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Controlled Invariance for Nonlinear 
Systems 

HENK  NIJMEIJER AND ARJAN VAN DER SCHAFT 

Absrrucr -Necessary and sufficient  conditions are derived for " ( A .  B ) -  
invariance." called  here  controlled invariance, for nonlinear  systems Ci- = 
f( x. u ) .  The  obtained  results  generalize and elucidate already known 
results about qstems i = A (x ) -E::, u ,  B,( x). A new and direct differen- 
tial geometric interpretation of the  concept of controlled invariance and the 
derived conditions is given. 

I. INTRODUCTION 

B ASIC to the solution of various problems in linear 
systems  theory  is  the notion of ( A .  B)-invariance. 

also called controlled invariance (cf. [ 11. [ 131). Recently. 
several  people studied the problem of generalizing  this 
notion to nonlinear systems of the form 

nz 

X = A ( x ) +  u , B , ( x )  (1.1) 
r = l  

(cf.  [4]-[9]).  Also, a related but different notion can  be 
found in  [14].  Actually,  very  recently conditions have  been 
found which  seem  very  conclusive for this class of systems 
(cf. [61, PI). 

The aim of this paper is to generalize the concept further 
to general n o r h e a r  systems 

1 = f ( X ,  u )  (1  4 
and  to derive conditions similar to those derived  for sys- 
tems of the form  (1.1). In the course of doing this, it 
became clear that the concept of controlled invariance can 
be translated. in a natural and clarifying  way, into classical 
differential geometric notions like integrability conditions 
and connections on fiber bundles. Actually. we  will show 
that this point of  view also elucidates  the already known 
results about systems of the  form  (1.1)  (we  will  call  these 
systems affine systems). 

Before  going on, we will  briefly  summarize some of the 
ideas and results about controlled invariance for linear and 
affine systems (for an introduction see also [4]. [5] .  [8]). 
First, we define the related notion of invariance. Consider 
a linear system 

i = A x + B u ,  x € % :  =R", ~ € 3 :  =R". (1.3) 
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We  call a linear subspace 'li C 3. invariant if A Y  C Y. We 
can interpret t h s  condition in the following  way. The 
collection of affine subspaces x + ?r, x E R", can be re- 
garded as the leaves of a foliation of R". Then A?< c Yis  
equivalent to saying that the  system  (1.3)  leaves the folia- 
tion invariant: i.e., take two arbitrary points x,  and x2 on 
the same leaf and take an arbitrary  input function E( .); 
then the integral curves starting from x, and x2, generated 
by i = A x  + BE, intersect at every  time t the same leaf. 

This idea can  be generalized to nonlinear systems 

- t = f ( x , u ) ,  x E M ,  Mamanifold. (1.4) 

Take instead of a linear subspace '?'^an  involutive distribu- 
tion D on IM. The maximal integral manifolds of this 
distribution are the leaves of a foliation of M .  Then we say 
that the distribution D is invariant if again for every input 
function E( .), the system x = f(x, E )  leaves the foliation 
invariant. 

Actually, it is a standard fact from  differential geometry 
that this condition is, just as in the linear case,  equivalent 
to an infinitesimal condition, namely, 

[ f ( . . E ) . D ]   C D .  

(See the end of this  section  for notation.) Controlled invari- 
ance is  defined as follows. An involutive distribution D is 
called controlled invariant if there exists a feedback U H  

c:  = a ( x ,  u )  such that  after applying this feedback, D is 
invariant with  respect to the modified dynamics 

x = f(x,  c ) .  

D is  called  locally controlled invariant if we can only find a 
local  feedback  (see  Section 111). Within the  "category" of 
linear systems,  feedbacks  should  have  the form 

U H O :  = U  - FS 

and for affine systems 

u w u :  = M ( x ) u -  .(x). 

The defect  in  this definition of controlled invariance is that 
it requires  knowledge of the  feedback  needed. Therefore, 
conditions should  be  sought on the distribution D and  the 
system i = f ( x .  u )  which ensure the existence of a feed- 
back which  makes D invariant. In  fact,  for linear systems 
(1.3) it can be easily  proven that 

A?,- c Y +  In1 B 
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ing result has been proven for  affine systems: 
.~ 

m 

R = A ( x ) +  2 UiBi(X). 
i = l  

Define  the  affine  distribution A by A(x): = A ( x ) +  
span { B , ( x ) ;  -,Bm(x)} and  the  distribution A. by 
Ao(x) :  =span{B,(x),--  .,B(x)}. Then  a  distribution D is 
locally controlled  invariant iff 

[ A ,  Dl c D + A ,  

(see the  end of this section for  the  notation), where it is 
supposed  that  the dimension of D n A ,  is constant.  This  last 
result  includes  an earlier result in [4]. 

Finally,  in this paper we will give the  conditions  for 
controlled  invariance  for general systems x = f(x, u).  (See 
Section IV.) 

The  outline of the  paper  is as  follows. Section I1 contains 
preliminaries about  definitions of nonlinear  control sys- 
tems which will open  up  the way to  the  definitions of 
controlled  invariance in Section 111. It will be argued that  a 
natural concept for local controlled  invariance is the  idea 
of an (integrable) connection, which will be  dealt with in 
Section IV. It will be shown here  that  for  affine systems the 
vanishing of the torsion and  the curvature tensor of an 
affine connection exactly gives the  integrability  conditions 
needed for  the  construction of a feedback. Furthermore, 
the  condition for controlled invariance  for general nonlin- 
ear systems is derived. Section V contains  the Conclusion. 

