stringy version of

the Newton-Hooke symmetries [82, 87]. Note that this action is Λ-deformed in two ways:

(i) there is a Λ-dependent potential term in the action like in the particle case and (ii) the

foliation metric is deformed from M1,1 (Λ = 0) to AdS2 (Λ 6= 0). The latter deformation,

which leads to an AdS2-foliation of spacetime, is trivial in the particle case. All stringy

Newton-Hooke symmetries can be viewed as particular world-sheet dependent transverse

translations. It is therefore sufficient to gauge the symmetries for the case Λ = 0 only,

which amounts to gauging the stringy Galilei symmetries. In a second stage one obtains

the Λ 6= 0 case by a different interpretation of the potential Φαβ(x) and by replacing the

flat foliation space by an AdS2 spacetime. To be concrete, in analogy to the particle case,
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we gauge the stringy Galilei symmetries only and, next, write the background potential

Φαβ(x), which is needed for this gauging, as

Φαβ(x) = φαβ(x) + 1
4Λxixj δijταβ , (5.98)

where φαβ(x) is the purely gravitational potential and ταβ is an AdS2-metric. At the same

time we have replaced the flat foliation by an AdS2 space leading to an AdS2-foliation of

spacetime. 17

In this way it is a relatively simple manner to obtain the geodesic equations of motion

for a fundamental string in a cosmological background and to derive the equations of

motion for the potential Φαβ(x) itself.

5.5.1 The Particle Case

In taking the non-relativistic limit of a particle moving in an AdS background (which is a Λ-

deformation of the Minkowski background) one ends up with the action of a non-relativitic

particle moving in a harmonic oscillator potential. This is a particular case of the non-

relativistic particle action for a Galilean observer with zero cosmological constant but with

a particular non-zero-value of the potential Φ(x). In view of this it is convenient to write

the potential Φ(x) as the sum of a purely gravitational potential φ(x) and an effective

background potential φΛ(x) describing the harmonic oscillator due to the cosmological

constant:

Φ(x) = φ(x) + φΛ(x) . (5.99)

Notice that eqn.(5.99) points out a conceptual difference between the relativistic and

non-relativistic notion of a cosmological constant, which will also be true for the string.

Namely, according to (5.99) one is always able to redefine the potential Φ(x) in order to

absorb the cosmological constant into Φ(x). But in the relativistic case such a redefinition

of Λ into the metric gµν(x) is not possible. The non-relativistic particle action in the pres-

ence of a cosmological constant is invariant under the Newton-Hooke symmetries which

is a Λ-deformation of the Galilei symmetries we considered in section 2. A particularly

useful feature of the Newton-Hooke symmetries is that the Λ-deformed symmetries can all

be viewed as particular time-dependent transverse translations. This means that, when

gauging the Galilei symmetries like we did in section 2, the Newton-Hooke symmetries

are automatically included. The consequence of this is that, although we cannot perform

the second gauging procedure of section 2, i.e. gauge the full Newton-Hooke algebra, it is

straightforward to apply the first gauging procedure, i.e. gauge the transverse translation

17When gauging the full (deformed) stringy Galilei symmetries one of the kinematical constraints which

have to be imposed in order to restrict to a stringy Galilean observer, for Λ 6= 0, is that the curvature

corresponding to rotations amongst the longitudinal directions is proportional to Λ. This leads to a flat

foliation for Λ = 0 but an AdS2-foliation for Λ 6= 0.
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leading to arbitrary accelerations between different frames, as is appropriate for a Galilean

observer. Independent of whether we are starting from the Galilei or Newton-Hooke sym-

metries, when we gauge the transverse translations we end up with precisely the same

answer which we already derived in section 2, but with a different interpretation of the

potential Φ(x). The difference is seen when we turn off gravity. Without a cosmological

constant, turning off gravity means setting Φ(x) = φ(x) = 0 and there is no background

potential, i.e. φΛ(x) = 0. However, when Λ 6= 0, turning off gravity means a different thing

since now we want to end up with a non-zero background potential φΛ(x) 6= 0. According

to eqn. (5.99) it means setting Φ(x) = φΛ(x) or φ(x) = 0. One can view this as a different

gauge condition and that is the reason why, in the presence of a non-zero cosmological

constant, the symmetries that relate inertial frames is given by the Newton-Hooke sym-

metries instead of the Galilei symmetries. For a Galilean observer, however, we end up

with precisely the same geodesic equation and bulk equation of motion we derived in the

absence of a cosmological constant in the previous section.

Before showing how the Newton-Hooke symmetries arise as the transformations that

relate inertial frames, it is instructive to first re-derive the Galilei symmetries starting

from a Galilean observer. Consider the acceleration-extended Galilei symmetries given in

eqs. (5.9) and (5.10). Without a cosmological constant, turning off gravity means setting

Φ(x) = 0. Given the transformation rule (5.10) of the background potential Φ(x) this

implies the following restriction on the transverse translations:

d

dτ

( ξ̇i

ṫ

)

= 0 , (5.100)

where we have ignored the standard ambiguity in the potential represented by the function

g(t) in eqn. (5.10). This restriction implies that ξ̇i = λiṫ or ξi(t) = λit + ζi. This brings

us back to the Galilei transformations.

We now turn to the case of a non-zero cosmological constant Λ. It turns out that,

when taking the non-relativistic limit as is described in section 5.2 of a particle moving

in an (A)dS background,18 one ends up with a particle moving in an effective background

potential φΛ = −1
2Λxixi describing a harmonic oscillator [89]:

S =
m

2

∫

( ẋiẋjδij

ṫ
+ ṫΛxixjδij

)

dτ . (5.101)

We take the convention in which Λ > 0 describes a dS space, whereas Λ < 0 gives an AdS

space. In the following we will consider the AdS case only. The action (5.101) is nothing

18For this the cosmological constant Λ must be rescaled with a factor of ω−2. This is related to the fact

that if one wants to obtain the Newton-Hooke algebra from the AdS algebra by contraction, the radius of

curvature R needs to be rescaled with ω.
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else than the action (5.8), with Φ(x) being the harmonic oscillator potential,

Φ(x) = φΛ(x) = −1
2Λxixi . (5.102)

Viewed as a gauge condition, and using the transformation rule (5.10), this equation is

invariant under transverse translations that satisfy the following constraint:

1

ṫ

d

dτ

( ξ̇i

ṫ

)

= Λξi . (5.103)

Here we have again ignored the ambiguity in the potential represented by the function

g(t) in eqn. (5.10). For Λ < 0, i.e. AdS space, the restriction (5.103) on ξi is solved by19

ξi(t) = λiR sin (
t

R
) + ζi cos (

t

R
) , (5.104)

where

R2 ≡ − 1

Λ
. (5.105)

Note that for Λ → 0 or R → ∞ this expression reduces to the Galilei result ξi(t) = λit+ζi.

The complete transformation rules are now obtained by combining the transformations

(5.104) with the constant time translations and the spatial rotations:

δt = ζ0, δxi = λi
jx

j + λiR sin (
t

R
) + ζi cos (

t

R
) . (5.106)

This defines the Newton-Hooke algebra whose non-zero commutators are given by [88,89]:

[Pa, H] = R−2Ga , [Ga, H] = −Pa ,

[Mab, Pc] = −2ηc[aPb] , [Mab, Gc] = −2ηc[aGb] , (5.107)

[Mab,Mcd] = 4η[a[cMd]b] .

HereH,Pa, Ga andMab are the generators of time translations, spatial translations, boosts

and spatial rotations, with parameters ζ0, ζa, λa and λab, respectively. We note that

the cosmological constant shows up in the [Pa, H] commutator, but not in the [Pa, Pb]

commutator.20 This is consistent with the fact that the transverse space is flat. We also

observe that at this stage the Newton-Hooke algebra (5.107) does not contain a central

extension like the Bargmann algebra, i.e. [Pa, Gb] = 0. Similar to the Galilei particle

action (5.4) the Newton-Hooke particle action (5.101) suggests a central extension: the

19For Λ > 0, i.e. dS space, one obtains a similar expression but with the sine and cosine replaced by

their hyperbolic counterparts.
20Note that upon gauging the Newton-Hooke algebra the cosmological constant only appears in the

boost-curvature and the transformation of the boost spin connection, see [115].
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corresponding Lagrangian is quasi-invariant under both boosts and translations, described

by the parameter (5.104):

δL =
d

dτ

(mδijx
iξ̇j

ṫ

)

=
d

dτ

(

mxiλj δij cos (
t

R
) −mxiζj δij sin (

t

R
)
)

. (5.108)

This is most easily seen by using the restriction (5.103) directly in the variation of the

Lagrangian corresponding to the action (5.101). In the limit R → ∞, i.e. Λ → 0 the

variation (5.108) reduces to the variation (5.6). Calculating the Noether charges QP and

QG for the translations and the boosts respectively, the Poisson brackets suggest the same

central extension Z as for the Galilei particle:

[Pa, Gb] = δabZ . (5.109)

Given the transformation rules (5.106), it is straightforward to calculate the commuta-

tors between the different transformations and to verify that they are indeed given by the

Newton-Hooke algebra (5.107). As explained above, when viewed as the symmetries of the

Newton-Hooke particle described by the action (5.101), one obtains a centrally-extended

Newton-Hooke algebra. The contraction R → ∞ on this algebra reproduces the Bargmann

algebra. This is the non-relativistic analog of the fact that the R → ∞ contraction on the

(A)dS algebra yields the Poincaré algebra.

To obtain the cosmological constant in the gauging procedure of the Bargmann algebra

we relate the expression for the potential (5.22) in terms of the gauge field components to

the potential (5.99):

Φ(x) = m0(x) − 1
2δijτ

i(x)τ j(x) + ∂0m(x)

= φ(x) − 1
2Λxixjδij . (5.110)

The Poisson equation (5.13) can then be written as

△φ(x) = SD−2Gρ(x) + (D − 1)Λ , (5.111)

where D is the dimension of spacetime.

5.5.2 The String Case

We now wish to discuss the string case following the same philosophy as we used for the

particle case. Like in the particle case, we write the potential Φαβ(x) as the sum of a purely

gravitational potential and a background potential that represents the extra gravitational

force represented by the non-zero cosmological constant Λ:

Φαβ(x) = φαβ(x) + φαβ,Λ(x) . (5.112)
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We first consider the case of a zero cosmological constant and show how the stringy Galilei

symmetries are recovered after turning off gravity. According to eqn. (5.39) the condition

Φαβ(x) = 0 leads to the following restriction on the transverse translations:

∂ᾱ

(√−γ̄ γ̄ᾱβ̄ ∂β̄ξ
i
)

= 0 , (5.113)

where we have ignored the standard ambiguity in Φαβ(x) represented by the arbitrary

functions gβ(xǫ) in eqn. (5.39). This restriction is the stringy analogue of the restriction

(5.100) we found in the particle case. It is precisely the same restriction one finds if one

requires that the non-relativistic string action (5.33) is invariant under transverse transla-

tions. The solution of eqn. (5.113) is given by ξi(xα) = λi
βx

β + ζi, which can be checked

using expression (5.29) of γ̄ᾱβ̄ . This brings us back to the stringy Galilei symmetries given

in eqn. (5.34).

We now consider a non-zero cosmological constant Λ. It turns out that when one

considers the non-relativistic limit of a string moving in an AdS background one ends up

with an effective background potential given by [81]

φαβ,Λ = 1
4Λxixjδijταβ , (5.114)

where ταβ is an AdS2-metric. At the same time one should replace the flat foliation of

spacetime by an AdS2-foliation. This means that both in the definition of γ̄ᾱβ̄ given in

eqn. (5.28) and the action (5.37) one should replace the flat metric ηαβ by the AdS2-metric

ταβ . Setting also Φαβ(x) = 1
4Λxixjδijταβ in eqn.(5.37), one obtains the action [81]

S = −T
2

∫

d2σ
√−γ̄

(

γ̄ᾱβ̄∂ᾱx
i∂β̄x

jδij + Λxixjδij

)

, (5.115)

with γ̄ᾱβ̄ given by

γ̄ᾱβ̄ = ∂ᾱx
α∂β̄x

βταβ . (5.116)

The replacement of ηαβ by ταβ also applies to the transformation rule (5.39). This leads

to the following modified restriction on the transverse translations:

1√−γ̄ ∂ᾱ

(√−γ̄ γ̄ᾱβ̄ ∂β̄ξ
i
)

= −Λξi . (5.117)

Note that we have again ignored the arbitrary functions gβ(xǫ) in eqn. (5.39). For Λ < 0,

i.e. AdS space, the restriction (5.117) is solved for by the following expression for ξi(xα) :

ξi(xα) = λi
0

√

z2 +R2 sin (
t

R
) + λi

1z + ζi

√
z2 +R2

R
cos (

t

R
) , (5.118)

where we have written xα = {t, z} and used that Λ = −R−2. Note that for R → ∞ this

expression reduces to the stringy Galilei one given by ξi(xα) = λi
βx

β + ζi.
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The complete transformation rules are obtained by combining the transformation rules

(5.118) with the spatial transverse rotations and the isometries of the AdS2-space that act

on xα = {t, z}. The form of the latter transformations in an explicit coordinate frame is

given in appendix E, see eqn. (G.14), where a few useful properties of the AdS2 foliation

space have been collected. All these transformations together define the stringy Newton-

Hooke algebra:

[Ha′ , Hb′ ] = R−2Ma′b′ , [Mb′c′ , Ha′ ] = −2ηa′[b′Hc′] ,

[Mc′d′ ,Me′f ′ ] = 4η[c′[e′Mf ′]d′] ,

[Pa, Ha′ ] = R−2Maa′ , [Jcd, Jef ] = 4η[c[eJf ]d] , (5.119)

[Gbc′ , Ha′ ] = ηa′c′Pb , [Jbc, Pa] = −2ηa[bPc] ,

[Gcd′ ,Mef ] = 2ηd′[e′G|c|f ′] , [Jcd, Gef ′ ] = −2ηe[cGd]f ′ .

Note that the generators {Ha′ ,Ma′b′} span an so(2, 1) algebra describing the isometries

of the AdS2-foliation. Using the transformation rules given above and in appendix E one

may calculate the different commutators and verify that the algebra defined by (5.119)

is satisfied. Notice how the cosmological constant ends up in the [Ha′ , Hb′ ] and [Pa, Ha′ ]

commutators, but not in the [Pa, Pb] commutator. This is consistent with the fact that the

transverse space is flat but that the two-dimensional longitudinal space is not flat. Like

in the case of the point particle, the stringy Newton-Hooke algebra (5.119) allows for an

extension [81]. This is motivated by the fact that the Lagrangian L corresponding to the

string action (5.115) with the potential (5.114) transforms as a total derivative under the

boosts and translations described by the parameters (5.118):

δL = ∂ᾱ

(

−T√−γ̄ γ̄ᾱβ̄xi∂β̄ξi

)

. (5.120)

This is most easily seen by using the restriction (5.117) directly in the variation of the

Lagrangian corresponding to (5.115). For R → ∞ the variation (5.120) reduces to the

variation (5.36), and in the particle case it reduces to the variation (5.108). The resulting

extension suggested by the Poisson brackets is given by eqn. (5.46).

