Nitrophenylsulfonyguaniden en hun splitsing door alkaliën
Moed, Hendrik Durk

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1947

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
SUMMARY.

For preparing sulphaguanidine the reaction of p-nitrobenzenesulphochloride with guanidine in a calciune medium was examined. The controversy 1) which has arisen on the subject of this reaction has been proved to rest on incomplete examination.

The chief product in feeble alcaline solution is p-nitrobenzenesulphonyl-guanidine. Being insoluble in alcali, it may be represented by the formula:

\[(NH_2)_2C : N : SO_2 : C_6H_4 : NO_2\]

At the same time bis-p-nitrobenzenesulphonyl-guanidine is formed. It is a rather strong monobasic acid, dissolves in alcali and gives a monosodium compound. For this and other reasons we may conclude that it possesses a SO_2NH-group and that it has this formula:

\[\text{NH}_2 \cdot C \underbrace{\text{NH} \cdot \text{SO}_2 \cdot \text{C}_6\text{H}_4 \cdot \text{NO}_2}_{\text{N} \cdot \text{SO}_2 \cdot \text{C}_6\text{H}_4 \cdot \text{NO}_2}\]

Examining the action of alcali on these two sulphamides, we made a curious observation. Both compounds easily lose their sulphonyl groups in the form of sulphur dioxide. The mononitro compound produces nitrophenyl-guanidine, as if the sulphonyl group was simply lifted out of the molecule:

\[(NH_2)_2C : N : SO_2 : C_6H_4 : NO_2 \rightarrow \text{SO}_2 + (NH_2)_2C : N : C_6H_4 : NO_2\]

The p-dinitro compound undergoes a more complicated decomposition:

\[\text{NH}_2 \cdot C \underbrace{\text{NH} \cdot \text{SO}_2 \cdot \text{C}_6\text{H}_4 \cdot \text{NO}_2}_{\text{N} \cdot \text{SO}_2 \cdot \text{C}_6\text{H}_4 \cdot \text{NO}_2} \rightarrow 2 \text{SO}_2 + (NH(C_6H_4NO_2)_2 + \text{CN} \cdot \text{NH}_2\]

In order to know if these remarkable decompositions have a general character, the reaction of the p-nitrobenzenesulphochloride on guanidine was examined with the desired nitrobenzenesulphochloride obtained by interaction of the desired nitrobenzenesulphonic acid with guanidine.

For all these compounds mixed dinitro compounds are formed. The following conditions are required.

1. The presence of a dinitro group is required. The m-nitro compound undergoes a more complicated decomposition.

2. The amino compound is formed from the dinitro compounds, as is shown by a nitro compound.

3. The presence of an amino group with regard to the SO_2NH-group is required.

\[{(CH_2)_2N}_2C : N : SO_2 : C_6H_4 : NO_2\]

These conditions are satisfied by the aromatic hydroxy- and amino compounds studied by S. Smiles 2) in his publications during the past year. For instance, the nitro compound is given by o-nitrobenzenesulphonic acid and alcoholic soda, it is isolated as follows:

\[\text{NO}_2 \]

The aromatic rest undergoes a similar interchange their positions on the aromatic ring undergoes a similar interchange their positions on the aromatic ring and directly into sulphuric acid:

\[O_2N \underbrace{\text{SO}_2}_{\text{SO}_2 - \text{CH}_2} \]

The isomeric p-nitrobenzenesulphonic acid

2) Winnek obtained p-nitrobenzenesulphonyl-guanidine (Chem. Zentr. 1941, 1296), whilst Karrer reported the formation of guanidinium p-nitrobenzenesulphonate (Helv. Chim. Acta 24, 310 (1941)).
The reactions of o- and m-nitrophenylsulphonyl-chloride on guanidine were examined. They gave also mononitro and dinitro derivatives.

The three mixed dinitro compounds (o m', o p', m p') were obtained by interaction of the mononitro compounds with the desired nitrobenzenesulphonylchloride.

For all these compounds (3 mononitro, 3 simple dinitro and 3 mixed dinitro compounds) the action of dilute alcali was examined. The following conditions for the formation of SO₂ were stated.