Some Notation 

Our basic reference to differential geometry will be [ 111. 
All our objects like manifolds, maps, etc. are C“. We call A 
an  affine  distribution  on  a manifold M if A in every x E M 
is given  by an  affine  subspace  A(x) C TTM (in a  smooth 
way).  Given  two (affine) distributions Dl,   D2,  then we 
define the  distribution 

[ D l , D 2 ] : = { [ X , Y ] I X E D l .   Y E D 2 }  

where [ ~ ] is the Lie bracket. We  will only consider  the 
regular case, so distributions will  always have constant 
dimension (see the  Conclusion). Given a k-dimensional 
distribution D on M (n-dimensional with n 2 k ) ,  we can 
construct  a  2k-dimensional  distribution on TM, denoted 
by D ,  in  the following way. Define  the  codistribution P by 

P ( x ) = { 8 € ~ ~ ~ 6 J ( X ) = O f o r e v e r y ~ ~ D ( x ) , x € M } .  

Then P has a basis (over the ring of smooth  functions on 
M )  of n-k  one-forms 8,;. Since e,€ T*M we can 
also consider 8, as  a real function on TM. Now we define 
8, E PTIM by 

4, (X) = X( e,), with X vector field on TM. 

Denote  the  natural projection from TM onto IM by T. Then 

Then D is defined by 

If D is an involutive distribution we can give the follow- 
ing simple description of D in local coordinates.  Take 
coordinates (x,, . . . , x n )  for M (from now on we shall 
always assume M to be  an n-dimensional manifold) such 
that 

Denote  the  corresponding  coordinates  for TM by 
( x 1 ; . . , x ~ , i , ; . . , ~ ~ )  (i,: T M + R  is defined asi j (v) :  = 
dx,( v ) ,  for v E TM).  Then 

11. PRELIMINARIES 

Before  going to  the problem of controlled  invariance  for 
general nonlinear systems, we  will first review the defini- 
tions of nonlinear  control systems we shall use henceforth. 
This new approach was proposed by  Willems [12], and 
elaborated on in [SI, [lo], and  is related to recent proposals 
of Brockett [2]. In fact,  the problem centers  around  a 
coordinate-free way of defining the  equations 

x = f ( x ,  u )  (2.1) 

where x is the  state  of  the system and u is the  input. 
Usually this is  done by looking at (2.1)  as a family of 
globally defined vector fields f(- ,  u )  on the  state  space 
manifold,  parameterized by u. However, there  are  serious 
objections  to this definition (cf. [2], [lo], [ 121) and, more- 
over, in many cases  it happens  that  the  input space is state 
dependent. 

Therefore  the most natural  definition seems to  be as 
follows. 

Definition 2. I (Nonlinear Control System) (cfi [ 21, [ 121): 
A nonlinear control system 2 is a  3-tuple Z( M ,  B7 f )  with 
M a  manifold, B a fiber bundle above M with projection r: 
B .+ M ,  and f a  smooth  map such that  the  diagram 

f 

M 

commutes ( T , ~  is the  natural  projection of TM on M ) .  
Remark 1: M is to be considered as  the  state  space 

while the  fibers of B represent  the  (state-dependent)  input 
spaces. If  we denote  coordinates  for M by x:  and coordi- 
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nates for B by (x, u) ,  with u coordinates  for  the  fibers, 
which are assumed to  be m-dimensional, then locally this 
definition comes down to (writing f as (x, u )  + ( x ,  f( x, u) ,  
abuse of notation!) 

1 = f ( X ,  24). 

Remark 2: The usual approach is recovered by taking B 
a trivial bundle, i.e., B = M X U, with U (most times) C R m.  

Remark 3: Note  that  our  definition is also coordinate- 
free with respect to  the  inputs, i.e., there  are no a priori 
specified coordinates for the  input  space as in the usual 
approach where U C R and hence already has coordi- 
nates. 

In this framework feedback can be defined in an  appeal- 
ing way (cf. [2], [12]). A system Z( M ,  B, f ) is feedback 
equivalent to  a system e ( M ,  B, f) iff there exists a  bundle 
isomorphism a:  B + B such that  the  diagram 

J 

B B 

commutes. With the same abuse of notation  as in Remark 
1 we shall write a in local coordinates as ( x ,  u )  + 

A special, but  important  and often studied class of 
nonlinear systems is  given  by the following. 

Definition 2.2 (Affine Control System): A nonlinear con- 
trol system Z( M ,  B, f ) is an affine control system if B is a 
vector bundle and  the  map f restricted  to  the  fibers of B is 
an affine map  into the fibers of TM. Also we assume, to 
avoid singularities, that f is an immersion. 

Remark I :  Because the fibers of B and TM are vector 
spaces, “affine” is well defined. 

Remark 2:  If  we take coordinates x for M and  affine 
coordinates ( u , ; .  - , u r n )  for the  fibers of B (i.e., affine 
maps from the  fibers  into R), then  the system is locally 
described by 

( x ,   4 x 9  u)) .  

m 

X = A ( x ) +   u z B , ( x )  
, = I  

where span { B,( x ) ,  . , Bm( x ) }  has  constant dimension. 
Remurk 3: Note  that  the class of feedbacks whch pre- 

serve the affine  structure consist of those a:  B + B which 
restricted to the  fibers  are affine. Hence, in  coordinates as 
above 

( x ,  u )  -+ ( x ,  M ( x ) u  - 4.1) 
a 

with M(x) an m X m matrix (nonsingular). 
An equivalent definition is obtained by looking only at 

the image of the  map f in TM. Because f is affine,  the 
image of the  fiber of B above a  point x E M under f is an 
affine  subspace of T,M. Hence, we obtain (cf. [8], [9]) the 
following. 

Definition 2.2’:  An affine system on  a manifold M is an 
affine  distribution A .  