We now fit the cosmological constant into the gauging procedure for the string. One

important difference with the point particle case is that the foliation space for the string

becomes AdS2, whereas for the particle this foliation space is trivially flat. To accomplish

this AdS2-foliation we change the on-shell curvature constraint (5.78) for the foliation

space, whereas for the transverse space we keep it unaltered:

Rµν
a′b′

(M) = Λτ[µ
a′
τν]

b′
, Rµν

ab(J) = 0 . (5.121)
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This gives an AdS2 space in the longitudinal direction and a flat transverse space. We

then choose coordinates such that

τµ
a =

(

τα
a′
, 0
)

, eµ
a =

(

−τa
a′τα

a′
, δa

i

)

,

τµ
a′ =

(

τα
a′ , τ i

a′
)

, eµ
a =

(

0 , δi
a

)

, (5.122)

where now we are not able to choose τα
a′

= δa′
α , as we did in (5.80). Using the coordinates

chosen in appendix E one can choose

τα
a′

=
(

(1 +
z2

R2
)1/2δa′

0 , (1 +
z2

R2
)−1/2δa′

1

)

, (5.123)

τα
a′ =

(

(1 +
z2

R2
)−1/2δ0

a′ , (1 +
z2

R2
)1/2δ1

a′

)

. (5.124)

In view of this we should carefully distinguish between the curved longitudinal coordi-

nates {α} and the flat longitudinal coordinates {a′}. In contrast, from now on we will

not distinguish between flat and curved transverse coordinates {a} and {i} because the

transverse space is flat. With the coordinates (5.122) the constraints (5.121) allow for the

gauge choice

ωµ
ab = 0, ωi

a′b′
= 0 . (5.125)

The condition ωi
ab = 0 is trivially satisfied, but an explicit calculation reveals that

ωα
ij = −τα

a′
(

∂[iτ j]
a′ + ∂[imj]

a′
)

= −1

2
Γi

αj = 0 . (5.126)

So the gauge condition ωα
ij = 0 sets the connection component Γi

αj to zero, as in the

Galilei string case. From (5.126) we again arrive at (5.90). One should now be careful

in distinguishing between τ i
a′ , which is nonzero in general, and τi

a′
, which is zero for

the coordinate choice (5.122). With the spin connections (5.125) and (5.126) one can

show that the expression for the connection, eqn.(5.64), implies that again Γi
αβ = ∂iΦαβ ,

i.e. the Γ-connection can also for the AdS2-foliation be written as the transverse gradient

of a potential. The potential Φαβ is now given by

Φαβ = ma′ω(α
a′b′
τβ)

b′
+ τ(α

a′
∂β)ma′ + τ(α

a′
mβ)

a′ − 1

2
τ(α

a′
τβ)

b′
τ j

a′τ j
b′ , (5.127)

which should be compared to the potential for the flat foliation, eqn. (5.93). To describe the

splitting described in the beginning of this section with the background given by (5.114),

we put the potential (5.127) equal to (5.112). That the set of gauge fields appearing on

the right hand side of (5.127) can give rise to an arbitrary symmetric Φαβ can be seen by

taking, for example, the realization ma′ = τ i
a′ = 0 (and thus, via (5.90), mi

a′
= 0) in the

potential (5.127) and expressing the remaining longitudinal components mα
a in terms of

Φαβ . The symmetric longitudinal projection of mµ
a′

is then given by

τα(a′
mα

b′) = ταa′
τβb′

Φαβ , (5.128)
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whereas the antisymmetric longitudinal projection of mµ
a′

, given by τα[a′
mα

b′], can be

gauged away via a Za′b′-transformation as is clear from eqn.(5.71). As such mµ
a′

can be

expressed in terms of Φαβ . With {Γi
αβ ,Γ

ǫ
αβ} being the only nonzero connection coefficients,

the longitudinal components of the Ricci tensor become

Rαβ(Γ) = ∆Φαβ +Rαβ(AdS2)

= ∆φαβ + (D − 1)Λταβ , (5.129)

where we have used that Rαβ(AdS2) = Λταβ . Therefore, the nonzero components of the

Poisson equation (5.76) read as follows [92]:

∆φαβ =
(

SD−2Gρ− (D − 1)Λ
)

ταβ , (5.130)

where D is the dimension of spacetime. This concludes our discussion of the addition of

the cosmological constant to the theory.

5.6 Conclusions and outlook

We have shown how the theory of Newton-Cartan can be extended from particles moving in

a flat background to strings moving in a cosmological background. One way to obtain the

desired equations corresponding to these extensions is to gauge the transverse translations.

This necessitates the introduction of a new field, which is identified as the gravitational

potential. The resulting equations of motion are the ones used by a Galilean observer.

Alternatively, one can first gauge the full extended (stringy) Galilei algebra and, next,

gauge-fix some of the symmetries in order to obtain the symmetries that are appropriate

to a Galilean observer. The (central) extensions of the algebras involved play a crucial role

in this procedure. To obtain the (stringy) Newton-Cartan theory, conventional constraints

are imposed to convert the spacetime translations into general coordinate transformations

and to make the spin connections dependent fields. Further on-shell constraints are im-

posed on the curvature of the transverse space and, in the string case, on the curvature

of the foliation space. The transverse space is chosen to be flat, whereas for the string

the on-shell constraint on the longitudinal boost curvature can be chosen such that one

obtains either a flat foliation (corresponding to the stringy Galilei group) or an AdS2-

foliation (corresponding to the stringy Newton-Hooke group). The first choice describes

the non-relativistic limit of a string moving in a Minkowski background, whereas the sec-

ond choice describes the non-relativistic limit of a string moving in an AdSD background.

The analysis can easily be extended to arbitrary branes, in which case one should use

extended brane Galilei algebras [87].

It is interesting to compare our results with the literature on the application of Newton-

Cartan theory in the non-relativistic limit of the AdS/CFT correspondence. This has been
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discussed in, e.g., [90, 91] where some subtleties of this application are discussed. In [92]

it was noted that the non-relativistic limit on the CFT-side of the correspondence should

give (an infinite-dimensional extension of) the so-called Galilei conformal algebra. This

Galilean conformal algebra can be obtained by contracting the relativistic conformal al-

gebra so(D, 2). It differs from the Schrödinger algebra in that first, the Galilei conformal

algebra scales space and time in the same way and second, it does not allow for a central

extension playing the role of mass. The Galilean conformal algebra is then the boundary

realization of the stringy Newton-Hooke algebra in the bulk [94]. The dual gravity the-

ory should correspondingly be a Newton-Cartan theory with an AdS2-foliation describing

strings, instead of the usual R-foliation which describes particle Newton-Cartan theory.

The gauging procedure outlined in this chapter provides the framework of developing such

a theory from a gauge perspective.

It is known that the Newton-Cartan theory can be obtained from a dimensional re-

duction of General Relativity along a null-Killing vector, see e.g. [93,95]. 21 The fact that

the Killing vector is null provides one with the degenerate metric structure which is char-

acteristic for Newton-Cartan theory. The central charge gauge field mµ is related to the

Kaluza-Klein vector corresponding to this null direction. It would be interesting to inves-

tigate if the stringy version of the Newton-Cartan theory presented in this chapter can also

be obtained by a null-reduction from higher dimensions such that the deformation poten-

tials mµ
a′

and mµ
a′b′

obtain a similar Kaluza-Klein interpretation. This possibility should

be related to the fact that the extended p-brane algebra in D dimensions is a subalgebra

of the “multitemporal” conformal algebra so(D + 1, p + 2) in one dimension higher [87].

One way to obtain null-directions is to start from a relativistic string and to T-dualize

along its spatial world-sheet direction. The T-dual picture is a pp-wave which has a null-

direction [82]. One could now use this null direction for a Kaluza-Klein reduction along the

lines of [95] and see whether one obtains the stringy NC theory constructed in this chapter.

Finally, the results from this chapter, which of course are classical, can be compared

to the non-relativistic limit of string theory. In [83] a particular non-relativistic limit of

closed string theories is taken in which no graviton appears in the closed string spectrum.

As such these theories are called “non-gravitational”, but still exhibit all the duality rela-

tions known from relativistic string theories. However, in calculating amplitudes between

winded strings, an instantaneous gravitational force in the form of a scalar potential is

found between these strings. It would be interesting to see how the trace of the tensor

potential is related to the scalar potential of this particular non-relativistic string theory.

21In [95] also a proposal for an action describing the NC bulk dynamics has been made. For AdS/CFT

applications this is a very desirable feature.
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Chapter 6

Supersymmetric Newton-Cartan

gravity

6.1 Introduction

By now we know that non-relativistic Newtonian gravity can be reformulated in a geo-

metric way, invariant under general coordinate transformations, thus mimicking General

Relativity. By (partially) gauge fixing general coordinate transformations, non-geometric

formulations can be obtained. The extreme case is the one in which one gauge fixes such

that one only retains the Galilei symmetries, corresponding to a description in free-falling

frames, in which there is no gravitational force. A less extreme case is obtained by gauge

fixing such that one not only considers free-falling frames, but also includes frames that are

accelerated, with an arbitrary time-dependent acceleration, with respect to a free-falling

frame. These observers are called ‘Galilean observers’ and the corresponding formulation

of non-relativistic gravity is called ‘Galilean gravity’ 1. In such a frame, the gravitational

force is described by the Newton potential Φ. Such frames are related to each other by

the so-called ‘acceleration extended’ Galilei symmetries, consisting of an extension of the

Galilei symmetries in which constant spatial translations become time-dependent ones. In

this chapter, we will construct a supersymmetric version of both Newton-Cartan gravity,

as well as Galilean gravity, and show how they are related via a partial gauge fixing.

In chapter four we showed how four-dimensional Newton-Cartan gravity can be ob-

tained by gauging the Bargmann algebra.2 An important step in this gauging procedure is

the imposition of a set of constraints on the curvatures corresponding to the algebra [98].

The purpose of these constraints is to convert the abstract time and space translations

1The case in which constant accelerations are considered, instead of time-dependent ones, leads to

ordinary Newtonian gravity, described by a time-independent Newton potential.
2The Bargmann algebra does not contain any conformal symmetries. Non-relativistic conformal (su-

per)algebras, and their relation to Newton-Cartan space-time, were investigated in [76,97].
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of the Bargmann algebra into general coordinate transformations. When gauging the

Poincaré algebra, as we reviewed in section 4.2, one imposes that the curvature corre-

sponding to the spacetime translations, vanishes:

Rµν
A(P ) = 0 , µ, A = 0, 1, 2, 3 . (6.1)

These constraints are conventional constraints. The same set of constraints serves another

purpose: it can be used to solve for the spin-connection fields corresponding to the Lorentz

transformations in terms of the other gauge fields. This is different from the non-relativistic

case where setting the curvature corresponding to time translations equal to zero is a true

constraint:

Rµν(H) = 2∂[µτν] = 0 . (6.2)

This constraint cannot be used to solve for any spin connection. Instead, it allows us to

write the temporal Vierbein τµ as

τµ(xν) = ∂µτ(xν) (6.3)

for an arbitrary scalar function τ(xν). One can use the time reparametrizations to choose

this function equal to the absolute time which foliates the Newtonian space-time:

τ(xν) = x0 ≡ t , τµ(xν) = δµ
0 . (6.4)

This can be viewed as a gauge condition that fixes the time reparametrizations with local

parameters ξ0(xµ) to constant time translations: 3

ξ0(xν) = ξ0 . (6.5)

One also imposes the conventional constraint that the curvature of the spatial translations

equals zero:

Rµν
a(P ) = 0 . (6.6)

However, this constraint by itself is not sufficient to solve for both the spin connection

fields corresponding to the spatial translations as well as the spin connection fields corre-

sponding to the boost transformations. In order to achieve that one needs to extend the

Galilei algebra to the Bargmann algebra and impose that the curvature corresponding to

the central extension vanishes as well. Together with (6.6) this conventional constraint

can be used to solve for all spin-connection fields. The invariance of the non-relativistic

theory under central charge transformations corresponds to particle number conservation

which is indeed a non-relativistic property.

3With the exception of sections 2.1 and 4, we will assume that any parameter, without any spacetime

dependence indicated, is constant. This should be contrasted to fields where we do not always indicate the

explicit spacetime dependence.
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It is the purpose of this chapter to extend the construction of chapter four to the su-

persymmetric case by gauging a supersymmetric extension of the Bargmann algebra. An

N = 1 supersymmetric extension of the Bargmann algebra was considered in [99]. Ac-

cording to this algebra, the anti-commutator of two supercharges leads to a central charge

transformation. We are however primarily interested in a non-trivial supersymmetric ex-

tension in which the anti-commutator of the fermionic generators contains the generators

corresponding to time and space translations. It turns out that this can only be achieved

provided we consider an N = 2 supersymmetric extension of the Bargmann algebra [81].

The analysis of [81] also leads to a realization of this algebra, as global symmetries, on the

embedding coordinates of a non-relativistic superparticle propagating in a flat Newtonian

space-time.

For technical reasons explained below, we consider from now on only the case of three

spacetime dimensions, i.e. D = 3. Three-dimensional gravity is interesting by itself, both

relativistically as well as non-relativistically. We saw in sections 2.4 and 2.7 that the

relativistic theory does not have any local degrees of freedom and there is no interaction

between static sources. However, moving particles can still exhibit non-trivial scatter-

ing [100]. In contrast, in the non-relativistic Newtonian theory, there is an attractive

gravitational Newton force that goes as the inverse of the distance between point masses.

This theory can thus not be viewed as a non-relativistic limit of General Relativity. Indeed,

in the latter, there is no attractive force between static sources, while Newton gravity does

exhibit such a gravitational attraction. Coming back to the supersymmetric extensions of

non-relativistic gravity, we note that supersymmetric extensions of the three-dimensional

Bargmann algebra were considered in [101].

When gauging the N = 2 super-Bargmann algebra, one must at some point impose

that the super-covariant extension of the bosonic curvature Rµν(H) equals zero:

R̂µν(H) = 0 . (6.7)

This is the supersymmetric generalization of the constraint (6.2). We find that under

supersymmetry this constraint leads to another constraint that sets the super-covariant

curvature corresponding to one of the two gravitini, ψµ+, equal to zero:

ψ̂µν+ = 0 . (6.8)

In the same way that the time reparametrizations, up to constant time translations, can be

used to fix the temporal dreibein according to (6.4), one may now use one of the two local

supersymmetries, with arbitrary fermionic parameters ǫ+(xµ), to set the ψµ+ gravitini

equal to zero:

ψµ+ = 0 . (6.9)
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This gauge choice fixes the local ǫ+-supersymmetry to constant ones:

ǫ+(xµ) = ǫ+ . (6.10)

The remaining supersymmetry, with parameters ǫ−(xν) can be non-trivially gauged. Only

the commutator of a constant and a gauged supersymmetry leads to a (local) spatial

translation. We find that the commutator of two constant supersymmetries leads to a

(constant) time translation while the commutator of two gauged supersymmetries leads

to a (local) central charge transformation. It turns out that one can gauge-fix the global

(with parameter ǫ+) supersymmetry, but not the local supersymmetry (with parameter

ǫ−(xν)). This explains why we need at least two supersymmetries to obtain a non-trivial

(i.e. where the commutator of two supersymmetries gives a space or time translation)

supersymmetry algebra .

The above paragraph refers to a so-called ‘full gauging’, in which all symmetries are

gauged. This leads to a geometric description of Newtonian supergravity, that uses a

temporal and spatial dreibein and is invariant under arbitrary general coordinate trans-

formations. This theory can appropriately be called ‘Newton-Cartan supergravity’. The

case in which we consider a description that is only invariant under the acceleration ex-

tended Galilei symmetries, is obtained by a ‘medium gauging’ and the corresponding

supergravity theory can be called ‘Galilean supergravity’. In this chapter, we will obtain

the medium gauging from the fully gauged Newton-Cartan supergravity by a partial gauge

fixing. The Galilean supergravity we thus obtain, contains a field, corresponding to the

Newton potential, as well as a fermionic superpartner. The Newton potential of Galilean

supergravity replaces the temporal and spatial dreibeins of Newton-Cartan supergravity.

We find that, in order to write down the supersymmetry transformation rules, we also

have to introduce a ‘dual Newton potential’. The Newton potential and its dual can be

seen as real and imaginary parts of a meromorphic function, whose singularities indicate

the positions of added point-like sources.