1. The presence of a nitro group in ortho or para position is required. The m-nitro and m, m'-dinitro compounds do not react. A dinitro compound with one m- and one o- or p-nitro group looses one molecule sulphur dioxide only.

2. The amino compounds, obtained by reduction of the active nitro compounds, are stable towards alcali.

3. The presence of a NH₂ (or NH) group in the position 1—4 with regard to the SO₂ group is required. Thus following compounds are stable:

\[
\text{SO}_2 \quad \text{CH}_2 \quad \text{CH}_2 \text{OH} \quad \text{O} \quad \text{CH}_2 \quad \text{CH}_2 \quad \text{SO}_2 \text{H}
\]

These conditions resemble the rules for the isomerisation of aromatic hydroxy- and amino-sulphones and related compounds, studied by S. Smiles and his collaborators in many interesting publications during the years 1930—1940. A characteristic example is given by o-nitrophenylsulphonylaethanol; when heated with alcoholic soda, it isomerises to a sulphinic acid 1):

\[
\text{NO}_2 \quad \text{NO}_2 \quad \text{NH}_2 \quad \text{NH}_2 \quad \text{SO}_2 \quad \text{H}
\]

The aromatic rest and the hydrogene of the hydroxyl group interchange their positions. If p-nitrophenylsulphonyl-guanidine undergoes a similar isomerisation, the primary product should be an amino (or imino) sulphinic acid, which is unstable and splits directly into sulphur dioxide and p-nitrophenyl-guanidine:

\[
\text{NH}_2 \quad \text{NH}_2 \quad \text{SO}_2 \quad \text{N} = \text{C} \quad \text{NH}_2 \quad \text{NH}_2
\]

The isomeric o-nitrophenylsulphonyl-guanidine gives also sulphur

dioxide, but in stead of the expected o-nitrophenylguanidine its cyclisation product, 1-oxo-3- amino-benzo-1,2,4-triazine is obtained in nearly quantitative yield:

\[
\begin{align*}
\text{NO}_2^{-} \text{SO}_2^{-} \text{N} = \text{C} \quad \text{NH}_2 \quad \rightarrow \quad \text{SO}_2^{-} \quad \text{N} = \text{C} \quad \text{NH}_2 \quad \rightarrow \quad \text{O} \quad \text{N} \quad \text{C} \quad \text{NH}_2
\end{align*}
\]

The nitrophenylsulphonyl derivatives of asymmetric dimethylguanidine react in the same way as those of guanidine. But the derivatives of symmetric tetramethylguanidine are perfectly stable under the same conditions. The fact, that one of the amino groups must contain at least one hydrogene atom (condition 3) is a strong argument for the isomerisation theory.

The decomposition of the bis-nitrophenylsulphonyl-guanidines is far more complicated. As a meta-nitro group does not activate the side chain, the m, m'-dinitro derivative must be stable. But the o- and p-bis-nitrophenylsulphonyl-guanidines will undergo a double decomposition. The end products are dinitrodiphenylamine, cyanamide and sulphur dioxide (2 mol.). The following scheme gives an explanation of the decomposition.

\[
\begin{align*}
\text{SO}_2^{-} \text{N} = \text{C} \quad \text{NH}_2 \quad \rightarrow \quad \text{SO}_2^{-} \quad \text{N} = \text{C} \quad \text{NH}_2 \quad \rightarrow \quad \text{NC} \quad \text{NH}_2 + \quad \text{SO}_2^{-} \quad \text{N} = \text{C} \quad \text{NH}_2
\end{align*}
\]

A transformation in two phases (1 and 2) is supposed, because only the first phase can be realized in the case of the o, m'- and p, m'-dinitro compounds, where the m-nitrophenylsulphonyl group is inactive. Both intermediate compounds have been synthesized; they give the same end products, cyanamide and dinitrodiphenylamine.