Remark: Define 4,: = A - A: = {X- Y I X, Y E  A}. Then 
A, is  a  distribution, given  in local coordinates  as  above  by 
span {BI(x);.-,Bm(x)}. We denote  the  affine system by 

As already  noted,  our  definition is also coordinate-free 
with respect to  the  inputs. A local coordinatization of B is 
given  by a trivializing chart, i.e., an  open  neighborhood 0 
such that m-’(O) 2 OX F, where 2 stands  for  isomorphic 
and F is the so-called standard fiber. Notice  that  a  coordi- 
natization of 0 and F immediately gives a  coordinatization 
( x ,  u )  of m-’(O) such  that x are  coordinates for 0 C M. We 
will call these kind of coordinates fiber respecting. 

In general, there  are many triviaking charts,  and hence 
many fiber respecting coordinatizations of  B. In t h s  con- 
text it is easy to see that, given a local fiber respecting 
coordinatization of B, feedback ( x ,  U)H(X, a ( x ,  u ) )  can be 
interpreted as defining a new fiber respecting coordinatiza- 
tion (x, v )  with o = a(x ,  u) .  Th~s  idea,  translating feedback 
into choice of coordinates, will be used  in the sequel. 

Finally, we  will define the  extended system, introduced 
in [lo], which will be important henceforth. 

Definition 2.3 (Extended  System): Let Z( M ,  B, f )  be  a 
control system (Definition 2.1). The extended system, de- 
noted E‘(M, B1 f ), is an affine system (Definition 2.2’) 
constructed in the following way. Take as state space the 
manifold B. Let (F, 5) be a  point  in B. We construct an 
affine subset A‘(X, 5) of q:, <)B as follows. The map f: 
B -, TM gives a vector f ( X ,  E ) €  7-?M. Now define 

Ae( X, 5) : = {X€ ;) B I m*X= f( X, E)}. 

Then A‘, in every ( x ,  r ; )  defined as above, is an  affine 
distribution on B. It is easy to see that A\: = A‘ - Ae = {X 
E TBlm,X= 0). Hence ( E ,  Eo) is an  affine system on  B, 
denoted by Y ( M ,  B, f). 

( 4  A d .  

111. CONTROLLED INVARIANCE FOR NONLINEAR 
CONTROL SYSTEMS 

As we saw  in the  Introduction,  the underlying idea of 
( A ,  B)-invariance or controlled  invariance is the following. 
Let D be a  distribution, which is involutive and  therefore 
induces  a  foliation.  Then D is invariant with respect to  the 
dynamics of a system 1 = f ( x ,  u )  if for any two points x 1  
and x 2  on the  same leaf of the  foliation and for all input 
functions u( .) the  integral curves starting from x 1  and x2 
mith a fixed U( - )  will be  on the same leaf at the same time 
t. D is controlled  invariant if this holds  after  applying 
feedback. The infinitesimal translation of this gives the 
following (preliminary)  definition (see [4]-[6]). 

Let Z( M ,  B, f ) be a control system.  Let ( x .  u )  be fiber 
respecting coordinates for B, in which the control system 
has the form 1 = f ( x ,  u). A distribution D (involutive) on 
M is  called controlled invariant if there exists a feedback, 
i.e., a  bundle isomorphism a:  B - B. in  coordinates given 
by 
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(x+)   +(x , t l :  = a ( x , u ) )  
a 

such  that  the  control system in these new coordinates 
(x, v )  given  by x = ?(x, v )  satisfies 

[ ? ( a ,  v ) ,  D]  C D ,  for every v constant. 

Remark 1: This readily implies that  for every time func- 
tion U(-) also [f(., U), D ]  C D. 

The defect of this definition is that  it  already assumes a 
choice of input  coordinates u. By doing this, it obscures the 
problem because this preliminary definition is easily seen 
(see Section 11) to be equivalent to  the following. 

Definition 3.1 (Local Controlled  Invariance): Let 
Z ( M ,  B,  f ) be  a  control system. An involutive distribution 
D on M is called local controlled invariant if locally 
around each point x , E  M there exist fiber respecting co- 
ordinates (x, u )  for B such that  for every  fixed u 

In fact, this definition can be  made  totally  coordinate- 
free.  For this we need the  concept of an (integrable) 
connection, which will be treated  in  the next section. The 
final  formulation is given in Theorem 4.19. There is an 
obvious extension of the  notion of local controlled  invari- 
ance  in this framework to (global) controlled  invariance. 
The basic idea is that local solutions given  by Definition 
3.1 coincide on every intersection of their  domains. We  will 
formalize this in the next definition,  although we will 
mainly deal with the local controlled  invariance  in t h s  
paper. 

Definition 3.2 (Global Controlled Invariance): Let D be 
a locally controlled  invariant  distribution  for  a  control 
system Z ( M ,  B,  f ). D is called (globally) controlled in- 
variant if  we can find  a covering family of open neighbor- 
hoods { O j } j E  [ for M ,  consisting of triviahng charts  for  the 
bundle B,  with the following properties. Let pi: m-'(O,)  -j 

0,xF be the trivializing diffeomorphism. Suppose Ojn Oj # 
0 ; then the following diagram commutes: 

[f(-, u),  Dl c D* 

/ J \ 
(O,nO,)xF - (0,n 0,)xF 

where PZj has  the  form 

P ~ ~ ( x , u ) = ( x , T ~ ~ ( x , u ) ) ,  (XEojnoj, LIEF). 

Now we demand  the following. 
1) D is locally controlled  invariant  on each Oi ( i €   I )  

with the associated fiber respecting coordinates (x2, ul) .  

2) rj,(x, u )  does not  depend on x,  for every i ,  j E  I .  
In  applications  the concept of controlled  invariance is 

often used to  factor  out  a  part of the  state  space (cf. [4], 
[5j). Even Definition 3.2 only ensures that locally the 
controlled  invariant  distribution can be  factored  out,  and 
in fact  there may be obstructions  to do t h s  globally (cf. 

[SI). Therefore, we could also go the  other way around  and 
see what we mean by globally factoring  out.  Actually, we 
will  give a  definition of a quotient system which implies 
controlled  invariance. 