All the above arguments are equally valid when gauging the four-dimensional N = 2

super-Bargmann algebra. However, in the four-dimensional case we are dealing with the

additional complication that in the relativistic case the algebra can only be closed pro-

vided we introduce more fields than the gauge fields associated to each of the generators

of the algebra. To be precise, the N = 2 super-Poincaré algebra requires besides the usual

gauge fields the introduction of an extra Abelian gauge field. In the non-relativistic case,

one would expect that, similarly, extra fields are needed to close the algebra. We have

performed the four-dimensional gauging procedure and verified that it is not enough to

introduce a single Abelian vector field in the non-relativistic case. More fields are needed

and that is what makes the four-dimensional case more complicated. In the conclusions
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we will comment on this issue.

This chapter is organized as follows. As a warming-up exercise, we will first review

in section 2 the gauging, leading to Newton-Cartan gravity, and subsequent gauge fixing,

leading to Galilean gravity, in the bosonic case. In section 3 we present the 3D N = 2

super-Bargmann algebra. In section 4 we perform the gauging of this algebra, following

the procedure outlined for the bosonic case in chapter four and reviewed in section 2.

We explicitly perform the gauge fixing that brings us to the frame of a Galilean observer

in section 5 and show how the Newton-Cartan supergravity theory reduces to a Galilean

supergravity theory in terms of a Newton potential and its supersymmetric partner. We

present our conclusions in section 6.

6.2 Newton-Cartan and Galilean gravity

In this section, we recall shortly how the Newton-Cartan theory is obtained by gauging

the Bargmann algebra, and how subsequently Galilean gravity can be obtained by partial

gauge fixing.

6.2.1 Newton-Cartan gravity

Our starting point is the Bargmann algebra (4.46), but now specifically for three dimen-

sions. In this case the algebra simplifies a bit. Namely, in two spatial dimensions there

is only one spatial rotation. As such rotations will commute and form an Abelian subal-

gebra, i.e. [Jab, Jcd] = 0. In table 1 we have indicated the symmetries, gauge fields, local

parameters and curvatures that we associated to each of the generators.

symmetry generators gauge field parameters curvatures

time translations H τµ ζ(xν) Rµν(H)

space translations P a eµ
a ζa(xν) Rµν

a(P )

boosts Ga ωµ
a λa(xν) Rµν

a(G)

spatial rotations Jab ωµ
ab λab(xν) Rµν

ab(J)

central charge transf. Z mµ σ(xν) Rµν(Z)

Table 6.1: This table indicates the generators of the Bargmann algebra and the gauge

fields, local parameters and curvatures that are associated to each of these generators.

According to the Bargmann algebra the gauge fields transform under spatial rotations,

boosts and central charge transformations as described by eqn.(4.48). We will not consider

temporal and spatial translations because later these will effectively be removed by the
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second and third equation of the constraints (4.60). The curvatures which transform

covariantly under the transformations (4.48) are then given by eqns.(4.49)-(4.53).

We then proceed by imposing the second and third equation of the constraints (4.60)

Rµν
a(P ) = 0 , Rµν(Z) = 0 . (6.11)

These are the conventional constraints. On top of this, we impose the additional con-

straints

Rµν(H) = 0 , Rµν
ab(J) = 0 . (6.12)

The first equation defines the foliation of a Newtonian spacetime. The second one is

needed to obtain Newton gravity in flat space. The constraints (6.11), together with the

first constraint of (6.12) can then be used to convert the H- and P a-transformations, with

parameters ζ(xν) and ζa(xν), of the algebra into general coordinate transformations, with

parameters ξλ(xν). The gauge fields τµ and eµ
a can now be interpreted as the temporal

and spatial dreibeins. Their projective inverses, τµ and eµ
a, are defined by the equations

(4.55)-4.57. Using these projective inverses one can use the conventional constraints (6.11)

to solve for the spin-connections fields ωµ
ab(xν) and ωµ

a(xν) in terms of τµ, eµ
a and mµ.

These solutions are given by eqns.(4.63) and (4.66), which we repeat here for convenience:

ωµ
ab(xν) = 2eρ [a∂[ρeµ]

b] + eµ
ceρ aeν b∂[ρeν]

c − τµe
ρ aeν b∂[ρmν] , (6.13)

ωµ
a(xν) = eν a∂[µmν] + eµ

beν aτρ∂[νeρ]
b + τν∂[µeν]

a + τµτ
νeρ a∂[νmρ] . (6.14)

At this point, the only non-zero curvature left is the one corresponding to the boost

transformations. Plugging the previous constraints into the Bianchi identities one finds

that the only non-zero components of the boost curvature are given by4

R0(a
b)(G) 6= 0 . (6.15)

The dynamical vacuum equation defining Newton-Cartan gravity is given by the trace of

the above expression, plus its boost transformation (which vanishes automatically by the

second constraint of eqn.(6.12)):

R0a
a(G)0 , R0a

ab(J) = 0 . (6.16)

These equations of motion are invariant under general coordinate transformations, local

boosts, local spatial rotations and local central charge transformations, with parameters

ξλ(xµ), λa(xµ), λab(xµ) and σ(xµ), respectively.

6.2.2 Galilean gravity

To obtain Galilean gravity, described in terms of a Newton potential Φ(xµ), we perform

a partial gauge fixing of the Newton-Cartan theory which we will now describe. First, we

4Note that the flat zero-component, i.e. the contraction of a curved index µ with τµ, is indicated as 0.
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solve the constraints (6.12) by imposing the gauge fixing conditions

τµ(xν) = δµ
0 , ωµ

ab(xν) = 0 . (6.17)

This fixes the local time translations and spatial rotations to constant transformations:

ξ0(xν) = ξ0 , λab(xν) = λab . (6.18)

No compensating transformations are induced by these gauge fixings. Next, we gauge fix

the spatial dependence of the spatial translations by imposing the gauge fixing condition

ei
a(xν) = δi

a . (6.19)

Requiring δei
a = 0 leads to the condition

ξa(xν) = ξa(t) − λaix
i . (6.20)

The solution (6.20) for the spatial dependence of the spatial translation parameters ex-

presses the fact that, after imposing the gauge fixing condition (6.19), the i index should

be treated as an a index and therefore only feels the constant spatial rotations. Note that

after imposing the gauge fixing (6.19) space is flat and we do not distinguish anymore

between the i and a indices and upper and down indices.

At this stage the independent temporal and spatial dreibein components and their

projective inverses are given by 5

τµ(xν) = δµ
0 , eµ

a(xν) =
(

−τa(xν) , δi
a
)

,

τµ(xν) =
(

1 , τa(xν)
)

, eµ
a(xν) =

(

0 , δi
a

)

, (6.21)

where the τa(xν) are the only non-constant dreibein components left. The only other

independent gauge field left is the central charge gauge field mµ(xν). Taking into account

the compensating gauge transformation given in (6.20) we find that the remaining fields

τa(xν),m0(xν) and mi(x
ν) transform as follows:

δτa(xν) = λa
bτ

b(xν) − λc
dx

d∂cτ
a(xν) + ξ0∂0τ

a(xν) + ξj(t)∂jτ
a(xν)−

− ξ̇a(t) − λa(xν) , (6.22)

δmi(x
ν) = ξ0∂0mi(x

ν) + ξj(t)∂jmi(x
ν) + λi

jmj(xν) − λj
kx

k∂jmi(x
ν)+

+ λi(x
ν) + ∂iσ(xν) , (6.23)

δm0(xν) = ξ0∂0m0(xν) + ξ̇i(t)mi(x
ν) + ξi(t)∂im0(xν) − λi

jx
j∂im0(xν)−

− λa(xν)τa(xν) + σ̇(xν) . (6.24)

5Remember that τ i = τaδi
a and that we do not distinguish between τ i and τa anymore.
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The three fields τa(xν), mi(x
ν) and m0(xν) are not independent. Since the gauge field

ωµ
ab(xν) which we gauge fixed to zero, see eq. (6.17), is dependent we need to investigate

its consequences. It turns out that the spatial part of these conditions does not lead

to restrictions on the above fields but the time component does. Using the other gauge

fixing conditions as well, we find that the gauge fixing condition ω0
ab(xν) = 0 leads to the

following restriction:

∂[iτj](x
ν) + ∂[imj](x

ν) = 0 . (6.25)

This implies that, locally, one can write 6

τi(x
ν) +mi(x

ν) = ∂im(xν) . (6.26)

Without loss of generality, we can thus eliminate mi(x
ν) for τi(x

ν) and m(xν), which is

what we will do in the following. The transformation rule for m(xν) can be found from

δτi(x
ν) and δmi(x

ν):

δm(xν) = ξ0∂0m(xν) − ξ̇k(t)xk + ξj(t)∂jm(xν) − λj
kx

k∂jm(xν) + σ(xν) + Y (t) , (6.27)

where Y (t) is an arbitrary time-dependent shift. At this point we are left with three inde-

pendent fields τ i(xν), m0(xν) and m(xν) whose transformation laws are given by (6.22),

(6.24), (6.27), respectively.

From the transformation rule (6.27), we see that the central charge transformation

acts as a Stückelberg shift on the field m(xν). We can thus partially fix the central charge

transformations by imposing

m(xν) = 0 . (6.28)

This fixes the central charge transformations according to

σ(xµ) = σ(t) + ξ̇a(t)xa , (6.29)

where it is understood that we also fix Y (t) = −σ(t) in (6.27). After this gauge fixing the

transformation rules of the two independent fields τ i(xν) and m0(xν) are given by:

δτ i(xν) = λi
jτ

j(xν) − λj
kx

k∂jτ
i(xν) + ξ0∂0τ

i(xν) + ξj(t)∂jτ
i(xν) − ξ̇i(t) − λi(xν) ,

δm0(xν) = ξ0∂0m0(xν) − ξ̇i(t)τi(x
ν) + ξi(t)∂im0(xν) + ξ̈k(t)xk

− λi
jx

j∂im0(xν) − λi(xν)τi(x
ν) + σ̇(t) . (6.30)

We note that the local boost transformations, with local parameters λi(xν), end up as

a Stückelberg symmetry. This Stückelberg symmetry can be fixed by imposing the final

gauge condition

τa(xν) = 0 . (6.31)

6Note that we freely lower and raise the i or a index on τ i here and in the following. So, τi no longer

refers to the i-components of τµ at this point.
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This leads to the following compensating transformations:

λi(xν) = −ξ̇i(t) . (6.32)

The only independent field left now is

m0(xν) ≡ Φ(xν) , (6.33)

which in a minute we will identify as the Newton potential. Using the gauge condition

(6.31) and taking into account the compensating transformations (6.32) we find that the

transformation rule of this field is given by

δΦ(xν) = ξ0∂0Φ(xν) + ξi(t)∂iΦ(xν) + ξ̈k(t)xk − λi
jx

j∂iΦ(xν) + σ̇(t) . (6.34)

The fact that we identify the field m0(xν) with the Newton potential Φ(xν) is justified

by looking at the equations of motion. In terms of Φ(xν) the expressions for the only

non-zero dependent boost spin-connection field is given by

ω0
a(xν) = −∂aΦ(xν) . (6.35)

If we now plug this expression for the boost spin-connection components into the equation

of motion (6.16) we find the expected Poisson equation for the Newton potential:

△Φ = ∂a∂
aΦ = 0 . (6.36)

This equation is invariant under the acceleration extended Galilei symmetries (6.34).

The transformations (6.34) form a closed algebra on Φ(xν). One finds the following

non-zero commutators:

[

δξ0 , δξi(t)

]

Φ(xν) = δξi(t)

(

−ξ0ξ̇i(t)
)

Φ(xν) ,

[

δξ0 , δσ(t)

]

Φ(xν) = δσ(t)

(

−ξ0σ̇(t)
)

Φ(xν) ,
[

δξi
1(t), δξi

2(t)

]

Φ(xν) = δσ(t)

(

ξ̇j
1(t)ξj

2(t) − ξ̇j
2(t)ξj

1(t)
)

Φ(xν) ,

[

δξi(t), δλjk

]

Φ(xν) = δξi(t)

(

λi
jξ

j(t)
)

Φ(xν) , (6.37)

where we have indicated the parameters of the transformations on the right-hand-side in

the brackets. Note that in calculating the commutator on Φ(xν) we do not vary the ex-

plicit xa that occurs in this transformation rule. This xa-dependence follows from solving

a parameter, see eq. (6.29), and we do not vary the parameters of the transformations

when calculating commutators.

This finishes our review of the bosonic case. For the convenience of the reader we have

summarized all gauge conditions and resulting compensating transformations in Table 2.
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gauge condition/restriction compensating transformation

τµ(xν) = δµ
0 ξ0(xν) = ξ0

ωµ
ab(xν) = 0 λab(xν) = λab

ei
a(xν) = δi

a ξa(xν) = ξa(t) − λaix
i

τi(x
ν) +mi(x

ν) = ∂im(xν) –

m(xν) = 0 σ(xν) = σ(t) + ξ̇a(t)xa

τa(xν) = 0 λi(xν) = −ξ̇i(t)

m0(xν) = Φ(xν) ω0
a(xν) = −∂aΦ(xν)

Table 6.2: This table indicates the gauge fixing conditions and corresponding compensat-

ing transformations that lead to Galilean gravity. We have also included the restrictions

that follow from the fact that the spin-connection field ωµ
ab is dependent. At the bottom

of the table we have summarized the expressions of the non-zero remaining gauge fields in

terms on the Newton potential Φ(xν).

6.3 The 3D N = 2 Super-Bargmann Algebra

A supersymmetric extension of the Bargmann algebra can be obtained by contracting the

super-Poincaré algebra with a central extension, similar to how the Bargmann algebra can

be obtained from a trivially extended Poincaré algebra. It turns out that in order to obtain

a true supersymmetric extension of the Bargmann algebra in which the anti-commutator

of two supersymmetry generators gives both a time and a space translation we need at

least two supersymmetries [81]. In this chapter we will consider the minimal case, i.e.

N = 2 supersymmetry.

Our starting point is therefore the 3D N = 2 super-Poincaré algebra with central

extension Z , whose non-zero commutation relations are given by

[MBC , PA] = −2ηA[BPC] , [MCD,MEF ] = 4η[C[EMF ]D] ,

[MAB, Qα] = −1

2
[γAB]α

βQβ ,

{Qi
α , Q

j
β} = − [γAγ0]αβPAδ

ij + ǫαβ ǫ
ij

Z . (6.38)

The indices A,B, · · · = 0, 1, 2 are flat Lorentz indices, α = 1, 2 are 3D spinor indices and

i = 1, 2 count the number of supercharges. We have collected the 4 supercharges into two

2-component Majorana spinors Qi
α. 7

7We use a Majorana representation for the γ-matrices, in which the charge conjugation matrix C is

given by C = γ0. For notational convenience we will write γ0 instead of γ0.
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Following [101], we define the linear combinations

Q±
α ≡ Q1

α ± ǫαβQ
2
β (6.39)

and apply the following rescaling, with a real parameter ω, of the generators and the

central extension:

Q−
α → √

ωQ−
α , Q+

α → 1√
ω
Q+

α , (6.40)

Z → −ωZ +
1

ω
H , P0 → ωZ +

1

ω
H , Ma0 → ωGa .

We furthermore rename Mab = Jab.

The non-relativistic contraction of the algebra (6.38) is now defined by taking the limit

ω → ∞. This leads to the following 3D N = 2 super-Bargmann algebra:

[Jab, Pc] = −2δc[aPb] , [Jab, Gc] = −2δc[aGb] ,

[Ga, H] = −Pa , [Ga, Pb] = −δabZ ,

[Jab, Q
±] = −1

2
γabQ

± , [Ga, Q
+] = −1

2
γa0Q

− , (6.41)

{Q+
α , Q

+
β } = 2δαβH , {Q+

α , Q
−
β } = − [γa0]αβPa ,

{Q−
α , Q

−
β } = 2δαβ Z .

