De kristalstructuur van P4S10 en P4S7
Vos, Aafje

De kristalstructuur van P4S10 en P4S7
Vos, Aafje

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1955

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Vos, A. (1955). De kristalstructuur van P4S10 en P4S7 Groningen: W.E.J. Tjeenk Willink

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Download date: 24-12-2018
SUMMARY

In the introduction a survey of some of the properties and applications of the phosphorus sulfides is given. From this it appears that very little was known with certainty about the structures of these compounds. Therefore an X-ray diffraction study of these sulfides was undertaken. The structure determinations of P_4S_{10} and P_2S_6 are described.

P_4S_{10} belongs to the space group $P\text{i}$. The lattice parameters were determined by combining the information from optical goniometric measurements with that obtained from oscillation and Weissenberg photographs about the a axis. The following values were obtained:

\[
\begin{align*}
 a &= 9.07 \text{ Å}, \\
 b &= 9.16 \text{ Å}, \\
 c &= 9.19 \text{ Å}; \\
 a &= 92^\circ.4, \\
 \beta &= 101^\circ.2, \\
 \gamma &= 110^\circ.5;
\end{align*}
\]

two molecules per unit cell.

The intensities of most reflexions hkl were measured from integrated oscillation photographs about the a axis. With the F^2 values obtained, a three-dimensional Patterson synthesis was computed. In this vector map the origin was surrounded tetrahedrally by four independent high peaks at a distance of about 2 Å. This indicated the presence of PS_4 tetrahedra in a parallel or centrosymmetric orientation. Starting from this information and combining further information from the Patterson synthesis with chemical evidence, the structure was shown to consist of molecules P_4S_{10} (fig. 9). Two such molecules are centrosymmetrically arranged in the unit cell. Their orientation was found from the vector map, their approximate position relative to the centre of symmetry by trial and error, making use of the reflexions 000, $0\bar{0}0$, and $00\bar{l}$. The coordinates were refined by computing successive Fourier syntheses of the $[00l]$ and $[010]$ projections. The procedure followed for the $[010]$ projection is schematically shown in table vi. The final atomic coordinates (table vii) were corrected for the finite-series effect by Booth's backshift method. The values attained for the disagreement indices were 0.11, 0.11 and 0.12 for the observed $0kl$, hkl and $h0l$ reflexions respectively. The temperature factor was found to be $\exp \left(-2.36 \sin^2 \theta/\lambda^2\right)$.

For P_2S_6, which belongs to the space group $P2_1/n$, the following lattice parameters were obtained from oscillation, rotation and Weissenberg photographs about the three crystal axes:

\[
\begin{align*}
 a &= 8.37 \text{ Å}, \\
 b &= 17.35 \text{ Å}, \\
 c &= 6.83 \text{ Å}, \\
 \beta &= 92^\circ.7;
\end{align*}
\]

four molecules per unit cell.
The intensities of most reflexions hkl were obtained from integrated equi-inclination Weissenberg photographs about the c axis. After some unsuccessful applications of phase relationships between the structure factors $\delta k\ell$ and $\delta \ell l$ respectively, a three-dimensional Patterson synthesis was computed. For the interpretation of this synthesis the Harker section and the Harker line were particularly useful. The “non-Harker maxima” in the section $(x, \frac{1}{4}, z)$ were eliminated by combining the information from this section with that obtained from the zero section and by trial and error on the reflexions $h0l$ with h and l even. Making use of the position of the maxima around the origin, the Harker maxima and some general peaks in the Patterson synthesis, and combining this information with chemical arguments, the approximate structure was determined.

The general shape of the molecule, which is shown in fig. 28, does not correspond to any of the structures suggested for Pr_5S_7 previously. The atomic coordinates were refined by successive Fourier syntheses of the three projections. The final atomic coordinates (table IX) were corrected for the finite-series effect by the backshift method. The final values of the disagreement indices for the observed $\delta k\ell$, $\delta \ell l$ and $\delta k\ell$ reflexions amount to 0.08, 0.13 and 0.10 respectively. The temperature factor was found to be $\exp (-2.47 \sin^2 \theta/\lambda^2)$.

In both crystal structures the molecules are separated by shortest intermolecular distances of 3.4 Å. The P–P distance in Pr_5S_7 is remarkably large, namely 2.37 Å with an estimated standard deviation of 0.04 Å. As was shown by the “χ^2-test” (a many-parameter significance test), which is discussed in some detail in the appendix, only two types of P–S bonds may be distinguished in both molecules. The values for the mean bond lengths are 1.95 and 2.08 Å with estimated standard deviations of 0.012 and 0.007 Å respectively. The bond lengths are compared with distances known from other structures in chapter III, section 6.

In Pr_5S_7, the S–P–S angles show no significant deviation from 109°.5. In Pr_5S_7 the PS tetrahedra are distorted, since the deviation of some S–P–S angles from 109°.5 is larger than 2.5 times the standard deviation. The mutual differences between the individual bond lengths and angles of the same type do not indicate a significant deviation from a symmetry 43m and mm2 for the Pr_5S_{10} and Pr_5S_7 molecules respectively.

In the appendix a discussion is given of the errors in the atomic coordinates obtained from Fourier syntheses. For the [001] projection of Pr_5S_7, imperfect correction for the finite-series effect appeared to increase the standard deviation in the atomic coordinates by approximately 0.002 Å.