Definition 3.3 (Quotient System): Let Z ( M ,  B, f )  be  a 
control system. A  control system z(A?, 8, f) is called a 
quotient system of Z if there exist surjective submersions @ 
and $I such that  the  diagram 

f 
B - TM 

commutes. 

[ 101. 
Remark: Compare this to the  definition of minimality  in 

In  order  to see that this definition implies controlled 
invariance, we have to make  the following observations (cf. 
also  [lo]). Because @ and $I are surjective submersions  they 
induce  the involutive distributions 

E: = {X€ TBI@,X= 0} resp. 

D :  = { X €  TMI$I,X= 0 )  

Lemma 3.4: Let 2 be a quotient system of Z as in Defini- 
tion 3.3. Let D be defined as above; then D is controlled 
invariant with  respect to Z. 

Proof: Diagram 3.1 has two commuting subdiagrams 
which  respectively give 

1) n,E = D, and 
2) f*E C D  

(because it is readily seen that $I* induces  the  distribution 
D in Section I). 

Now the  distribution E in fact defines fiber  respecting 
coordinates  above  the leaves of the  foliation generated by 
D in  the following way. Take  a leaf F of the  foliation. 
Restrict  the  bundle B to this leaf. Denote this new fiber 
bundle above F by B,. Because m,E = D and E is involu- 
tive, E defines sections in B,  which project onto F. (The 
sections  are  the maximal integral  manifolds of E.) We can 
define  coordinates u for  the  fibers of B,, such that u- ' (c) ,  
with c constant,  are  the sections of E in B,. 

Assume for  a moment that  restricted  to  the  fibers of 
B is bijective. Then  one  can see that, given an  arbitrary 
fiber respecting coordinatization of B ,  the process above 
generates  in  a  unique way fiber respecting coordinates  for 
B. When @* restricted to the  fibers has a  nontrivial  null 
space, then for this part of the  fiber we may arbitrarily 
complete  the  coordinates. 

Finally, take coordinates X,? .  . -,X, 
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D = {  -,...,-} a a 
3x1 ax, 

. withkGn.  

Then construct fiber  respecting coordinates (x1 u )  as above. 
In these coordinates 

, and f * E C D implies 

j t h  component ( x ( ~ ,  u ) )  = 0, a.y, 
w i t h i = l , . - - , k   j = k + l ; . . , n  

(where i = f(x, u )  is  the representation of 2 in (x, u)). 
This is  equivalent  with 

[ f ( - ,  u ) ,  D] C D .  

Remark I :  This proof  also  exactly  shows  which freedom 
one has in  choosing coordinates (or in constructing feed- 
back) such that in  these coordinates D is invariant. In fact, 
loosely  speaking, outside of the distribution D the coordi- 
nates for the fibers are arbitrary. Above  the distribution D 
the coordinates for the fibers are uniquely determined 
except  for the part which  send to zero. This last part 
consists exactly of the inputs which are factored out  in 
Diagram 3.1 and which do not  appear anymore in the 
quotient system. 

Remark 2: An interesting special  case of controlled in- 
variance  is  when f*(s$ '( D)) C D. The proof above shows 
that in  this situation D is invariant for  all  fiber  respecting 
coordinatizations (x, u )  of B. Also, it is  easily  seen that the 
system factored out by D is autonomous (the  input space 
consists of only one point). 

Finally,  we can also relate controlled invariance in a 
system Z ( M ,  B,  f ) with controlled invariance in the ex- 
tended system Z e ( M ,  B, f )  denoted by (Ae, &) (see Def- 
inition 2.3). In local coordinates it is  easily  proven  (see also 
[ 101). 

Lemma 3.5: 

f *E C D ,  with m,E = D, is equivalent  to 

[Ae ,  E ]  C E +A$.  

As is known  from  recent  work  ([4]. [6]. [9]; see the 
Introduction) the last expression [ Ae$ E ]  C E + Zo is equiv- 
alent to the local controlled invariance of E with  respect to 
the  affine system (Ae, A i )  if E n A z  has fixed dimension. 
Therefore, combining conditions 1) and 2) (in the proof of 
Lemma 3.4) and Lemma 3.5 gives the following. 

Proposition 3.6: An involutive  distribution D is locally 
controlled  invariant with respect  to Z ( M .  B, f ) iff there 
exists an involutive  distribution E ,  with IT,E = D1  such that 
E is local&  controlled  invariant with respect to E'( M ,  B, f ). 

Remark 3: It  is emphasized that the last proposition 
does not  reduce the problem to the study of controlled 
invariance for affine control systems  since the distribution 
E ,  satisfying a,E = D, is unknown. 

Remark 4: We  have defined controlled invariance by 
requiring that  after applying feedback, the modified dy- 
namics leave  the foliation invariant for all input functions. 
Of course, t h s  demand might be too strong  and we could 
be content if the foliation is invariant for only apart  of the 
inputs. We  will  call this degenerate  controlled  invariance. 
Definitions 3.1-3.3 can be readily adapted to cover this 
situation. For instance, we require that the needed  feed- 
back a is no longer an isomorphism, and in Definition 3.3 
we allow to be a partial  map (cf. 1151; see also [14]). 
However, finding necessary and sufficient conditions for 
degenerate controlled invariance seems to  be harder than 
for the (full) controlled invariant case, and we  will  leave it 
for the  moment. (Note that in the linear case degenerate 
controlled invariance implies  full controlled invariance.) 

IV. CONTROLLED INVARIANCE AND CONNECTIONS 

In th s  section we introduce the concept of a connection 
on a fiber bundle and we  will relate t h s  to the controlled 
invariance as introduced in Section 111. For a more detailed 
treatment of a connection the reader is referred to the 
literature on differential geometry.  (See,  e.g.,  [3].) 

