MST-Xα Calculations on Molybdenum Disulphide and Some Related Compounds

Groot, R.A. de; Haas, C.

Published in:
Solid State Communications

DOI:
10.1016/0038-1098(75)90744-9

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1975

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Download date: 07-12-2018
MST-\(X\alpha\) CALCULATIONS ON MOLYBDENUM DISULPHIDE AND SOME RELATED COMPOUNDS

R A de Groot and C Haas

Laboratory of Inorganic Chemistry,* Matenals Science Centre, The Umvernty, Groningen, The Netherlands

(Received 20 May 1975 by A R Miedema)

Self-consistent-field \(X\alpha\) cluster calculations are reported for \(\text{MoS}_2\), \(\text{NbS}_2\) and \(\text{ZrS}_2\). The results are compared with photoemission data. It is concluded that self-consistency and relaxation have a large effect on the relative position of the various energy levels in these compounds.

IN RECENT YEARS, molybdenum disulphide and related compounds with a layer structure have been the subject of many experimental and theoretical studies. The marked anisotropy of these compounds, the superconducting properties of some of them and the possibility of intercalating metals and even organic molecules between the layers explain this interest.

The first calculations of the electronic structure of \(\text{MoS}_2\) are those of Huisman et al., who applied the Wolfsberg-Helmholtz molecular orbital method to a \(\text{MoS}_6\) cluster. Bromley et al. carried out a semi-empirical tight-binding band structure calculation. More recently, an APW calculation of the band structure was reported by Matthiess, and a band structure calculation by Kasowski using the L.C.M T O theory. Wood and Pendry used a modified version of the K.K R theory for their calculation of the band structure of \(\text{MoS}_2\).

The calculations just mentioned were not carried out self-consistently. Self-consistency effects play a more important role in transition-metal compounds than they do in the pure metals. This is because charge transfer and back-donation can change the distribution of the outer electrons substantially with the result that the self-consistent potential can be quite different from the potential obtained from a summation of atomic charge densities. However, it is very difficult to carry out a self-consistent band structure calculation.

In semi-empirical band structure calculations, experimental data involving excited states are used to fit band structure parameters. However, this is a dangerous procedure if the effect of relaxation, which accounts for many-electron effects accompanying the electronic transition, is not taken into account. These relaxation effects affect different energy levels in a different way; they are particularly important for electrons in narrow bands and for charge transfer transitions.

The MST cluster approach is a suitable theory for taking into account the effects of self-consistency and relaxation. The approximations in this theory are the local density approximation, the cluster approximation and the muffin-tin approximation. Of these approximations the latter is probably the most serious one.

Calculations were carried out for \(\text{MoS}_6^{2-}\) and \(\text{NbS}_6^{2-}\) in a trigonal-prismatic coordination, and for \(\text{ZrS}_6^{2-}\) in an octahedral coordination. The geometry and the interatomic distances used in the calculations for the clusters correspond to the parameters of the solid compounds \(\text{MoS}_2\) and \(\text{ZrS}_2\). For the \(\text{NbS}_6^{2-}\) cluster the parameters for \(\text{MoS}_2\) were taken, the differences with the \(\text{NbS}_2\) parameters are negligible.

* Calculations were performed at CECAM, Centre Européen de Calcul Atomique et Moleculaire, Orsay, France.
The muffin-tin radii were chosen in such a way that the interstitial region was as small as possible; all spheres were touching. The corresponding radii are 1.575 and 2.987 a.u. for the metal and sulphur, respectively, in MoS$_6^-$, and 1.434 and 3.462 a.u. for zirconium and sulphur, respectively, for the ZrSi$_6^-$ cluster. The charge of the cluster, which is a consequence of its non-stoichiometric composition, was compensated by surrounding the cluster by a positively charged sphere, the so-called Watson sphere. Starting potentials were obtained from a superposition of atomic charge densities, calculated with the relativistic Hartree–Fock–Slater program of Desclaux. For the coefficients α in the local density approximation the values within the atomic spheres were chosen according to Schwartz.\(^8\) In the regions between the atomic spheres the sum of one third of the α value of the metal and two thirds of the α value of the sulphur was used, and the metal α value was used in the outer-sphere region. The maximum l value used for the decomposition of the wave function into spherical harmonics was two for all spheres. It was found that spherical harmonics with $l = 3$ did not give a significant contribution, whereas the $l = 2$ components in the sulphur spheres had an appreciable effect. The effect of relaxation was calculated using the transition state concept due to Slater\(^10,11\) for the five highest occupied levels.

The calculated orbital energies of the clusters are given in Table 1. The states are labeled according to their point group symmetry D_{3h} for MoS$_6^-$ and NbS$_6^-$, and O_h for ZrSi$_6^-$. The absolute values of the energies for the octahedral cluster cannot be compared with the absolute values for the trigonal–prismatic clusters because of the different Watson-sphere radii.