The bosonic part of the above algebra is the Bargmann algebra, involving the Hamiltonian

H, the spatial translations Pa, the spatial rotations Jab, the Galilean boosts Ga and the

central charge Z. Note that the bosonic Bargmann generators and the central charge,

together with the fermionic Q− generators form the following N = 1 subalgebra [99] :

[Jab, Pc] = −2δc[aPb] , [Jab, Gc] = −2δc[aGb] ,

[Ga, H] = −Pa , [Ga, Pb] = −δabZ , (6.42)

[Jab, Q
−] = −1

2
γabQ

− , {Q−
α , Q

−
β } = 2δαβ Z .

The same does not apply if we include the Q+ generators instead of the Q− generators.

This is due to the [G,Q] commutator, see (6.41), in which the Q+ and Q− generators occur

asymmetrically. The N = 1 sub-algebra (6.42) is not a true supersymmetry algebra in the

sense that the anti-commutator of two Q− supersymmetries does not give a time and space

translation but a central charge transformation. Although the N = 2 supersymmetry

algebra (6.41) is a true supersymmetry algebra the converse is not true: not every N = 2

super-algebra is necessarily a true supersymmetry algebra. Finally, we note that the above

3D N = 2 super-Bargmann algebra can be embedded, via a null reduction, into a N = 1

super-Poincaré algebra [102].
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6.4 3D N =2 Newton-Cartan Supergravity

In this section we apply a gauging procedure to the N = 2 super-Bargmann algebra (6.41)

thereby extending the bosonic discussion of section 2 to the supersymmetric case. As a

first step in this gauging procedure we associate a gauge field to each of the symmetries of

the N = 2 super-Bargmann algebra and we promote the constant parameters describing

these transformations to arbitrary functions of the spacetime coordinates {xµ}, see table

3.

symmetry generators gauge field parameters curvatures

time translations H τµ ζ(xν) R̂µν(H)

space translations P a eµ
a ζa(xν) R̂µν

a(P )

boosts Ga ωµ
a λa(xν) R̂µν

a(G)

spatial rotations Jab ωµ
ab λab(xν) R̂µν

ab(J)

central charge transf. Z mµ σ(xν) R̂µν(Z)

two supersymmetries Q±
α ψµ± ǫ±(xν) ψ̂µν±

Table 6.3: This table indicates the generators of the N = 2 super-Bargmann algebra

and the gauge fields, local parameters and super-covariant curvatures that are associated

to each of these generators. The fermionic generators are indicated below the double

horizontal line.

The corresponding gauge-invariant curvatures, see table 3, are given by:

R̂µν(H) = 2∂[µτν] − 1

2
ψ̄[µ+γ

0ψν]+ ,

R̂µν
a(P ) = 2∂[µeν]

a − 2ω[µ
abeν]b − 2ω[µ

aτν] − ψ̄[µ+γ
aψν]− ,

R̂µν
a(G) = 2∂[µων]

a − 2ω[µ
abων]b ,

R̂µν
ab(J) = 2∂[µων]

ab ,

R̂µν(Z) = 2∂[µmν] − 2ω[µ
aeν]a − ψ̄[µ−γ

0ψν]− ,

ψ̂µν+ = 2∂[µψν]+ − 1

2
ω[µ

abγabψν]+ ,

ψ̂µν− = 2∂[µψν]− − 1

2
ω[µ

abγabψν]− + ω[µ
aγa0ψν]+ . (6.43)

According to the N = 2 super-Bargmann algebra (6.41) the gauge fields given in table 3
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transform under spatial rotations, boosts and central charge transformations as follows:

δτµ = 0 ,

δeµ
a = λa

beµ
b + λaτµ ,

δωµ
ab = ∂µλ

ab + 2λc[aωµ
b]

c ,

δωµ
a = ∂µλ

a − λbωµ
a

b + λabωµb , (6.44)

δmµ = ∂µσ + λaeµa ,

δψµ+ =
1

4
λabγabψµ+ , δψµ− =

1

4
λabγabψµ− − 1

2
λaγa0ψµ+ .

We will discuss the other transformations of the N = 2 super-Bargmann algebra below.

The next step in the gauging procedure is to impose a set of constraints on the curvatures. We

first impose the following set of conventional constraints:

R̂µν
a(P ) = 0 , R̂µν(Z) = 0 . (6.45)

These conventional constraints can be used to solve for the spin connections in terms of the other

gauge fields as follows: 8

ωµ
ab = 2eρ [a

(

∂[ρeµ]
b] − 1

2
ψ̄[ρ +γ

b]ψµ]−

)

+eµ
ceρ aeν b

(

∂[ρeν]
c − 1

2
ψ̄[ρ +γ

cψν]−

)

− τµe
ρ aeν b

(

∂[ρmν] − 1

2
ψ̄[ρ −γ

0ψν]−

)

, (6.46)

ωµ
a = eν a

(

∂[µmν] − 1

2
ψ̄[µ −γ

0ψν]−

)

+ eµ
beν aτρ

(

∂[νeρ]
b − 1

2
ψ̄[ν +γ

bψρ]−

)

+ τν
(

∂[µeν]
a − 1

2
ψ̄[µ +γ

aψν]−

)

+ τµτ
νeρ a

(

∂[νmρ] − 1

2
ψ̄[ν −γ

0ψρ]−

)

. (6.47)

On top of this we impose the following additional constraints:

R̂µν(H) = 0 , ψ̂µν+ = 0 , R̂µν
ab(J) = 0 . (6.48)

The first constraint defines a foliation of Newtonian spacetime. As we will see below the second

constraint follows by supersymmetry from the first constraint and, similarly, the third constraint

follows from the second one. This third constraint defines flat space Newton-Cartan supergrav-

ity. Note that, unlike in the bosonic case, this constraint is enforced upon us by supersymmetry,

whereas in the purely bosonic theory this constraint was optional. The constraints (6.45), together

with the first constraint of (6.48) can be used to convert the time and space translations into

general coordinate transformations, with parameter ξµ(xν).

The supersymmetry variation of the conventional constraints does not lead to new constraints

as they are used to determine the supersymmetry transformation rules of the now dependent gauge

8The projective inverses τµ and eµ
a of τµ and eµ

a are defined in eqns.(4.55)-4.57.



118 Supersymmetric Newton-Cartan gravity

fields (6.46) and (6.47). We find the following rules for these gauge fields: 9

δQωµ
ab = −1

2
ǭ+γ

[aψ̂b]
µ− +

1

4
eµcǭ+γ

cψ̂ab
− − 1

2
τµǭ−γ

0ψ̂ab
−

− 1

2
ǭ−γ

[aψ̂b]
µ+ +

1

4
eµcǭ−γ

cψ̂ab
+ ,

δQωµ
a =

1

2
ǭ−γ

0ψ̂µ
a

− +
1

2
τµǭ−γ

0ψ̂0
a

− +
1

4
eµbǭ+γ

bψ̂a
0− +

1

4
ǭ+γ

aψ̂µ0−

+
1

4
eµbǭ−γ

bψ̂a
0+ +

1

4
ǭ−γ

aψ̂µ0+ . (6.49)

In contrast, we must investigate the supersymmetry variations of the non-conventional constraints

(6.48). In order to do this, we must first determine the supersymmetry rules of the independent

gauge fields. According to the super-Bargmann algebra (6.41) the supersymmetry transformations

of the independent gauge fields are given by

δQτµ =
1

2
ǭ+γ

0ψµ+ ,

δQeµ
a =

1

2
ǭ+γ

aψµ− +
1

2
ǭ−γ

aψµ+ ,

δQmµ = ǭ−γ
0ψµ− ,

δQψµ+ = Dµǫ+ ,

δQψµ− = Dµǫ− +
1

2
ωµ

aγa0ǫ+ , (6.50)

where ωµ
a is the dependent boost gauge field. The covariant derivative Dµ is only covariantized

with respect to spatial rotations. When acting on the parameters ǫ±, it is given by

Dµǫ± = ∂µǫ± − 1

4
ωµ

abγabǫ± (6.51)

in terms of the dependent connection field ωµ
ab.

At this point we have obtained the supersymmetry rules of all gauge fields, both the dependent

as well as the independent ones. We find that with these supersymmetry transformations the

supersymmetry algebra closes on-shell. To be precise, the commutator of two supersymmetry

transformations closes and is given by the following soft algebra:

[δQ(ǫ1), δQ(ǫ2)] = δg.c.t.(ξ
µ) + δJab

(λa
b) + δGa

(λa) + δQ+
(ǫ+) +

+ δQ−
(ǫ−) + δZ(σ) , (6.52)

provided the following equations hold:

γµτνψ̂µν− = 0 , eµ
ae

ν
bψ̂µν− = 0 . (6.53)

The first equation can be seen as an equation of motion, the second one does not contain any time

derivatives and should be viewed as a fermionic constraint. Here g.c.t. denotes a general coordinate

9Recall that ψ̂ab = ea
µeb

νψ̂µν .
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transformation and the field-dependent parameters are given by

ξµ =
1

2

(

ǭ2+γ
0ǫ1+

)

τµ +
1

2

(

ǭ2+γ
aǫ1− + ǭ2−γ

aǫ1+

)

eµ
a ,

λa
b = −ξµωµ

a
b ,

λa = −ξµωµ
a ,

ǫ± = −ξµψµ± ,

σ = −ξµmµ +
(

ǭ2−γ
0ǫ1−

)

. (6.54)

We are now in a position to investigate the supersymmetry variations of the three constraints

(6.48) and of the equation of motion/constraint (6.53). One may verify that under supersymmetry

the first constraint in (6.48) transforms to the second one and that the supersymmetry variation of

the second constraint leads to the third one. This third constraint does not lead to new constraints

because the supersymmetry variation of ωµ
ab vanishes on-shell, see eq. (6.49). Substituting the

constraints into the super-Bianchi identities, it follows that the only non-zero bosonic curvature

we are left with is the boost curvature R̂µν
a(G) and we find that only the following components

are non-vanishing:

τµeν
(aR̂µν

b)(G) ≡ R̂0(a
b)(G) 6= 0 . (6.55)

Using this it follows that the supersymmetry variation of the second constraint in (6.53) does

not lead to a new constraint. On the other hand, the supersymmetry variation of the fermionic

equation of motion, i.e. the first constraint in (6.53), leads to the bosonic equation of motion

R̂0a
a(G) = 0 . (6.56)

To finish the consistency check of the gauging procedure we should check whether the super-

symmetry variation of the bosonic equation of motion (6.56) does not lead to new constraints

and/or equations of motion. Instead of doing this we shall show in the next section that after

gauge fixing all constraints can be solved leading to a consistent system with a closed algebra.

This finishes our construction of the 3D N = 2 Newton-Cartan supergravity theory.

6.5 3D Galilean Supergravity

In this section we will perform a partial gauge fixing of the bosonic and fermionic symmetries to

derive the Newton-Cartan supergravity theory from the Galilean observer point of view. We will

define a supersymmetric Galilean observer as one for which only a supersymmetric extension of the

acceleration extended Galilei symmetries are retained. Due to the constant time translations, this

implies in particular that only half of the supersymmetries will be gauged, see below. We closely

follow the analysis given in section 2 for the bosonic case. First, we solve the constraints (6.48) by

imposing the gauge fixing conditions

τµ(xν) = δµ
0 , ωµ

ab(xν) = 0 , ψµ+(xν) = 0 . (6.57)

This fixes the local time translations, spatial rotations and ǫ+ transformations to constant trans-

formations:

ξ0(xν) = ξ0 , λab(xν) = λab , ǫ+(xν) = ǫ+ . (6.58)
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No compensating transformations are induced by these gauge fixings. We now partially gauge fix

the spatial translations by imposing the gauge choice

ei
a(xν) = δi

a . (6.59)

This gauge choice implies that we may use from now on the expressions (6.21) for the temporal and

spatial dreibein components and their projective inverses. We will derive the required compensating

transformation below. First, using the above gauge choices and the fact that the purely spatial

components R̂ij
a(G) of the curvatures of boost transformations and the purely spatial components

ψ̂ij− of the curvature of ǫ− transformations are zero, for their expressions see eq. (6.43), we derive

that

∂[iωj]
a = 0 , ∂[iψj]− = 0 . (6.60)

The first equation we solve locally by writing

ωi
a = ∂iω

a , (6.61)

where ωa is a dependent field since ωi
a is dependent. This also explains why we have not added a

purely time-dependent piece to the r.h.s. of the above solution. We next partially gauge fix the ǫ−

transformations by imposing the gauge choice

ψi−(xν) = 0 . (6.62)

This fixes the ǫ− transformations according to

ǫ−(xν) = ǫ−(t) − 1

2
ωaγa0ǫ+ . (6.63)

Given the gauge choice (6.62) the spatial translations are now fixed without the need for any

fermionic compensating transformation. Indeed, from the total variation of the gauge fixing con-

dition (6.59) we find:

ξi(xν) = ξi(t) − λi
jx

j . (6.64)

At this point, we are left with the remaining fields τa, mi, m0 and ψ0−. These fields are not

independent since the gauge field ωµ
ab which we gauge fixed to zero is dependent, see eq. (6.46).

Like in the bosonic case, only the time component ω0
ab = 0 leads to a restriction: 10

∂[i

(

τj] +mj]

)

(xν) = 0 . (6.65)

As in the bosonic case, this implies that we can write locally:

τi(x
ν) +mi(x

ν) = ∂im(xν) . (6.66)

Without loss of generality we will use this equation to eliminate mi in terms of the other two

fields. The variation of m is determined by writing the variation of τi +mi as a ∂i-derivative. This

is trivial for most of the terms, except for the ǫ+ term. Before addressing this issue below, it is

convenient to write down the total variation of ∂im instead of m. From eq. (6.66) we find

δ∂im = ξ0∂0∂im+ ξj(t)∂j∂im+ λi
j∂jm− λm

nx
n∂m∂im+ ∂iσ(xν) − ξ̇i(t) − 1

2
ǭ+γiψ0− . (6.67)

10Recall that τi = τaδia. Note also that under supersymmetry the variation of this constraint gives

ǭ+γ[i∂j]ψ0− = 0 which is equivalent to the fermionic equation of motion (which after gauge fixing takes

the form (6.80)). Therefore, this constraint is consistent with supersymmetry.
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Note that the terms proportional to the local boost parameters λi(xν) have cancelled out. We may

now partially gauge fix the central charge transformations by putting

m(xν) = 0 . (6.68)

We thus obtain

∂iσ(xν) = ξ̇i(t) +
1

2
ǭ+γiψ0−(xν) , (6.69)

which is sufficient to calculate the transformation rule of ∂im0. After this gauge fixing, taking into

account all the compensating transformations, see table 4 below, and the restriction (6.66) with

m = 0 substituted, we find the following transformation rules for the remaining independent fields:

δτi = ξ0∂0τi + ξj(t)∂jτi − ξ̇i(t) + λijτ
j − λk

lx
l∂kτi − λi(x

ν) − 1

2
ǭ+γiψ0− ,

δ∂im0 = ξ0∂0∂im0 + ξj(t)∂j∂im0 + ξ̈i(t) − ξ̇j(t)∂iτj + λi
j∂jm0 − λm

nx
n∂m∂im0−

− ∂i

(

λj(xν)τj

)

+ ǭ−(t)γ0∂iψ0− +
1

2
∂i

(

ωaǭ+γaψ0−

)

+
1

2
ǭ+γiψ̇0− , (6.70)

δψ0− = ξ0∂0ψ0− + ξi(t)∂iψ0− − λi
jx

j∂iψ0− +
1

4
λabγabψ0−

+ ǫ̇−(t) +
1

2
(ω0

a − ω̇a) γa0ǫ+ .