Definition 4.1: Let IT: B -, M be a smooth (fiber) bun- 
dle. A tangent vector v € B ,  p € B1 is said to  be vertical if 
I T * ~ ( G )  = 0. V( p )  denotes the set of all  vertical tangent 
vectors  in p .  A distribution H on B is said to be horizontal 
if T,B=H(p)BV(p) for a l lpEB.  

Remark:  We see that H C V( B )  is horizontal implies 
that for  all p E M ,  H( p )  is a linear subspace of Tp B with 
the following properties: 

dim H( p)  = dim M 

H( P )  n v  PI  = 0.  

m* maps H( p )  isomorphcally onto T,(,,M. 
Now the  next definition will be clear. 
Definition 4.2: A curve u: R + B is  horizontal  with  re- 

spect to a horizontal distribution H on B if u ' ( t )  € H(u(t)) 
for all t E R, i.e., u is an integral curve of a vector  field 
which  belongs to the horizontal distribution H on B. 

We are now able to define a connection as follows. 
Definition 4.3: Let IT: B .+ M be a smooth bundle, and 

let H be a horizontal distribution on B.  H determines a 
nonlinear connection for T: B M which is defined by the 
follov+ing  lifting procedure. 

For every  curve u l :  R -, M and each point p E IT-'(U~(O)) 
there exist E > 0 and a horizontal curve u: (- E ,  E )  -+ B such 
that for t E  ( -  E, E )  

r ( u ( t ) )  = u , ( t ) ,  u(0) = p .  

Remarks: 
1) When  every curve in M can be  globally  lifted to  an 

integral curve of H ,  we have what is  called a horizontally 
complete nonlinear connection. In general, a nonlinear 
connection is  not  horizontally  complete; a curve in M can 
only be locally  lifted to  an integral curve of H .  
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2) In the  literature  there exist a  couple of different 
definitions of a  connection  (introduced by different people). 
The above definition,  in  fact,  defines  the  Ehresmann  con- 
nection. 

The next proposition gives a uniqueness property of the 
lift u of u1 in  Definition 4.3. 

Proposition 4.4: Let H be a horizontal distribution on B 
which  defines a nonlinear  connection for T: B + M ,  then  the 
lift u: (-- L, L) + B of a curve 0 , :  R + M defined by Defini- 
tion 4.3 is  unique. 

And so we have, as a direct consequence, the following. 
Proposition 4.5: Let H be a horizontal distribution on B 

which  defines a horizontally nonlinear  connection for T: 

B --* M. Let u, be a curve  between  the points m ,  and m2 on 
M, then  the  connection determines a diffeomorphism, depend- 
ing on ul between the fibers s - ’ ( m , )  and n--’(m2). 

Next we  will define  an  important class of nonlinear 
connections. 

Definition 4.6: Let T: B + M be a vector bundle, i.e., for 
all m E M ,  ~ - ‘ ( m )  is a real vector space. A horizontally 
complete  connection defined by  a  horizontal  distribution is 
called an affine connection if the fiber diffeomorphisms 
defined by the  connection  are  affine isomorphisms between 
the vector space fibers. 

Another useful property is  given  by the following. 
Definition 4.7: Let T: B --f M be  a  smooth  bundle.  Let H 

be a horizontal  distribution on B which defines  a  nonlinear 
connection.  The  connection is integrable if [ H ,   H ]  C H ,  i.e., 
H is integrable  as  a vector field  system. 

The  integrability of a  connection of a  horizontal  distri- 
bution H implies that  through each point p E B there 
passes a  unique maximal connected integral  submanifold 
M’ of H (according  to  Frobenius’ theorem) and this sub- 
manifold M’ is transverse to  the  fibers of T, i.e., for all 
q E M ’ ,  we have T,B=T,M’@V(q). 

For  later use  we  will investigate the  integrability of an 
affine  connection  in  detail. 

According to  Definition 4.6 we can choose an  (affine) 
coordinate system for B: (x, u )  = (xl; . - ,xnr D,; . - , v m )  
where (x ,, . . ,x,) is a coordinatization of M such that  the 
linear  subspace H(x, v )  C q x , . , B  (Definition 4.1) has  a 
basis X , ,  . - . , X ,  of the following form (see [3]): 

a a 
ax av X ~ ( X , V ) = - + [ ~ ~ ( ~ ) + K ~ ( X ) V ] -  i = l ; . . , n  

where 

h ,  ( x )  is an m vector 
K j (  x )  is  a m X m-matrix ”-( a 2 ,  I(. - )‘ denotes  transposed). av  a v ,  - - ... - 

Actually,  from (4.1) it follows that  an  affine  connection is 
horizontally  complete (cf. [3, p. 1121). 

Now [ H,  H ]  C H implies 

= 0 for all ( x ,  v ) .  

Therefore 

(4.3) 

and 

a K A x )  a K i ( x )  + K , ( x ) K ; ( x ) - K ; ( x ) K , ( x )  = o  
3x1 ax, 

f o r i , j = l ; . - , n .  

(4.4) 

We can also work out  the  integrability  condition (4.2) in 
a  dual  fashion,  dual  in  the sense that we translate (4.2) to 
the  cotangent  space of B. The  integrability of H then 
guarantees  that two 2-forms, called the torsion  tensor and 
the curvature tensor, vanish (see,  e.g., [3]). This requirement 
is exactly equivalent to (4.3) and (4.4), and  thus we  will call 
this the torsion equation, resp. the curvature equation. Con- 
versely, an  integrable  affine  connection will be defined by 
the vector fields given  by (4.1) where h , ( x )  and K J x )  
satisfy the  torsion  and  curvature  equation. 

Let D be an involutive distribution of fixed dimension k 
on M. Let H be a  horizontal  distribution  on B which 
induces  an  integrable  affine  connection  on T: B - M .  Then 
this connection defines a  unique lifting procedure  for  the 
distribution D (see Definition 4.3). In fact, choose a  coordi- 
nate system ( x , ,  . . . ,x,z) for M as in the  Frobenius’ theo- 
rem;  then D is spanned  by  the  vector  fields 
a + , , .  . .,a/ax,. 