Table 1: Calculated self-consistent orbital energies (in Rydbergs). The Fermi-level E_F is indicated. The A_1^* level in NbS$_6^-$ at the Fermi-level is occupied by one electron.

<table>
<thead>
<tr>
<th>Character of wave function</th>
<th>ZrS$_6^-$</th>
<th>NbS$_6^-$</th>
<th>MoS$_6^-$</th>
<th>Relaxation in MoS$_6^-$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beginning of hyrbndised conduction band</td>
<td>T_{1u}^- = -0.530</td>
<td>$A_1^* = -0.601$</td>
<td>$A_1^* = -0.594$</td>
<td>$E_f - A_1^* = -0.715$</td>
</tr>
<tr>
<td>Mainly metal d character</td>
<td>$E_{g} = -0.415$</td>
<td>$E'' = -0.558$</td>
<td>$E'' = -0.653$</td>
<td>$E'' = -0.665$</td>
</tr>
<tr>
<td>Mainly sulphur p character</td>
<td>$E_g = -1.004$</td>
<td>$E'' = -0.976$</td>
<td>$E'' = -0.988$</td>
<td>$E'' = -1.113$</td>
</tr>
<tr>
<td>Mainly sulphur s character</td>
<td>$E_g = -1.093$</td>
<td>$E'' = -0.999$</td>
<td>$E'' = -0.994$</td>
<td>$E'' = -1.113$</td>
</tr>
<tr>
<td>$E_g = -1.035$</td>
<td>$E'' = -1.113$</td>
<td>$E'' = -1.113$</td>
<td>$E'' = -1.113$</td>
<td></td>
</tr>
<tr>
<td>$E_g = -1.056$</td>
<td>$E'' = -1.133$</td>
<td>$E'' = -1.130$</td>
<td>$E'' = -1.130$</td>
<td></td>
</tr>
<tr>
<td>$E_g = -1.075$</td>
<td>$E'' = -1.154$</td>
<td>$E'' = -1.149$</td>
<td>$E'' = -1.149$</td>
<td></td>
</tr>
</tbody>
</table>

In Fig 1 the calculated energy levels for the MoS$_6^-$...
cluster are compared with X-ray photoelectron spectra obtained by Wertheim et al. These spectra agree with photoelectron spectra using uv excitation.

For the comparison of the calculated energy levels with the photoelectron spectra the zero of energy was adjusted in such a way that the centre of gravity of the observed sulphur s band coincides with the calculated levels. In the calculations with relaxation the centre of gravity of the upper four 'sulphur p' states was made to coincide with the centre of gravity of the four corresponding states in the self-consistent calculation.

At low energies there is a valence band, the lower part being essentially of sulphur s character, the upper part of sulphur p character with some molybdenum character in the states of symmetry A', E' and E''. Just below the Fermi level there is a state A_1, which has mainly molybdenum d character (d_{z^2}). Above the Fermi level one finds two unoccupied states of molybdenum d character with some sulphur character. At still higher energies states of molybdenum (s, p) character and intersphere character are found.

The largest difference between theory and experiment is in the position of the occupied molybdenum d level A_1 with respect to the top of the valence band. Although the error is diminished substantially by the self-consistency and relaxation effects, an appreciable error remains. This is likely to be the result of the muffin-tin approximation. It is worth while noting, that for the non-selfconsistent calculation a molybdenum charge density corresponding to the neutral atom $4d^25s^25p^2$ configuration was used. A non-selfconsistent calculation with the normal molybdenum $4d^25s^1$ configuration leads to an even larger error in the position of the A_1 d level.

In Fig. 2 the calculated energy levels of ZrS$_2$ are compared with X-ray photoelectron spectra of ZrS$_2$. The photoelectron spectra of ZrS$_2$ obtained with uv
excitation are similar. The calculation shows that the energy difference between the valence band and the d states increases from Mo to Zr and that the hybridisation of d character into the valence band decreases. This effect, together with the different type of coordination of the ZrS_6^{6-} cluster, explains the difference in ionicity between MoS$_2$ and ZrS$_2$. However, the differences obtained are smaller than is suggested by i.r data of the vibrational spectra. A more detailed analysis of the results including a discussion of the hybridisation of the A_1^d state, estimates of band width and correlation effects will be given elsewhere.

Acknowledgements - One of the authors (R A de G) gratefully acknowledges beneficial conversations with Prof J W D Connolly, Dr A R. Williams and Dr C B Sommers during his stay at CECAM, Paris. This investigation was supported by the Netherlands Foundation for Chemical Research (SON) with financial aid from the Netherlands Organisation for the Advancement of Pure Research (ZWO).

REFERENCES

5. MATTHEISS L.F., Phys. Rev B8, 3719 (1973)
11. WILLIAMS A.R., DE GROOT R.A & SOMMERS C B (to be published)
16. DE GROOT R A & HAAS C (to be published)