Note that ω0
a and ωa depend on the fields τi, m0. Using expression (6.47) for the dependent boost

gauge field ωµ
a one can calculate that

ωi
a ≡ ∂iω

a = −∂iτ
a → ωa = −τa , (6.71)

ω0
a = −τ̇a − ∂a

(

m0 − 1

2
τ iτ i

)

. (6.72)

As a final step we now fix the local boost transformations by imposing

τ i(xν) = 0 , (6.73)

which leads to the following compensating transformations:

λi(xν) = −ξ̇i(t) − 1

2
ǭ+γiψ0−(xν) . (6.74)

One now finds that

ωa = 0 , ω0
a = −∂am0 ≡ −∂aΦ , (6.75)

where Φ is the Newton potential. In terms of the ‘Newton force’ Φi and its supersymmetric partner

Ψ defined by

Φi = ∂iΦ , Ψ = ψ0− , (6.76)

one thus obtains the following transformation rules:

δΦi = ξ0∂0Φi + ξj(t)∂jΦi + ξ̈i(t) + λi
jΦj − λm

nx
n∂mΦi + ǭ−(t)γ0∂iΨ +

1

2
ǭ+γiΨ̇ , (6.77)

δΨ = ξ0∂0Ψ + ξi(t)∂iΨ − λi
jx

j∂iΨ +
1

4
λabγabΨ + ǫ̇−(t) − 1

2
Φiγi0ǫ+ . (6.78)

Note that the central charge transformations only act on the Newton potential, not on the Newton

force. Determining the transformation rule of the Newton potential Φ is non-trivial, due to the
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fact that the last term of (6.77) cannot be manifestly written as a ∂i-derivative. The above

transformation rules are consistent with the integrability condition

∂[iΦj](x
ν) = 0 , (6.79)

by virtue of the fermionic equations of motion (6.53) which, after gauge fixing, take on the form

γi∂iΨ(xν) = 0 ⇔ ∂[iγj]Ψ(xν) = 0 . (6.80)

Under supersymmetry these fermionic equations of motion lead to the following bosonic equation

of motion:

∂iΦi(x
ν) = 0 . (6.81)

The same bosonic equation of motion also follows from eq. (6.56) after gauge fixing. In order to

obtain transformation rules for the Newton potential Φ and its fermionic superpartner, we need

to solve the fermionic equations of motion/constraint (6.80). The second form of this constraint

makes it clear that the equations of motion are solved by a spinor χ, that obeys:

γiΨ = ∂iχ . (6.82)

Note that this only determines χ up to a purely time-dependent shift. From (6.82), it follows that

χ obeys the constraint:

γ1∂1χ = γ2∂2χ . (6.83)

Ψ can thus be expressed in terms of χ in a number of equivalent ways:

Ψ = γ1∂1χ = γ2∂2χ =
1

2
γi∂iχ . (6.84)

It is now possible to determine the transformation rule of Φ by rewriting δΦi as a ∂i-derivative:

δΦi = ∂i(δΦ) . (6.85)

The resulting transformation rule for the Newton potential is

δΦ = ξ0∂0Φ + ξi(t)∂iΦ + ξ̈i(t)xi − λm
nx

n∂mΦ +
1

2
ǭ−(t)γ0i∂iχ+

1

2
ǭ+χ̇+ σ(t) . (6.86)

Note that we have allowed for an arbitrary time-dependent shift σ(t) in the transformation rule,

whose origin stems from the fact that Φi = ∂iΦ only determines Φ up to an arbitrary time-

dependent shift. In order to determine the transformation rule of χ, we try to rewrite γiδΨ as a

∂i-derivative:11

γiδΨ = ∂i(δχ) . (6.87)

Most of the terms in γiδΨ can be straightforwardly written as a ∂i-derivative. Only for the ǫ+

transformation, the argument is a bit subtle. We thus focus on the terms in γiδΨ, given by

−1

2
γiΦ

jγj0ǫ+ = −1

2
γi∂

jΦγj0ǫ+ = −1

2
∂jΦγij0ǫ+ − 1

2
∂iΦγ0ǫ+ . (6.88)

11Note that even though Ψ = 1
2
γi∂iχ, the correct transformation rule of χ cannot be found by writing

δΨ as 1
2
γi∂i of an expression. In particular, one would miss the term involving the dual Newton potential

Ξ in the transformation rule of χ. This is due to the fact that Ψ = 1
2
γi∂iχ is a consequence of the defining

equations γiΨ = ∂iχ, but is not equivalent to it.
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The last term is already in the desired form. To rewrite the first term in the proper form, we note

that the Newton potential Φ can be dualized to a ‘dual Newton potential’ Ξ via

∂iΦ = εij∂
jΞ , ∂iΞ = −εij∂

jΦ . (6.89)

Using the convention that γij0 = ǫ0ij = ǫij , we then get

−1

2
γiΦ

jγj0ǫ+ =
1

2
∂iΞǫ+ − 1

2
∂iΦγ0ǫ+ . (6.90)

One thus obtains the following transformation rule for χ, which includes the dual Newton potential

Ξ:

δχ = ξ0∂0χ+ ξi(t)∂iχ− λm
nx

n∂mχ+
1

4
λmnγmnχ+ xiγiǫ̇−(t) +

1

2
Ξǫ+ − 1

2
Φγ0ǫ+ + η(t) . (6.91)

Note that we have again allowed for a purely time-dependent shift η(t), whose origin lies in the

fact that (6.82) only determines χ up to a purely time-dependent shift.

Now, in order to calculate the algebra on Φ, χ, we also need the transformation rule of the

dual potential Ξ. This rule is determined by dualizing the transformation rule of Φ:

∂i(δΞ) = −εij∂
j(δΦ) . (6.92)

By repeatedly using (6.82) and (6.89), we get:

δΞ = ξ0∂0Ξ + ξi(t)∂iΞ + ξ̈i(t)εijx
j − λm

nx
n∂mΞ +

1

2
ǭ−(t)γi∂iχ− 1

2
ǭ+γ0χ̇+ τ(t) , (6.93)

where we again allowed for a purely time-dependent shift τ(t). The algebra then closes on Φ and χ,

using (6.82), (6.83), (6.89) . One finds the following non-zero commutators between the fermionic

symmetries:

[

δǫ1−(t), δǫ2−(t)

]

= δσ(t)

(

d

dt

(

ǭ2−(t)γ0ǫ1−(t)
)

)

,

[

δǫ1+ , δǫ2+

]

= δξ0

(

1

2

(

ǭ2+γ
0ǫ1+

)

)

,

[

δǫ+ , δǫ−(t)

]

= δξi(t)

(

1

2

(

ǭ−(t)γiǫ+
)

)

,

[

δη(t), δǫ+

]

= δσ(t)

(

1

2
(ǭ+η̇(t))

)

. (6.94)

The non-zero commutators between the bosonic and fermionic symmetries are given by:

[

δξi(t), δǫ+

]

= δǫ−(t)

(

1

2
ξ̇i(t)γ0iǫ+

)

,
[

δλij , δǫ+

]

= δǫ+

(

−1

4
λijγijǫ+

)

,

[

δξ0 , δǫ−(t)

]

= δǫ−(t)

(

−ξ0ǫ̇−(t)
)

,
[

δξi(t), δǫ−(t)

]

= δη(t)

(

−ξi(t)γiǫ̇−(t)
)

,

[

δλij , δǫ−(t)

]

= δǫ−(t)

(

−1

4
λijγijǫ−(t)

)

,
[

δσ(t), δǫ+

]

= δη(t)

(

1

2

(

σ(t)γ0ǫ+
)

)

,

[

δξ0 , δη(t)

]

= δη(t)

(

−ξ0η̇(t)
)

,
[

δλij , δη(t)

]

= δη(t)

(

−1

4
λijγijη(t)

)

. (6.95)

The bosonic commutators are not changed with respect to the purely bosonic case and are given

by (6.37).
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It is interesting to comment on the appearance of holomorphic functions in the above descrip-

tion. In a basis in which

γ1 =

(

0 1

1 0

)

, γ2 =

(

1 0

0 −1

)

, (6.96)

the constraint (6.83) on χ reduces to the Cauchy-Riemann equations for a holomorphic function

χ2 + iχ1, where the indices 1, 2 refer to spinor indices. Interestingly, the appearance of the dual

potential implies that a holomorphic function, given by Φ + i Ξ, also emerges in the bosonic sector.

Indeed, the definition of (6.89) corresponds to the Cauchy-Riemann equations for this function.

Both the real and imaginary parts of this holomorphic function then satisfy the two-dimensional

Laplace equation. This finishes our discussion of the N = 2 Galilean supergravity theory. Like

in the bosonic case, see the end of section 2, we have summarized all gauge fixing conditions and

resulting compensating transformations in table 4.

gauge condition/restriction compensating transformation

τµ(xν) = δµ
0 ξ0(xν) = ξ0

ωµ
ab(xν) = 0 λa(xν) = λab

ψµ+(xν) = 0 ǫ+(xν) = ǫ+

ei
a(xν) = δi

a ξi(xν) = ξi(t) − λi
jx

j

ψi−(xν) = 0 ǫ−(xν) = ǫ−(t) − 1
2ω

a(xν)γa0ǫ+

τi(x
ν) +mi(x

ν) = ∂im(xν) –

m(xν) = 0 ∂iσ(xν) = ξ̇i(t) + 1
2 ǭ+γiψ0−(xν)

τa(xν) = 0 λi(xν) = −ξ̇i(t) − 1
2 ǭ+γiψ0−(xν)

m0(xν) = Φ(xν) , ω0
a(xν) = −∂aΦ(xν) ψ0−(xν) = Ψ(xν)

Table 6.4: This table indicates the gauge fixing conditions and corresponding compen-

sating transformations that lead to 3D Galilean supergravity. We have also included the

restrictions that follow from the fact that the spin-connection field ωµ
ab is dependent. At

the bottom of the table we have summarized the expressions of the non-zero remaining

gauge fields in terms of the Newton potential Φ(xν) and its supersymmetric partner χ(xν),

which is related to Ψ(xν) via (6.82).

6.6 Discussion

In this chapter we constructed a supersymmetric extension of three-dimensional Newton-Cartan

gravity by gauging the N = 2 supersymmetric Bargmann algebra. An, at first sight, un-usual

feature we encountered is that only half of the N = 2 supersymmetry is realized locally, the other

half manifests itself as a fermionic Stückelberg symmetry. After fixing the Stückelberg symmetry

the second supersymmetry is realized only as a global supersymmetry. A similar feature occurs in

the bosonic case where the time reparametrizations occur as a Stückelberg symmetry that after
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fixing leaves us with constant time translations only.

We have discussed a full gauging, corresponding to ‘Newton-Cartan supergravity’ and a medium

gauging, obtained by partial gauge fixing, corresponding to ‘Galilean supergravity’. In the latter

formulation, we have been able to realize the supersymmetry algebra on a multiplet containing the

Newton potential, as well as its dual. The Newton potential and its dual correspond to the real

and imaginary parts of a holomorphic function. This holomorphic structure is reminiscent of the

three-dimensional relativistic case [100], as well as of branes with two transverse directions such

as cosmic strings and D7-branes [103, 104]. It would be interesting to see how these features can

be generalized to higher dimensions.

The reason that in this chapter we restricted ourselves to three-dimensional Newton-Cartan

supergravity is that it is non-trivial to find the additional fields, beyond the gauge fields associated

to the supersymmetric Bargmann algebra, that are needed to realize the supersymmetry algebra.

This is different from the relativistic case where an off-shell counting of the field degrees of freedom

restricts the possible choices. One way to make progress here is to better understand the repre-

sentation theory of the super-Bargmann algebra thereby mimicking the relativistic case. Another

useful approach could be to extend the work of [95] and approach the issue from a five-dimensional

point of view. We note that the reduction of a 5D Poincaré multiplet to 4D gives an irreducible 4D

N = 2 Poincaré multiplet plus an N = 2 vector multiplet. It is not clear that such a reducibility

into two multiplets also occurs in the non-relativistic case. This might indicate that more fields,

namely those of the vector multiplet, are needed to close the supersymmetry algebra in the non-

relativistic case. It is clear that more work needs to be done to come at a full grasp of the possible

Newton-Cartan supergravities in arbitrary dimensions. Hopefully this chapter, starting with the

three-dimensional case, will help to better understand the higher-dimensional cases.
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Chapter 7

Conclusions, Developments and

Outlook

7.1 Summary of this thesis

In this thesis we have investigated non-relativistic theories of gravity in the formalism of Newton-

Cartan theory. This formalism is developed as a gauge theory of the corresponding spacetime

symmetries. In this theory the algebra is gauged, associating to every generator a gauge field and

corresponding curvature. Curvature constraints are then imposed to remove the local spacetime

translations, such that the algebra is deformed. In addition these constraints make the gauge fields

belonging to the rotations and boosts dependent. Equations of motion can then be defined in

terms of the remaining independent gauge fields. This procedure is analogous to the relativistic

case, in which a gauging of the Poincaré algebra (which also contains spacetime translations) leads

to the theory of General Relativity. The gauging procedure allows one to construct also theories

exhibiting Newton-Cartan geometry but with extended non-relativistic symmetries. Two explicit

extensions were considered: non-relativistic strings and a three-dimensional theory of Newton-

Cartan Supergravity.

In chapter four we have seen how the Newton-Cartan theory can be obtained by applying a

gauging procedure to the Bargmann algebra. This algebra is a centrally-extended Galilei algebra,

where the central extension corresponds to particle number conservation. Besides the central

extension the algebra also contains Galilei boosts, spatial rotations and spacetime translations.

Upon gauging the Bargmann algebra, a non-relativistic but general-covariant theory of gravity is

found. Such a theory was already constructed by Elie Cartan a few years after the development of

General Relativity and is now known as Newton-Cartan theory. The gauging procedure however

sheds new light on Newton-Cartan theory. First of all, the theory contains different possible

constraints called the Trautman and Ehlers conditions, which are needed if one wishes to reproduce

Newtonian gravity. In the gauge formulation on the other hand these constraints, plus the flat space

condition, simply correspond to the vanishing of the curvature of spatial rotations. This curvature

constraint is optional and one could stay more general, but the Einstein equations will then make

a particular projection of this rotational curvature to vanish. Second, the theory contains metric-

compatibility conditions which fix the connection up to a closed but otherwise arbitrary two-form.
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In the gauge theory this two-form is the exterior derivative of the central extension gauge field.

Third, the gauging procedure shows that in order to eliminate the local time translations one has

to put the corresponding curvature to zero. However, this is not a conventional constraint (i.e. it

cannot be solved for the spin connections), but a differential condition on the temporal vielbein

which turns it into a Stückelberg field. Physically this constraint leads to Newton’s absolute time.

Finally, the gauge theory shows another important role of the central extension: Without it one

is not able to make both the rotational and boost spin connections dependent fields. This also

explains why an attempt to apply the gauging procedure to the Galilean conformal algebra does

not work; this algebra does not allow for a central mass extension and as such does not contain

the Bargmann algebra as subalgebra. To mimick a conformal tensor calculus for Newton-Cartan

theory, one should instead turn to the Schrödinger algebra. The independent gauge fields of the

gauged Bargmann theory are the temporal and spatial vielbeine and the central gauge field:

{τµ, eµ
a,mµ} . (7.1)

In chapter five it is shown that the general-covariant action for a non-relativistic point particle

needs a coupling to a vector field. This vector field has a particular transformation under boosts.

Without this coupling the action would not be invariant under local boosts. Considering its trans-

formation properties, this vector field turns out to be the central gauge field of the Bargmann

algebra. As such this particle action is expressed in terms of the background fields (7.1).

The gauging procedure we just described paves the way to other non-relativistic theories of

gravity. The Bargmann algebra is associated to the symmetries of point particles. In view of

non-relativistic holography one could now also apply the gauging procedure to symmetry algebras

associated to non-relativistic strings. The reason why this theory is interesting is because it has

been pointed out in [92] that the non-relativistic limit of the AdS/CFT-correspondence involves a

Newton-Cartan theory of strings. Such a theory exhibits stringy Newton-Hooke symmetries, which

can be regarded as the non-relativistic limit of strings on an Anti-deSitter background. As for point

particles, these stringy algebras can be obtained by a contraction of their relativistic counterparts.