The following scheme represents in a simple way the interchange of places between the nitrophenyl group and the hydrogen atoms of the amino group:

\[
\begin{align*}
\text{O}_2 \cdot \text{N} \cdot \text{C}_6 \text{H}_4 \cdot \text{SO}_2^{-} \cdot \text{N} = \text{C} \quad \rightarrow \quad \text{H} \cdot \text{N}
\end{align*}
\]

Finally it may be mentioned that this thesis furnishes a procedure to introduce in guanidine the nitrophenyl group.

For the preparation of XXII) the transformation
Finally it may be observed, that the transformation studied in this thesis furnishes a practical method for preparing o- and p-nitrophenylguanidines (as II, IV, XXIX), for it is much easier to introduce in guanidines a nitrophenylsulphonyl group than a nitrophenyl group.

For the preparation of nitrated diphenylamines (as XVI, XX, XXII) the transformation also affords a very convenient method.

LIST OF NEW COMPOUNDS.

A. New compounds:

<table>
<thead>
<tr>
<th>Compound</th>
<th>Formula</th>
<th>Description</th>
<th>p.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(_7)H(_2)O(_2)N(_4)Ag</td>
<td></td>
<td>Silver salt of p-nitrophenylguanidine</td>
<td>73</td>
</tr>
<tr>
<td>C(_7)H(_2)O(_2)N(_4)S</td>
<td>o-Nitrophenylsulphonylguanidine, m.p. 206°(d)</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>C(_7)H(_2)O(_2)N(_4)S</td>
<td>m-Nitrophenylsulphonylguanidine, m.p. 219°-220°(d)</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>C(_7)H(_2)O(_2)N(_4)S</td>
<td>Nitrile of p-nitrophenylguanidine, m.p. 199°-200°(d)</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>C(_7)H(_2)O(_2)N(_4)Cl</td>
<td>Hydrochloride of nitrophenylguanidine, m.p. 200°-203°(d)</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>C(_9)H(_9)O(_4)N(_4)</td>
<td>1-Oxo-3-dimethylamino-benz-1, 2, 4-triazine, m.p. 161°-161.5°</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>C(_9)H(_9)O(_2)N(_4)S</td>
<td>N-p-Nitrophenyl-N', N'-dimethylguanidine, m.p. 142.5°-143.5°</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>C(_9)H(_9)O(_2)N(_4)S</td>
<td>o-Nitrophenylsulphonyl-N,N'-dimethylguanidine, m.p. 148°-150°(d)</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>C(_9)H(_9)O(_2)N(_4)S</td>
<td>p-Nitrophenylsulphonyl-N,N'-dimethylguanidine, m.p. 197°-198°(d)</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>C(_9)H(_9)O(_2)N(_4)S</td>
<td>N-p-Nitrophenyl-N,N'-dimethylguanidine, m.p. 141.5°-142.5°</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>C(_9)H(_9)O(_2)N(_4)S</td>
<td>p-Nitrophenylsulphonyl-N,N'-dimethylguanidine, m.p. 175.5°-176.5°</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>C(_9)H(_9)O(_2)N(_4)S</td>
<td>Nitrile of bis-p-nitrophenylguanidine, m.p. 244°</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>C(_9)H(_9)O(_2)N(_4)S</td>
<td>N-p-Nitrophenylsulphonyl-N,N'-p-nitrophenylguanidine, m.p. 180°(d)</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>C(_9)H(_9)O(_2)N(_4)S</td>
<td>N-m-Nitrophenylsulphonyl-N',p-nitrophenylguanidine, m.p. 208°-210°5°</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>C(_9)H(_9)O(_2)N(_4)S</td>
<td>N-m-Nitrophenylsulphonyl-N',p-nitrophenylguanidine, m.p. 218°-222°</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>C(_9)H(_9)O(_2)N(_4)S</td>
<td>N,N'-N-Bis-p-nitrophenylsulphonylguanidine, m.p. 270°-272°</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>C(_9)H(_9)O(_2)N(_4)S</td>
<td>Sodium salt of —</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>C(_9)H(_9)O(_2)N(_4)S</td>
<td>Potassium salt of —</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>C(_9)H(_9)O(_2)N(_4)S</td>
<td>Ammonium salt of —</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>C(_9)H(_9)O(_2)N(_4)S</td>
<td>Guanidinium salt of —</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>