Let H(x, v )  C q , , , , B  be spanned  by  [as  in (4.1)] 

Then  the  lifting of the  distribution D gives a new involutive 
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distribution D, which is spanned by  So from [ Ae. Dl] C D, + A: we deduce  for all i = 1: * ., k 

a a 
Xj=-+[h i (x)+K,(x)v] -   i= l ; . - ,k .  a a a  

3x1 a0  ( A ( x ) +  B(x)u)G + U- a U  7 - axi +(h,(x)+  K;(x)u)- 

ah’(x) + Kj(x)hj(x)- K , ( x ) h j ( x )  = 0. ax; ax, Computing  the Lie  bracket of (4.9) leads to 

axi [ ~ + ~ ~ + B ( x ) h , ( x ) + B ( x ) K , ( - Y ) ~  ax, 

f o r i , j = l ; . . , k .  (4.6) 

Now assume that we have  given an affine control system 
( A ,  A,,) as in Definition 2.2’.  We  will denote  the extended 
system (see Definition 2.3) by Ae with “input space” A:. 

After these preparations we can  state the next  theorem, 
which  gives a nice geometric interpretation of the results of 
[4], [6 ] ,  [9] and  can  be useful in  understanding  the  structure 
of affine  control systems. 

Theorem 4.8: D is  a  locally  controlled invariant distri- 
bution for an affine  system ( A ,  Ao)  iff there exists an integra- 
ble anine connection for IT: B + M such that [ Ae, DI] C Dl + 

Proof: (e ) Suppose there exists an integrable affine 
connection for T: B -+ M with [Ae, D,] C Dl + A:. The 
horizontal system on B which defines the affine connection 
is, according to (4.1),  given by 

A:. 

a a 
ax; a0 

X , ( x , v ) = - + [ [ h , ( x ) + K , ( x ) v ] -  i = l ; - . , n  

(4.1) 

where (x, u) is an affine coordinate system for B.  By the 
integrability it follows that h,  and Ki satisfy the  curvature 
and torsion equation (4.6). Let the control system on M be 
given  by 

rn 

i ( t )  = A ( x ( t ) ) +  2 vi(t)Bi(x(t)) 
i = I  

= : A ( x ( t ) ) + B ( x ( t ) ) c ( t )  (4.7) 

where B(x), an  (n,m)-matrix with  columns B , ( x )  and 
v(t) = (v,(  t), . .,urn( t))‘. So the extended  system has  the 
form 

z=I,..- a a .  kJ 
foral l i=l ; . . ,k .  

Therefore 

j t h  component of 

+B(x)h , (x)+  B ( x ) K , ( x ) u  = O  1 
fo ra l l (x .u )   j=k+ l ; . - , n   i= l ; . . , k .  

(4.10) 

Thus we have 

j t h  component of (y + B(x)hi(x) = 0 i 

j t h  component of ( a + B( x ) K ,  (x)) = 0 ax; 
j = k + l ; . . , n   i = l ; . - , k  

(4.12) 

where hi(x) and K , ( x )  satisfy (4.3) and (4.4). 
Now (4.1 l), together with the curvature  equation (4.4), is 

an old friend (cf.  Nijmeijer [9], Isidori et al. [ 6 ] ) .  We  deduce 
from [6] and [9] that there exists a nonsingular (m, m)- 
matrix M(x) such that 

j t h  component of (- ax, a [ B ( x ) . M ( x ) ] )  = 0 

x ( t ) = A ( x ( t ) ) + B ( x ( t ) ) c ( t )  
zj( t )  = u( 1 ) .  

(4.8) 

From (4.5) we know that D, is  spanned by Let 

j = k + l ; . - , n   i = l ; . - , k .  
(4.13) 

a a 
ax, av Furthermore, we see 

$(x): = B ( x ) M ( x ) .  
X , ( x , u ) = - + [ C h , ( x ) + K , ( x ) o ] -  i= l ; . . ,k .  

(4.14) 
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j t h  component of ( - [ B ( x ) h , ( x ) ] )  a Furthermore,  it follows from the  fact  that D is controlled 

ax, invariant  that 

-- a A ( x )  - B ( x ) h j ( x ) ( m o d D )  i = l , . . - , k  
= j t h  component of B ( x ) -  axi 

where the vectors h , ( x )  satisfy 

and  by  the torsion equation (4.3), the  last expression equals i ,   j = l ; - . , k .  
In the  same way  as in [6] we can  define vectors a 

j t h  component of ( [ B( x ) h , (   x ) ] )   h , + , ( x ) ;   - , h , ( x )  such  that 

i , s = l , - - - , k   j = k + l , . - - , n .  

It follows, combining (4.1  1) and  Hirschorn [4]-in fact, 
Frobenius’ theorem-that there exists an m vector v ( x )  
such  that 

j t h  component of - [ A ( x ) +  B ( x ) v ( x ) ]  = O  a ( axi 1 
j = k + l ; . . , n  i=i ; . .  7 k. 

(4.15) 

Thus, if  we use a feedback v( t )  = M ( x ) v ( t )  + ; ( x )  for the 
system (4.7),  we  get 

k ( t )  = A ( x ) +   B ( X ) ~ ( X ) +   @ ( x ) v ( t )  (4.16) 

and so by using  (4.13) and (4.15) we  see that  the  distri- 
bution D is controlled  invariant for the system  (4.16). 