The algebra contraction is such that the longitudinal space keeps its relativistic symmetries, while

the space transverse to the world-sheet becomes non-relativistic. This is different from the usual

Newtonian limit of General Relativity, which is independent of the particular object one is looking

at. The reason is that the usual limit only involves the time coordinate, while the algebra contrac-

tion involves on top of that one extra spatial coordinate. This extra rescaling, involving a spatial

direction, is suggested by holography, where the radial direction of the Anti-deSitter background

is the energy scale of the dual conformal field theory. As such one expects this radial coordinate

to be rescaled in the contraction in the same way as the time coordinate, giving an AdS2 space

longitudinal to the string.

Another striking difference between the non-relativistic particle and the string is that the

corresponding algebra of the latter does not involve a central extension anymore. Instead, the

stringy extension consists of two generators Za′ and Za′b′ ,,where Za′ is the stringy counterpart of

the central element Z of the Bargmann algebra. Besides a gauge field mµ
a′

another gauge field

mµ
a′b′

is obtained. However, it is shown that this extra gauge field drops out of the gravitational

and geodesic equations. The independent gauge fields one is left with are just the stringy extensions
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of the fields (7.1):

{τµ
a′

, eµ
a,mµ

a′} . (7.2)

The Newton potential is replaced by the trace of a tensor potential where the components Φa′b′

form a 2×2 matrix. The procedure outlined here can easily be extended to non-relativistic p-branes.

Besides stringy modifications of Newton-Cartan gravity we also considered supersymmetric

extensions. These are interesting in their own right, but also in light of holography. The simplest

algebra to start from is the N = 1 super-Bargmann algebra. However, a contraction procedure on

this algebra leads to a trivial kind of supersymmetry, i.e. one in which two supertransformations

do not give a space or time translation anymore. Instead, the anti-commutator of two supercharges

gives merely a central charge, turning supersymmetry effectively into an internal U(1) symmetry.

In order to obtain non-trivial supersymmetry one has to go at least to the supersymmetric N = 2

Bargmann algebra. This algebra consists of the usual Bargmann algebra, augmented by two

supercharges. The gauging of this algebra in three spacetime dimensions was considered in chapter

six. An important conclusion from this construction is that due to the appearance of absolute time,

not only the temporal vielbein but also half of the gravitini are Stückelberg fields. This leaves one

with only one dynamical gravitino, namely ψµ−. The independent gauge fields of the theory are

given by

{τµ, eµ
a,mµ, ψµ−, ψµ+} . (7.3)

where now both τµ and ψµ+ can be completely gauge-fixed. It is to be expected that one encounters

this “decreasing of the amount of supersymmetry” in the construction of other (i.e. N > 2,D > 3)

Newton-Cartan Supergravity theories because the foliation of spacetime by an absolute time is a

main characteristic of non-relativistic theories. An important difference with the purely bosonic

theory is that now the vanishing of the rotational curvature is not optional anymore. Instead,

this constraint is enforced upon us by supersymmetry. Physically it means that D = 3 Newtonian

Supergravity without matter couplings only exists in flat space. Another feature of the super-

symmetric theory is that in order to write down the transformation rules in terms of the Newton

potential and its superpartner, one needs to introduce a field dual to the Newton potential.

This ends our conclusions.

7.2 Developments

Since the finishing of the papers used for this thesis a lot of additional research has been done

concerning Newton-Cartan theory. Here we will briefly look at these developments.

First of all, the gauging procedure has been applied to other algebras besides the ones in this

thesis. One of these algebras is the Schrödinger algebra [113], which was already briefly men-

tioned in the summary. This algebra has the Bargmann algebra as subalgebra, but on top of that

contains one dilational and one special conformal generator. The dilational gauge field appears

in the curvature of the temporal vielbein, introducing via the usual curvature constraints tempo-

ral torsion in the affine connection. This gives rise to torsional Newton-Cartan geometry, which

plays an important role in Lifshitz holography [114]. The gauging of the Schrödinger superalgebra

leads to Schrödinger Supergravity [116]. In this construction the so-called superconformal tensor
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calculus is derived for theories of Newton-Cartan Supergravity. The purpose of this method is

to describe matter couplings, using superconformal symmetries as a guideline. In the relativistic

case one uses the superconformal algebra, which has the super-Poincaré algebra as a subalgebra.

The non-relativistic analog of this method leads naturally to the Schrödinger superalgebra instead

of the Galilean conformal superalgebra. The Newton-Cartan Supergravity theory has also been

extended to include Newton-Hooke symmetries [115]. Besides non-relativistic algebras the gauging

procedure also has been applied to ultra-relativistic algebras [117], also known as Carroll algebras.

An important difference with the gauging of the Bargmann algebra is that one has to add an extra

field by hand to solve for the spin connections. These Carrollian theories are interesting in the

application of flat space holography, because in 2 + 1 dimensiononal asymptotically flat space the

asymptotic symmetries at infinity can be considered to be Carrollian. Finally, in this thesis we only

considered algebra (i.e. Inönü-Wigner) contractions. Because the gauge fields are in the adjoint

representation of the algebra, the contraction of the algebra suggests a contraction on the gauge

fields. This contraction, which can be interpreted as a non-relativistic limit of the field theory,

is derived in [118]. It is then used to derive the off -shell formulation of the three-dimensional

Newton-Cartan Supergravity theory discussed in chapter six of this thesis.

Newton-Cartan geometry can also be used for a holographical description of an effective field

theory of quantum Hall states [119]. However, there are still open questions concerning (non-

relativistic) holography. The AdS/CFT correspondence in the first example by Maldacena is a

duality between a strongly coupled and weakly coupled theory. The correspondence was made

explicit for a type IIB Supergravity theory on an AdS5 × S5 background and an N = 4, SU(N)

super-conformal Yang-Mills theory. The setup involves a stack of D3-branes, which are solutions

of the Supergravity theory. The couplings which are mapped are then constructed out of the dif-

ferent parameters of the two theories. The conjecture consists of claiming that the correspondence

holds not only for the Supergravity theory (α′ → 0) but for the full string theory, which is its

UV -completion. An important guideline in the correspondence is the matching of symmetries; the

isometry group of AdS5 is generated by the algebra so(4, 2), which also generates the conformal

algebra in four dimensions of the super Yang-Mills theory. The isometries of the five-sphere S5 are

generated by so(6), which is isomorphic to the R-symmetry algebra su(4) of the superconformal

theory. In the non-relativistic setting one also uses the symmetries as a guideline, but without an

explicit embedding in string theory a relation between the couplings is not known. Because the

duality involves strong versus weak couplings, an explicit proof of the conjecture is very hard since

perturbation theory breaks down at strong coupling. In more general settings the gravitational

theory should be embedded in a string theory, but this embedding is only known for a few exam-

ples. It is therefore desirable to develop precision tests in which one can further strengthen the

correspondence and its extrapolations. One example of such a test consists of non-perturbatively

acquired partition functions of the field theory at the boundary. These results can then be com-

pared with a holographic calculation in the gravitational theory. These calculations require the

background of the field theory to be curved. The off-shell formulation of the Newton-Cartan super-

gravity as described in chapter six of this thesis provides a tool for obtaining such non-relativistic

field theories on curved backgrounds. SUSY-preserving background solutions of this off-shell for-

mulation were studied in [120].
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Kaluza-Klein reductions of Newton-Cartan gravity have been considered in [121], resulting in

Galilean electromagnetism plus a scalar field. These two extra fields source the spatial compo-

nents of the Ricci tensor, giving an explicit example of Newton-Cartan geometry without the full

rotational curvature being zero. This gives an interesting extension of the usual Newton-Cartan

theory where only the rest mass density sources the temporal Ricci components.

This finishes our update of recent developments. Finally we consider possible future research.

7.3 Outlook

There are various ways of continuing research of Newton-Cartan gravity and its stringy and su-

persymmetric extensions. For holographic applications it would be interesting to consider the

supersymmetric extension of the stringy Newton-Cartan theory. From the discussion of [92] one

expects such a theory to be dual to a Galilean superconformal theory. Another interesting question

is whether it is possible to construct Newton-Cartan Supergravity theories without the flat space

constraint. As such one could construct supersymmetric field theories on less trivial backgrounds,

similar to [120]. However, this constraint follows from the vanishing of the temporal vielbein cur-

vature, which expresses the foliation of spacetime by an absolute time. This is a defining feature

of any non-relativistic theory, and it is not clear if and how one can circumvent this constraint

without introducing matter couplings as in [121].

The N = 2 theory in three spacetime dimensions also sheds some light on the construction of

the N = 2 theory in four dimensions. The graviton multiplet of the relativistic theory consists of

the graviton, two gravitini and one vector. This theory cannot be obtained by a gauging of the cor-

responding algebra because the vector is not a gauge field of the SUSY-algebra. Non-relativistically

the same problem holds. With trial and error we tried to write down the transformation rules for

a multiplet consisting of (7.1) plus two gravitini and a vector field. With this natural Ansatz it

was found that whereas the superalgebra closes on the bosonic fields, one or more extra fields are

needed in the supermultiplet for the closure of the superalgebra on the gravitini. An interesting

open question is the explicit construction of this supermultiplet. One possible way to do this

would be by a null-reduction of the relativistic N = 2 theory in five dimensions. Another way to

construct this theory would be by a contraction procedure as proposed in [118]. A third method

would be to linearize the four-dimensional theory and to derive the supercurrent [122] (the su-

persymmetric analog of the conserved energy-momentum tensor of General Relativity); the fields

which are missing from our Ansatz and their transformations should then arise as a consistency

requirement.
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Appendix A

Notation and conventions

A.1 Notation concerning indices, (A)dS and nomenclature

Our notation concerning indices, (Anti)-de Sitter space and nomenclature are as follows. We denote

the number of spacetime dimensions by D. A positive cosmological constant Λ > 0 describes a

deSitter space, whereas Λ < 0 describes an anti deSitter space. A few times we will explicitly

write spinor indices as α, β, . . .. Flat target-space indices are given by A = {a′, a}, where {a′} is

longitudinal and {a} is transverse, e.g.

ζA = {ζa′

, ζa} . (A.1)

For a particle we write {a′ = 0} and {a = 1, . . . ,D−1}, whereas for a string we write {a′ = 0, 1} and

{a = 2 . . . D − 1}. Curved target-space indices are given by µ = {α, i}, where {α} is longitudinal

(unless we explicitly use it as a spinor index, see e.g. the derivation of the Fierz identity (A.11))

and {i} is transverse, e.g.

ξµ = {ξα, ξi} . (A.2)

Turning curved into flat indices is done using the (inverse) vielbeins τµ and eµ
a, as in the following

example:

F̂0a = τµeν
aF̂µν ,

F̂ab = eµ
ae

ν
bF̂µν . (A.3)

Infinitesimal general coordinate transformations xρ → xρ + ξρ on (dual) vectors are written as

δV µ = ξρ∂ρV
µ − V ρ∂ρξ

µ ,

δωµ = ξρ∂ρωµ + ωρ∂µξ
ρ , (A.4)

where the partial derivatives can be replaced by covariant ones when torsion is not present. These

expressions are naturally extended to more general tensors.

For a particle we write {α = 0} and {i = 1, . . . ,D − 1}, and for a string we write {α = 0, 1}
and {i = 2, . . . ,D − 1}. For temporal components of generators of Lie algebras we will not use

underlined indices, e.g. the temporal component of PA will just be written as P0. For notational

convenience we will do the same for gamma matrices, i.e. the zero-component of γA will just be
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written as γ0 instead of γ0. We indicate world-sheet indices with {ᾱ, β̄, . . .}, and the world-sheet

coordinates as {σᾱ}. Finally, for timelike embedding coordinates {x0} we will sometimes write

{x0} = {ct}, or {x0} = {t} if the speed of light c is explicitly taken to be c = 1. This embedding

coordinate should not be confused with the evolution parameter τ .

Because confusion can arise about nomenclature, we stress that the non-relativistic limit re-

stricts the (transverse) speed of a particle, string or brane to be small with respect to the speed

of light c, while the Newtonian limit on top of that restricts the gravitational field to be weak and

static. The word “classical” is only used as “not quantum”.

A.2 Supersymmetry conventions

Our supersymmetry conventions for D = 3 follow [108], in which we choose ǫ = η = +1. The

Clifford algebra is given by

{γA, γB} = 2ηAB , (A.5)

Also,

γA...B ≡ γ[A . . . γB] , (A.6)

where we always (anti)symmetrize with total weight one, e.g.

γABC =
1

3!

(

γAγBγC + . . .
)

. (A.7)

The charge conjugation matrix C, which obeys CT = −C and C† = C−1, is chosen as

C = γ0 . (A.8)

We then have the identities γ†
A = γ0 γAγ

0, γ†
AB = γ0 γABγ

0 etc.

For D = 3 one can choose Majorana spinors, which we will do. Being in an odd number of

spacetime dimensions we can not define a chirality operator. Dirac conjugation is defined by

ψ̄ = iψ†γ0 , (A.9)

giving (ψ̄)† = iγ0ψ. Then
(

ψ̄γAλ
)†

= −λ̄γAψ,
(

ψ̄γABλ
)†

= −λ̄γABψ, etc.

The following set of four matrices forms a complete basis for all 2 × 2 matrices:

{γ} = {1, γA}, A = {0, 1, 2} . (A.10)

Given this set one can easily check the three-dimensional Fierz identity1

ψλ̄ = −1

2
(λ̄ψ) − 1

2
(λ̄γ0ψ)γ0 − 1

2
(λ̄γaψ)γa . (A.11)

These identities are crucial in checking the closure of the SUSY-algebra on the fermionic fields.

The reason is that in applying the SUSY commutators on a fermionic field (e.g. the gravitino in

Supergravity theories or the electron in supersymmetric QED) the free spinor index is not on the

fermionic field itself but on one of the fermionic SUSY parameters ǫ. As such the on-shell closure

of the SUSY algebra is not manifestly clear. With the Fierz identity (A.11) this free spinor index

can be put on the fermionic field to make the closure of the algebra manifest.

1In components this bi-spinor is ψαλ
β . The trace of ψλ̄ is given by ψαλ

α = −λαψα = −λ̄ψ, giving a

minus-sign.
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Basic gauge theory

Symmetries in physics are described by groups G. The symmetries which are important in this

thesis are Lie groups [109,110], which describe continuous symmetries. The elements g ∈ G of such

groups are generated by a Lie algebra g. These Lie algebras are linear vector spaces, which make

them convenient to analyze the group. If we write the elements of g as TA, where A = {1 . . . N}
for some N , then g = span{TA} and a general group element g is written as

g = eθATA

= 1 + θATA +
1

2
θAθBTATB + . . . . (B.1)

The parameters {θA} can be real or complex, depending on the particular algebra. The charac-

teristic feature of groups is their multiplication structure; if g1 ∈ G and g2 ∈ G, then g1g2 ∈ G.

This group multiplication structure is encoded completely in the underlying Lie algebra via the

Lie bracket1

[TA, TB ] = fC
ABTC . (B.2)

The structure constants {fC
AB} of the algebra g are manifestly antisymmetric in {AB}.

In a gauge theory a global symmetry on a set of fields {φ} is promoted to a local symmetry,

which introduces gauge fields Bµ
A on which the Lie algebra g is realized. Usually these gauge

fields come from the kinetic terms of the fields {φ}. These kinetic terms are not invariant under

the local transformations and therefore need compensation. If the fields {φ} transform as

δǫφ = ǫATAφ , (B.3)

where ǫA can be a bosonic or a fermionic transformation parameter, one can replace the ordinary

derivative ∂µφ in the kinetic terms by the coviarant derivative

Dµφ = ∂µφ−Bµ
ATAφ , (B.4)

which per construction transforms in the same way as the field itself:

δǫDµφ = ǫATADµφ . (B.5)

1Note that the algebra does not completely fix the group; a familiar example is the fact that the groups

SO(3) and SU(2) are generated by the same Lie algebra.
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In general we define objects to be covariant when they transform under all the transformations

without a derivative on the transformation parameter ǫA. The transformation of the gauge fields

then reads

δǫBµ
A = ∂µǫ

A + ǫBBµ
CfA

BC , (B.6)

where a summation over all {BC} is understood, such that the transformation (B.5) holds, and

[δǫ1 , δǫ2 ]Bµ
A = δ(ǫ3 = ǫB2 ǫ

C
1 f

D
BC)Bµ

A , (B.7)

i.e. the algebra closes on the gauge fields. This allows one to construct the corresponding field

strength Rµν
A,

Rµν
A = 2∂[µBν]

A +Bµ
BBµ

CfBC
A , (B.8)

which transforms in a covariant way:

δǫRµν
A = ǫBRµν

CfA
BC . (B.9)

Now, because gauge fields Bµ
A carry both a spacetime index {µ} and an internal index {A},

they transform under general coordinate transformations and the gauge transformations. With

the explicit expressions given above one can check that the following relation holds:

δgct(ξ
λ)Bµ

A + ξλRµλ
A −

∑

{C}

δ(ξλBλ
C)Bµ

A = 0 . (B.10)

It is important to note that the gauge parameters in this relation are constructed out of the gauge

fields Bµ
A and the parameter ξλ of the general coordinate transformation. The simplest example

of this relation is provided by a U(1) gauge theory, in which all the structure coefficients fA
BC are

zero. The gauge field Aµ with corresponding gauge parameter Λ transforms as

δgct(ξ
λ)Aµ = ξλ∂λAµ + ∂µξ

λAλ, δΛAµ = ∂µΛ . (B.11)

The field strength (B.8) is written as Fµν = 2∂[µAν], and one can then check that

δgct(ξ
λ)Aµ + ξλFµλ − δΛ(ξλAλ)Aµ = 0 . (B.12)

This implies that when one imposes the curvature constraint Fµν = 0 (making the gauge field pure

gauge) a gauge transformation with field dependent gauge parameter Λ = ξλAλ can be interpreted

as a general coordinate transformation or vice versa. These field dependent gauge transformations

do not obey the original U(1) algebra anymore. Namely,

[δ(Λ1) , δ(Λ2)]Aµ = [δ(ξλ
1Aλ) , δ(ξλ

2Aλ)]Aµ

= ∂µ

(

ξλ
2 ∂λ(ξρ

1Aρ − [1 ↔ 2])
)

6= 0 (B.13)

in general. In applying this gauging procedure to theories of gravity, the identity (B.10) is used

to remove the local spacetime translations from the independent fields. As is clear from the U(1)

example above, this will in general deform the original algebra. In Supergravity theories the same

happens for the {Q,Q}-commutator, which in general will give a general coordinate transformation

plus other transformations in the algebra, all with field-dependent parameters. Such an algebra

with field-dependent structure constants is called a soft algebra.



Appendix C

Bianchi identities

Here the Bianchi identities of the Bargmann theory and stringy Newton-Cartan theory will be

given.

For the Bargmann theory the Bianchi-identities read

D[λRµν](H) = 0 , (C.1)

D[λRµν]
a(P ) = −R[λµ

ab(J)eν]
b −R[λµ

a(G)τν] +R[λµ(H)ων]
a , (C.2)

D[λRµν]
ab(J) = 0 , (C.3)

D[λRµν]
a(G) = −R[λµ

ab(J)ων]
b , (C.4)

D[λRµν](Z) = R[λµ
a(P )ων]

a −R[λµ
a(G)eν]

a . (C.5)

The curvatures (6.43) of the stringy Newton-Cartan theory satisfy the Bianchi identities

D[ρRµν]
a′

(H) = −R[ρµ
a′b′

(M)τν]
b′

,

D[ρRµν]
a(P ) = −R[ρµ

ab(J)eν]
b −R[ρµ

aa′

(G)τν]
a′

,

D[ρRµν]
a′b′

(M) = 0 ,

D[ρRµν]
aa′

(G) = −R[ρµ
a′b′

(M)ων]
ab′ −R[ρµ

ab(J)ων]
ba′

, (C.6)

D[ρRµν]
ab(J) = 0 ,

D[ρRµν]
a′

(Z) = −R[ρµ
a′b′

(M)mν]
b′

+R[ρµ
a(P )ων]

aa′ −R[ρµ
aa′

(G)eν]
a ,

−R[ρµ
a′

(H)mν]
a′b′

+R[ρµ
a′b′

(Z)τν]
b′

,

D[ρRµν]
a′b′

(Z) = R[ρµ
c′[a′

(M)mν]
b′]c′

+R[ρµ
aa′

(G)ων]
ab′ −R[ρµ

ab′

(G)ων]
aa′

.
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Appendix D

Newton-Cartan geodesics

D.1 Point particle geodesic

Here we give some details about the derivation of the geodesic equations (5.17) and (5.75). We

start with the point particle case. For that purpose we write the Lagrangian (5.14) as

L =
m

2
N−1ẋµẋν

(

hµν − 2mµτν

)

≡ m

2
N−1ẋµẋνHµν , (F.1)

where we defined

Hµν ≡ hµν − 2m(µτν), N ≡ τµẋ
µ . (F.2)

Varying the Lagrangian (F.1) with respect to {xλ} and using the metric compatibility condition

∂[µτν] = 0 gives

−Nm−1 δL

δxλ
=
(

N−2ṄτλHµν − 1

2
N−1τλ∂ρHµν ẋ

ρ − 1

2
∂λHµν + ∂νHµλ

)

ẋµẋν

−N−1τλHµν ẋ
µẍν −N−1ṄHµλẋ

µ +Hµλẍ
µ = 0 . (F.3)

First we contract this equation with hλσ. This gives

hλσ
(

∂νHµλ − 1

2
∂λHµν

)

ẋµẋν + hλσHµλẍ
µ −N−1ṄhλσHµλẋ

µ = 0 . (F.4)

Using now the Newton-Cartan metric relations (4.24), ∂[µτν] = 0 and

Ṅ = τµẍ
µ + ∂µτν ẋ

µẋν , (F.5)

some manipulation shows that (F.4) gives the geodesic equation (5.17),

ẍµ + Γµ
νρẋ

ν ẋρ =
Ṅ

N
ẋµ , (F.6)

with the connection given by (4.70). Second one can contract (F.3) with τλ. The resulting

expression contains, among others, terms proportional to ẍµ. If one uses the geodesic equation

(F.6) to rewrite these in terms of ẋµ one can finally show that this τλ-contraction of (F.3) is

trivially satisfied.
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D.2 String geodesic

The calculation concerning the string Lagrangian (5.69) leading to the stringy geodesic equation

(5.75) can be done in a similar way. We first write

Hµν = hµν − 2m(µ
aτν)

a , (F.7)

such that (5.69) becomes

L = −T
2

√

−det(τ)τ ᾱβ̄∂ᾱx
µ∂β̄x

νHµν . (F.8)

We next use the relations

δ
√

−det(τ) =
1

2

√

−det(τ)τ ᾱβ̄δτᾱβ̄ ,

δτ ᾱβ̄ = −τ ᾱγ̄τ β̄ǭδτγ̄ǭ ,

δτᾱβ̄ = 2∂ᾱx
µ∂β̄δx

λτµλ + ∂ᾱx
µ∂β̄x

ν∂λτµνδx
λ ,

∂ᾱ

(

√

−det(τ)τ ᾱβ̄∂β̄x
µ
)

=
√

−det(τ)τ ᾱβ̄∇ᾱ∂β̄x
µ ,

∂ρτµν + ∂µτρν − ∂ντρµ = Γλ
µρτλν , (F.9)

where the last identity follows from the metric compatibility condition ∇ρτµν = 0. Varying (F.8)

with respect to {xλ} now gives the geodesic equation (5.75),

τ ᾱβ̄
(

∇ᾱ ∂β̄ x
ρ + ∂ᾱx

µ∂β̄x
ν Γρ

µν

)

= 0 , (F.10)

with the connection Γρ
µν given by (5.65). This connection is equivalent to the connection (5.64)

given by the vielbein postulates.



Appendix E

Some properties of AdS2

The isometries of AdS2 are described by the group SO(2, 1), which is generated by the algebra

[Ha,Hb] = R−2Mab, [Mbc,Ha] = −2ηa[bHc] ,

[Mcd,Mef ] = 4η[c[eMf ]d] . (G.1)

If we defineA = {0, 1, 2}, M2a = RHa whereR is the radius of curvature, and ηAB = diag(−1,+1,−1),

the so(2, 1) algebra is manifest:

[MCD,MEF ] = 4η[C[EMF ]D] . (G.2)

We define the AdS2 space via the embedding coordinates {yA} as

ηABy
AyB = −(y0)2 + (y1)2 − (y2)2 = −R2 . (G.3)

In terms of the AdS2 coordinates xα = {t, z} we choose

y0 =
√

z2 +R2 sin (
t

R
), y1 = z, y2 =

√

z2 +R2 cos (
t

R
) , (G.4)

such that

t = R tan−1 (
y0

y2
), z = y1 . (G.5)

The induced metric on the AdS2 space is then

ds2 = ηABdy
AdyB = −

(

1 +
z2

R2

)

dt2 +
(

1 +
z2

R2

)−1

dz2 , (G.6)

with nonzero Christoffel components

Γz
tt = z

(z2 +R2

R4

)

, Γz
zz =

−z
z2 +R2

, Γt
zt =

z

z2 +R2
. (G.7)

The SO(2, 1) group acts linearly on the embedding coordinates yA via y
′A = ΛA

By
B. For the

AdS2 coordinates xα = {t, z} this implies via (G.5) the non-linear realization

t′ = R tan−1
(Λ0

0 sin ( t
R ) + Λ0

1(z2 +R2)−1/2 + Λ0
2 cos ( t

R )

Λ2
0 sin ( t

R ) + Λ2
1(z2 +R2)−1/2 + Λ2

2 cos ( t
R )

)

,

z′ = Λ1
0

√

z2 +R2 sin (
t

R
) + Λ1

1z + Λ1
2

√

z2 +R2 cos (
t

R
) . (G.8)
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An H transformation is then performed via −RΛ2
0 and RΛ2

1, and an M transformation is per-

formed via Λ1
0. From (G.8) it is clear that the identity transformation t′ = t and z′ = z is

given by Λ0
0 = Λ1

1 = Λ2
2 = 1 and the other Λ’s being zero. One can deduce the infinitesimal

transformations δt and δz from the three Killing vectors of so(2, 1),

ξ{AB} = −2Y[A∂B] , (G.9)

which have components ξC
{AB} = −2Y[Aδ

C
B]. One then has the infinitesimal transformation

δY C = λABξC
{AB} = λC

BY
B , (G.10)

with λA
B as the infinitesimal components of an SO(2, 1) transformation such that anM -transformation

is written as M = λABMAB . The Killing vectors become1

ξ{01} =
zR cos ( t

R )√
z2 +R2

∂t +
√

z2 +R2 sin (
t

R
)∂z , (G.11)

ξ{02} = −R∂t , (G.12)

ξ{12} =
Rz sin ( t

R )√
z2 +R2

∂t −
√

z2 +R2 cos (
t

R
)∂z , (G.13)

where ξ{12} and ξ{02} generate H-transformations, and ξ{01} generates the M transformation. One

can check that these vectors indeed form an so(2, 1) algebra. Then

δHt = −Rλ2
0 − λ2

1

Rz sin ( t
R )√

z2 +R2
, δHz = λ2

1

√

z2 +R2 cos (
t

R
),

δM t = λ1
0

zR cos ( t
R )√

z2 +R2
, δMz = λ1

0

√

z2 +R2 sin (
t

R
) . (G.14)

1Notice that ξ{02} describes the fact that the AdS2 metric is static. We could rescale the time coordinate

t with −R to get ξ{02} = ∂t.
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Tijdens het afronden van dit proefschrift was het honderd jaar geleden dat Einstein zijn al-

gemene relativiteitstheorie publiceerde, een theorie die ons begrip van zwaartekracht en de natuur-

kunde in het geheel drastisch veranderde. De theorie werd door Einstein niet zozeer ontwikkeld

uit empirische noodzaak, maar vooral uit theoretische overwegingen. Einstein meende namelijk

dat de essentie van het zogenaamde equivalentieprincipe (zware massa is trage massa) niet vol-

doende was doorgrond. Deze overtuiging, plus de wens om zwaartekracht in zijn relativistische

raamwerk te gieten, was voor hem een motivatie om de zwaartekrachtstheorie van Newton als

onvolledig te beschouwen. Newton beschreef twee eeuwen voor Einsteins geboorte in zijn Prin-

cipia zwaartekracht als een instantane aantrekkingskracht tussen massa’s. Deze beschrijving was

empirisch succesvol omdat ze onder andere de banen van de planeten correct beschreef, maar een

onderliggend mechanisme bleef onduidelijk. Einstein herformuleerde zwaartekracht als de krom-

ming van ruimtetijd en liet zien dat zwaartekracht niet instantaan werkt, maar in het vacuum

zich voortplant met een eindige snelheid: de lichtsnelheid. Deze meetkundige beschrijving wordt

gesuggereerd door het equivalentieprincipe. Het principe stelt namelijk dat lokaal in de ruimtetijd,

zwaartekracht en versnelling dezelfde effecten hebben, net zoals lokaal de aarde vlak lijkt. Een

belangrijke eigenschap van Einsteins theorie is algemene covariantie, het idee dat alle waarnemers

dezelfde vergelijkingen gebruiken. Dit verschilt van Newtons vergelijkingen, waarvan de vorm alleen

geldt voor een beperkte groep waarnemers. Wanneer een waarnemer bijvoorbeeld gaat roteren dan

zal deze waarnemer inertiaalkrachten waarnemen, die eerst niet aanwezig waren in Newtons ver-

gelijkingen. Wiskundig verschijnen deze inertiaalkrachten omdat Newtons vergelijkingen slechts

tensoren zijn onder een beperkte groep van transformaties. Einstein meende aanvankelijk dat al-

gemene covariantie een definiërende eigenschap van zijn theorie was, maar werd daarop al gauw

gecorrigeerd. Onder andere Kretschmann suggereerde dat het ook mogelijk zou moeten zijn om

theorieën zoals die van Newton algemeen-covariant te formuleren. Een paar jaar later bleek dat

Kretschmann gelijk had.