( - ) Let D be  a  controlled  invariant  distribution for the 
system given  by  (4.7),  where D is spanned by the  vector 
fields a / a x , , .  . . , a / a x , .  For  the  construction of an inte- 
grable  affine  connection we need matrices h , ( x )  and K , ( x )  
which satisfy the  torsion  and the curvature  equation (4.3) 
and (4.4). From Isidori et al. [6]  and Nijmeijer [9] we know 
that there exist (m, m)-matrices K , ( x )  such that 

ah,(.) a h , W  
ax,  ax, 

--___- K i ( X ) h j ( X ) +   K j ( X ) h i ( X )  = o  

i , j = l , . . . , n .  (4.3) 

Thus,  the  matrices h , ( x )  and K,(x)  define  an  integrable 
affine connection. 0 

Remark: Under  certain  conditions,  it  is possible to  drop 
the adjective “locally”  in this theorem. For example, see 
[6]; if the  state  space M is simply connected,  the feedback 
is globally well-defined. 

Next, we want to  investigate  the  situation  for  a  general 
control system Z ( M ,  B, f )  as defined in Definition 2.1. 

First, we  will formulate  the  integrability of a  nonlinear 
connection  in  the same way as we have done  for  an  affine 
connection. Following the  notation as used after  Definition 
4.7  we have that  the  nonlinear  connection  is  spanned by 
vector fields X,, - . -,X, of the following form: 

a a 
ax, av  X i ( ~ , v ) = - + h i ( x , v ) -  i = l , . * * , n  (4.17) 

where h i ( x ,  v )  is an rn-vector 

From  the  integrability we derive that 
-- a B ( x )  - B ( x ) K , ( x ) ( m o d D )  i = l ; . . , k  

axi 

and these matrices K , ( x )  satisfy 1 a x i  

i, j = l , - - . , k .  

According  to 161 (see also Remark 1 after Lemma 3.4)  we 

ax, 

can also define matrices Kk+ , ( x ) , .  . . , K , ( x )  such that Remark: a h , / a v ( x ,  v )  is an  (m, m)-matrix  consisting of 
the columns ahi /au j (x ,  0) .  Therefore 

aK’(x)  a K i ( x )  +Kj (X)Kj (X) -K, (X)K, (X)=o ahj 
axi  ax, - ( x , v ) - - ( x , v ) + - ( X , ~ ) ~ h j ( x , O )  ah.  ahj 

axi  axj a v  

a0 

i , j = l ; + - , n ,  (4.4) 
ahi 

i.e., the  curvature  equation (4.4)! 
-- ( x , v ) . ~ , ( x , v ) = O .  (4.18) 
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Now the following theorem  will be the direct generahation a a  
of Theorem 4.8. h , ( x ,  e ) :  = ( a x , ( " .  5)) I i = l , - - . , n .  

Theorem 4.9: D is a controlled inuariant distribution for a 
control system Z ( M ,  B, f )  i f f  there exists an integrable 
nonlinear connection for T: B + M such that [ Ae, D,] C D, + Now  from  (4.24) we  see that 

d = a - ' ( s . c )  

(4.24) 

A;. 
Proof: ( e) Suppose that there exists an integrable - ( x , t . ) = h , ( x , a ( x . i i ) )  (4.22) 

a a  
nonlinear  connection for T: B --.) M with [Ae, Dl] C D, + A;. ax, 
The horizontal system on B which defines the connection and  therefore 
is,  according to (4.17),  given  by 

a a ah, 
a x ,  

ah. ah 
X j ( x , u ) = - + h j ( x , u ) G   i = l ; . . , n  - ( X , c ) - - ( X , D ) + I ( X , U ) . h , ( x , o )  ax, ax/ au 

ah1 -_  ( x , u ) . h , ( x , u ) = O   i : j = l , - - . , n ,  (4.18) 
ac where the h j ( x ,  u )  satisfy (4.18). 

Let the control system on M be given  by 
i.e., the integrability condition for a  nonlinear connection 

x ( t )  = f ( x ( t ) ,  .(t)). (4.19) defined  by 

So the extended  system has  the form a a 
X , ( x , o ) = - + h , ( x , u ) -   i = l ; . - , n .  (4.17) 

4 t )   = f ( x ( t > ,  4 t > )  
d(  t )  = u( t )  0 

a x j  a u  
(4.20) 

As in (4.5), the dstribution D, is spanned by To conclude this section we want  to give the  conditions 
under which a  distribution is locally controlled invariant 

a a for a system Z( M ,  B,  f ). First, we  will  solve this problem 
axi a v  in a local fashion (coordinate  dependent) and afterwards X i ( x , u ) = - + h , ( x , u ) -   i = l , - - . , k .  

we  give the main  theorem,  Theorem  4.12. Let, as before, 
So from [Ae, Dl] C D, + Po we deduce that the control system be given (locally) by i = f ( x l  u )  and let 

jthcomponentof = O  

i = l , . * * y k   j = k + l , * * ' , n  (4-21) Suppose that  there exist rn-vectors m , ( x , u )   ( i = l ; . - , k )  

where the hi (x ,  u )  satisfy (4.18). 
such that 

Now  consider the set of partial differential equations th component of - (x, ,. ) + - ( x ,  .) . m, ( x ~ = 0 

- ( x , 5 - ) = h i ( x , a ( x , 5 ) )   i = l ; . . , n  i = l ; . . , k   s = k + l ; , . , n .  (4.25) 

( aa; 

( a , i  ax, a e  

a f  
a u  1 1 :zj . (4.22) 

(~(030)  = 1 m . m  
Then it follows that 

th  component Of a -(x, a f  e ) +  - ( x ,  a f  t ' ) . m , ( x , u )  
From Frobenius'  theorem (see [l  11) we know that there 

exists a unique solution a(x,  6) of (4.22)  iff the integrabil- 
ity  condition (4.1 8) is satisfied. Hence, if  we apply a 
feedback u ( r )  = a(x ,  i i ( t ) )  to the system  (4.19) we  get =sthcomponentof (A( ax ,  y ( x ~ c ) + - ( x . o ) . m J ( x , e )  ax, a U  a f  

X(t) = f ( x ,   a ( x ,  W ) )  (4.23) i ,  j = l , . .  . .k s = k + l , - - . , n .  

and by  using  (4.21) we  see that  the  distribution D is Hence. 
controlled invariant  for (4.23). 

system given  by  (4.19) where D is spanned  by 
a/ax, ,- . . ,a/ax, .  For  the  construction of an integrable 
nonlinear  connection we need matrices h,( x ,  u )  which a u  ax, 
satisfy (4.18).  By the fact that D is controlled invariant we 

aa/ad(x,  a)  nonsingular, i.e., the map 6-1): = a(x,  5) is ax, at' 
invertible. We  will  denote-abuse of notation!-the in- 
verse of this map by & - ' ( x ,  0). 