Naast zwaartekracht was Einstein ook de persoon die met zijn verklaring van het foto-elektrisch

effect Plancks kwantumhypothese niet alleen als een wiskundige truuk zag, maar als een na-

tuurkundig principe. Daarmee was Einstein, tien jaar voordat hij zijn algemene relativiteitstheorie

publiceerde, ook één van de grondleggers van de kwantummechanica. Het blijkt echter erg moei-

lijk te zijn om de algemene relativiteitstheorie en de kwantummechanica in één overkoepelend

raamwerk onder te brengen. De verschillende pogingen om dit probleem op te lossen, bijvoorbeeld

luskwantumzwaartekracht en snaartheorie, worden beide in meerdere aspecten nog steeds niet

goed begrepen. Omdat kwantumzwaartekrachtseffecten empirisch erg moeilijk zijn te detecteren,

moet men het al decennialang van gedachtenexperimenten hebben. In deze ’experimenten’ wor-
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den vaak zwarte gaten gebruikt, de simpelste zwaartekrachtsfenomenen die de natuur kent. Op

dezelfde manier als dat het waterstofatoom door de kwantummechanica moest kunnen worden

beschreven, verwachten we dat elementaire eigenschappen van zwarte gaten door een theorie van

kwantumzwaartekracht voorspeld worden. De ontdekking van Jacob Bekenstein, dat je een zwart

gat een entropie kunt toedichten die evenredig is met de oppervlakte van de waarnemershorizon,

was een belangrijke leidraad. Een theorie van kwantumzwaartekracht moet een microscopische

oorsprong van deze entropie beschrijven. Bekensteins resultaat impliceert ook een holografische

opvatting van een zwart gat in D dimensies, waarbij de vrijheidsgraden in D− 1 dimensies kunnen

worden beschreven. Dit idee werd gegeneralizeerd door Leonard Süsskind en Gerard ’t Hooft. Een

belangrijke doorbraak kwam halverwege de jaren negentig, toen Juan Maldacena het idee van holo-

grafie expliciet maakte voor specifieke theorie: snaartheorie. Uit zijn analyse bleek dat een bepaald

type supersnaartheorie, namelijk type IIB in een zogenaamde AdS5 × S5 ruimtetijd, duaal is aan

een vierdimensionale kwantumveldentheorie zonder zwaartekracht, namelijk een N = 4, SU(N)

superconforme Yang-Mills theorie. Dit duaal-zijn betekent in de praktijk dat je elke eigenschap

van de ene theorie uniek kunt relateren aan een eigenschap van de andere theorie. Een simpele

(klassieke) analogie is de relatie tussen LC-ketens (een elektrische schakeling met een spannings-

bron, een spoel en een condensator) en harmonische oscillatoren. Dit zijn twee totaal verschillende

systemen. Toch bestaat er een ’dualiteit’ tussen de stroom I door de schakeling en de positie x van

de oscillator, en tussen L×C (de zelfinductie van de spoel maal de capaciteit van de condensator)

en m
k (de massa van de oscillator gedeeld door de veerconstante). De reden is dat de desbetreffende

differentiaalvergelijkingen dezelfde vorm hebben, hoewel de onderliggende fysica heel anders is. De

dualiteit die Maldacena vond, is vele malen ingewikkelder, maar het idee is vergelijkbaar. De du-

aliteit is met name bijzonder omdat het een kwantumveldentheorie zonder zwaartekracht relateert

aan een theorie met zwaartekracht in één extra ruimtelijke dimensie, en omdat de bijbehorende

koppelingen invers gerelateerd zijn. Deze koppelingen van beide theorieën behelzen combinaties

van de dimensieloze parameters.

In Einsteins theorie wordt de koppeling door het correspondentieprincipe gegeven door een com-

binatie van de lichtsnelheid en Newtons constante. Wanneer je zwaartekracht bij lage energieën

bekijkt, betekent dit op papier dat de zwaartekrachtsvelden statisch en zwak zijn (geen zelfinter-

actie) en/of de objecten in deze velden langzaam bewegen (lage kinetische energie). We weten via

het correspondentieprincipe dat Einsteins algemene relativiteitstheorie dan weer moet overgaan

in Newtons zwaartekrachtstheorie. De combinatie van lage (oftewel niet-relativistische) snelhe-

den en zwakke, tijdsonafhankelijke velden noemen we het Newtoniaanse regime. Elk tekstboek

over algemene relativiteit behandelt deze limiet omdat het Newtons theorie moet kunnen repro-

duceren en omdat het de koppeling van Einsteins theorie vastlegt. Maar in verreweg de meeste

gevallen gebeurt deze analyse op het niveau van de bewegingsvergelijkingen. Newtons theorie kan

echter ook in een differentiaalmeetkundige vorm worden beschreven. Hierin wordt Newtoniaanse

zwaartekracht beschreven als kromming van een Newtonse notie van ruimtetijd. De belangrijkste

eigenschap van deze ruimtetijd is het bestaan van een absolute tijd, zoals Newton deze in zijn Prin-

cipia beschreef. De theorie is algemeen-covariant en vormde een bevestiging van Kretschmanns

kritiek op Einstein. Deze formulering van Newtons theorie werd voor het eerst afgeleid door Elie

Cartan, slechts een paar jaar na Einsteins publicatie van zijn algemene relativiteitstheorie, en ken-

nen we nu onder de naam Newton-Cartan theorie. Dit formalisme vormt het onderwerp van dit
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proefschrift.

De algemene relativiteitstheorie beschrijft zwaartekracht dus als een meetkundig fenomeen.

Voor zover we weten zijn er naast de zwaartekracht nog drie andere fundamentele interacties.

Deze worden beschreven met een zogenaamde ijktheorie die we Yang-Mills theorie noemen, naar

de twee ontdekkers ervan. Dit zijn theorieën die interacties beschrijven, waarin continue en interne

symmetrieën de belangrijkste leidraad zijn. Deze continue symmetrieën worden beschreven met

Lie-algebra’s. Kortgezegd worden er in ijktheorieën interacties verkregen door symmetrieën uit te

breiden. De theorie van een vrij elektron bijvoorbeeld heeft een interne globale symmetrie: wan-

neer je op elke plek en elk tijdstip het elektronveld met dezelfde hoek roteert, blijft de dynamica

hetzelfde. Wanneer je deze hoek laat afhangen van de ruimte- en tijdcoördinaten, dat wil zeggen

lokaal maakt, dan breek je deze symmetrie. Wanneer je vervolgens eist dat deze lokale symmetrie

toch aanwezig is, oftewel de symmetrie ijkt, dan moet je een extra veld introduceren dat koppelt

aan het elektronveld. Deze koppeling beschrijft een interactie. Wanneer dit veld ook nog een eigen

dynamica krijgt, vorm je een theorie waarin elektronen via dit extra veld (het zogenaamde ijkveld)

met elkaar wisselwerken.

Deze manier van interacties beschrijven klinkt nogal anders dan Einsteins meetkundige aan-

pak, maar er blijkt een diepe connectie te zijn tussen beide beschrijvingen. Een ijktheorie kun je

namelijk ook meetkundig interpreteren, en algemene covariantie kun je opvatten als een ijksym-

metrie. In plaats van enkel Newtons inertiaalwaarnemers mag je in Einsteins theorie immers elke

waarnemer kiezen die je wilt. Veertig jaar nadat Einstein zijn algemene relativiteitstheorie publi-

ceerde, werd dan ook aangetoond dat je via een ijkprocedure de algemene relativiteitstheorie kunt

afleiden. Deze ijkprocedure moet worden toegepast op de (globale) symmetrieën van de speciale

relativiteitstheorie, en de bijbehorende ijkvelden zijn te relateren aan de meetkundige objecten die

Einstein gebruikte. Zo krijg je een algebräısche beschrijving van de algemene relativiteitstheorie.

Dat maakt de theorie abstracter, maar ook toegankelijker voor eventuele uitbreidingen naar andere

symmetrieën zoals supersymmetrie.

Een logische vraag is dan of ook de Newton-Cartan formulering met een ijkprocedure op niet-

relativistische symmetrieën kan worden afgeleid. Deze vraag is het startpunt van dit proefschrift.

Allereerst wordt er naar puntdeeltjes gekeken. Omdat de Lagrangiaan van een puntdeeltje naar

een totale afgeleide transformeert onder zogenaamde Galilëı boosts, wordt de Galilëı algebra uit-

gebreid met een extra generator. Deze generator beschrijft de massa van de deeltjes in kwestie, en

de behouden lading drukt behoud van deeltjes uit. Zo’n uitbreiding wordt een (centrale) extensie

genoemd, omdat deze extensie commuteert met alle andere elementen van de algebra. Normaliter

duiken deze extensies op wanneer je een klassieke veldentheorie de regels van de kwantummechan-

ica wilt opleggen, maar het voorbeeld van het niet-relativistische puntdeeltje en de ijkprocedure

van de bijbehorende algebra in dit proefschrift laat de relevantie van dit soort extensies in het

klassieke geval zien. In de ijkprocedure levert de extensie één extra ijkveld op. De tijdscompo-

nent van dit veld blijkt de Newtonse potentiaal te zijn en de koppeling aan het puntdeeltje heeft

dezelfde vorm als de koppeling aan de vectorpotentiaal van het elektromagnetische veld. De massa

van het deeltje speelt hierbij dan de rol van lading. Alleen met behulp van het centrale ijkveld kun

je de meetkundige structuur van het Newton-Cartan formalisme volledig in termen van ijkvelden
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opschrijven. Bovendien maakt het de algemeen-covariante actie van het puntdeeltje invariant on-

der lokale Galilëı boosts. Ook wordt aangetoond dat enkele restricties die in de oorspronkelijke

Newton-Cartan formulering werden opgelegd om Newtonse zwaartekracht te reproduceren, alle-

maal zijn te herleiden tot één enkele restrictie in de algebräısche formulering. Deze ene restrictie,

die optioneel is, zegt dat de veldsterkte van rotaties nul is. Fysisch impliceert de restrictie dat de

ruimte vlak is, zoals in Newtons oorspronkelijke formulering van zijn mechanica.

De ijkprocedure is vervolgens ook uit te breiden naar de symmetrieën van een niet-relativistische

snaar. Analoog aan het puntdeeltje suggereert de Lagrangiaan van de niet-relativistische snaar

een extensie van de algebra. Deze bestaat uit twee generatoren en de ijking levert daarom twee

ijkvelden op. Eén ijkveld komt niet in de vergelijkingen van het zwaartekrachtsveld voor, terwijl

het andere ijkveld de rol speelt van een snaarachtige uitbreiding van de Newtonse potentiaal. De re-

sulterende Newtoniaanse zwaartekrachtstheorie blijkt anders te zijn dan die van een wereld waarin

puntdeeltjes zich in de ruimtetijd bevinden. De ruimtetijd die parallel ligt aan het wereldopper-

vlak van de snaar blijft relativistisch, terwijl de ruimte die transversaal op dit wereldoppervlak

ligt niet relativistisch is. Dit is een belangrijk verschil met de algemene relativiteitstheorie, waar

de zwaartekrachtsvergelijkingen niet afhangen van het feit of er deeltjes, snaren of branen door

de ruimtetijd bewegen. In feite wordt in de gebruikelijke niet-relativistische limiet een beperking

gelegd op alle ruimtelijke snelheden, terwijl in de ijking alleen de transversale snelheden worden

beperkt. Zo bekeken definieert deze constructie een nieuwe manier om de Newtoniaanse limiet van

de algemene relativiteitstheorie te nemen. Ook wordt uitgelegd hoe een kosmologische constante

gëıntroduceerd kan worden, zowel voor de snaar als voor het puntdeeltje.

De analyse in dit proefschrift maakt ook de constructie van niet-relativistische theorieën van

supergravitatie toegankelijker. Supersymmetrie is een symmetrie die voortkomt uit de vraag hoe-

veel symmetrie er mogelijk is in het standaardmodel zonder de theorie triviaal te maken. Meer

symmetrie betekent namelijk meer behouden grootheden, en voorbij een bepaalde hoeveelheid sym-

metrie zijn interacties niet meer mogelijk. Deze beperking kan worden omzeild door te poneren dat

de behouden ladingen niet bosonisch, maar fermionisch zijn. Hierbij worden de generatoren die de

symmetrieën van de speciale relativiteitstheorie beschrijven, aangevuld met fermionische generato-

ren. Deze fermionische generatoren noemen we superladingen. De algebra dicteert vervolgens dat

elk bosonisch veld minstens één superpartner heeft en vice versa. De relatie tussen de super- en

de ruimtetijd-transformaties is dat twee supertransformaties een ruimtetijd-translatie genereren.

Eind jaren zeventig voerden Freedman, Ferrara en Van Nieuwenhuizen een ijkprocedure uit op de

superalgebra, wat leidde tot een supersymmetrische uitbreiding van de algemene relativiteitsthe-

orie. Deze procedure wordt in dit proefschrift toegepast op de niet-relativistische superalgebra in

drie dimensies. De algemene relativiteitstheorie in drie dimensies bevat geen zwaartekrachtsgolven

en zwaartekracht manifesteert zich alleen lokaal. De Newtonse limiet van de driedimensionale the-

orie stelt dan ook dat massa’s onderling geen zwaartekracht ondergaan. Dat betekent echter niet

dat er in drie dimensies geen Newtonse zwaartekrachtstheorie bestaat, maar enkel dat deze niet

verkregen kunnen worden uit de gebruikelijke limietprocedure van de algemene relativiteitstheorie.

Voor niet-relativistische supersymmetrie blijken er tenminste twee verschillende superladingen

nodig te zijn, omdat met één enkele superlading de karakteristieke relatie tussen supertransfor-
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maties en ruimtetijd-translaties verdwijnt. De ijkprocedure kan vervolgens rechtstreeks worden

toegepast en geeft een driedimensionale Newtonse theorie van supergravitatie. Deze constructie

geeft een aantal inzichten die (waarschijnlijk) algemeen zijn. Ten eerste blijkt dat de helft van de

gravitino’s met een ijktransformatie kunnen worden verwijderd. Deze vermindering van de effec-

tieve hoeveelheid supersymmetrie zal waarschijnlijk ook aanwezig zijn voor theorieën in meerdere

dimensies en/of met meerdere superladingen. Ten tweede dwingt supersymmetrie je om de veld-

sterkte van de rotaties op nul te zetten. De oorzaak is het bestaan van een absolute tijd, die zo

karakteristiek is voor de niet-relativistische ruimtetijd. De bijbehorende veldsterkte moet op nul

worden gezet om algemene covariantie te verkrijgen, en supersymmetrie dicteert vervolgens dat ook

de veldsterkte van één van de gravitino’s en de rotaties verdwijnt. Ten derde blijkt dat als je de

transformaties expliciet wilt opschrijven in termen van de Newtonse potentiaal en de bijbehorende

superpartner, er een duale Newtonse potentiaal gëıntroduceerd moet worden. De volgende stap is

om een vier-dimensionale Newtonse theorie van superzwaartekracht op te schrijven, maar pogingen

hiertoe zijn mislukt. De meest natuurlijke ansatz voor het multiplet, namelijk de onafhankelijke

velden uit de bosonische theorie plus twee gravitino’s en één vector, blijkt niet voldoende te zijn

om de bijbehorende algebra te laten sluiten op de gravitino’s. Wellicht dat een recent ontwikkelde

limietprocedure [118] toegepast op de relativistische theorie meer inzicht biedt.

Deze in dit proefschrift ontwikkelde (supersymmetrische) uitbreidingen van Newton-Cartan

theorie hebben interessante toepassingen voor het holografische principe. De niet-relativistische

limiet van snaartheorie op een Anti-deSitter achtergrond zal een snaarachtige extensie van de

gebruikelijke Newton-Cartan theorie zijn met zogenaamde snaarachtige Newton-Hooke symme-

trieën. Deze hypothese wordt ondersteund door naar de onderliggende symmetrieën te kijken.

De bosonische vorm van deze theorie is geconstrueerd in hoofdstuk vijf van dit proefschrift. De

supersymmetrische uitbreiding van drie-dimensionale Newton-Cartan theorie zoals besproken in

hoofdstuk zes van dit proefschrift biedt inzicht in hoe deze snaarachtige Newton-Cartan theorie

supersymmetrisch gemaakt kan worden. Hiermee kan de niet-relativistische limiet van dit speci-

fieke holografische geval beter begrepen worden. Ook kunnen zogenaamde localisatie-technieken

toegepast worden op de theorie van driedimensionale Newton-Cartan supergravitatie. Een off-shell

formulering van deze theorie is recentelijk gevonden in [118], waarmee vervolgens een veldentheorie

verkregen kan worden op een achtergrond die (deels) supersymmetrie behoudt. Op deze sym-

metrische achtergronden kunnen partitiefuncties worden berekend, die vergeleken kunnen worden

met de holografische berekening. Dit biedt mogelijk een interessante manier om niet-relativistische

holografie een steviger fundament te geven.

Los van alle holografische toepassingen blijft de theorie van Newton-Cartan op zichzelf een

interessant onderwerp. Het dwingt je om na te denken over fundamentele eigenschappen van

(uitbreidingen van) de algemene relativiteitstheorie, zoals algemene covariantie, supersymmetrie

en de niet-relativistische (en Newtonse) limiet. Of, om het in goed Nederlands te zeggen: back to

the basics. Het feit dat een eeuw na de publicatie van zowel de algemene relativiteitstheorie als

de Newton-Cartan formulering hierover nog zoveel valt te ontdekken, toont des te meer aan hoe

subtiel Einsteins theorie is.
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