( 3 ) Let D be a controlled invariant  distribution for the ( x , v ) + - ( x , v ) m , ( x , u )  a 'f alc, a 

+ - ( x ,  a f  c ) . - - l ( x , u )  
a nl 

know that there exists an (m, m)-matrix a(x, 6) with = sth component of (X, , . )+-(X,c)mj(x ,u)  a ' f  

Define 
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Therefore 

s th  component of ( a”f axjav  

= s th  component  of a 2 f  ( x ,   v > - m j ( x ,   v > +   - ( x ,  a f  6). av 

Now 

sthcomponentof 

a * f S  

av2 
= - m : ( x ,   z ; ) - ( x ,   v ) m j ( x ,   v )  

amj 
-- a f s  ( x ,   v ) .   - ( x ,   v ) - m , ( x ,   v ) .  

a0 a0 
(4.27) 

Substituting (4.27), and  a similar expression for  the  left- 
hand side of (4.26), in (4.26) leads to 

- ( ~ , v ) - ~ ( x , u ) - m ~ ( x , v ) - ( x , v ) m ~ ( x , v )  a f  am. a 2 f s  

- - ( x , , ) - - ( x , , ) - m l ( x , v ) - ( x , v ) r n , ( x , v )  - a f  amj a 2fs 

a0 ax, av2 

- - ( x , v ) - - - ( x , v ) -m , (x , v )  af amj 
av a0 

a6 axi   av2  
- - ( x , v ) - ( x , v ) - m j ( x , v )  a f  ami 

a u  av 
= O  i ,   j = l ; . - , k   s = k + l ; - . , n .  

so 

am, am -- 
ax, a v  ( x , v ) + - - I ( x , v ) - m , ( x , v )  

= O  i ,  j = 1  ; - . , k  s = k + l ; . . , n .  
(4.28) 

Suppose  that  the matrix 

has  full  rank; (4.29) 
s = k + l , , . - , n  

then (4.28) leads to 

am, 
- ( x , v ) - - ( x , v ) - t ~ ( x , v ) m j ( x , v )  

amj am. 
a x j  a.Yi a0 

am -- 
a0 

( x , v ) m , ( x , v ) = O   i , j = I ; - . , k ,  (4.30) 

i ,   j = l ; - . , k   s = k + l ; . . , n .  (4.26) 

We need the following simple but crucial lemma. 
Lemma 4.10: The set of partial differential equations 

/ e ( x , b ) = m , ( x , a ( x , B ) )   i = l , . - - , k  (4.31) 

has  a solution. 
Remark: This set of partial  differential  equations (4.31) 

is nearly the same as in (4.22).  We cannot immediately 
apply Frobenius’ theorem, while not  all  partial derivatives 
of a are specified (compare  to [9]). 

Proof: There exist m k + , ( x ,  v )%-  . .,m,(x, u )  such that 

a m j  
at, -- ( x ,   v ) - m , ( x ,  v )  = 0 i ,   j = 1 ;   . , n .  (4.18) 

(See [9]; see also (4.4); this follows from  the  fact  that  the 
distribution D = TM is controlled  invariant). 

Finally, apply  Frobenius’ theorem. 0 
Corollary 4.11: If there exist m , ( x ,   v )   ( i  = 1; . . , k )  which 

satisfy (4.25) and  condition (4.29) is fulfilled, then the distri- 
bution D is locally  controlled invariant for the system A( t )  1 

f (x ( t ) ,   (u (x( t ) ,   C( t ) ) ) ,  where a ( x ,  5 )  is defined by Lemma 
4.10. 

Finally, we  will give a coordinate-free way the analog of 
[6] and [9] for  a  nonlinear  control system Z ( M ,  B ,  f ). 
Recall the  definition of D for  a given distribution D (see 
notation  at  the end of Section I). 

Theorem 4.12: Let Z ( M ,  B, f )  be a nonlinear  control 
system and  let D be an involutive distribution of fixed 
dimension on M. I f f  *( 4%) nd has fixed dimension, then we 
have the following equivalence. 

D is locally  controlled invariant if f  

f * (  G ’ ( D ) )  c d + f 4 4 5 ) .  (4.32) 

Proof: ( 3 ) Direct ( ) work out in local coordinates, 
and  suppose f*(A%) nri = 0. Then  the result is given  by 
Corollary 4.12. In a similar way as in Isidori et al. [6] and 
Nijmeijer [9], we derive the  same result in the case that 
f *( 4%) nd has fixed dimension. 

Remark: The problem of global controlled  invariance is 
directly related  to  the so-called holonomy group of the 
integrable  connection. However, we  will leave it  for  the 

i.e., a partial integrability  condition  as  in (4.18)! moment. 
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V. CONCLUSION 

The main result of this paper  is Theorem 4.12 which 
gives necessary and sufficient conditions  for local con- 
trolled invariance  in general nonlinear systems. With the 
aid of this theorem,  the  disturbance decoupling problem 
(see [ 13]), for  instance,  can  be readily solved locally, analo- 
gous  to [4],  [5].  Very surprising results are  Theorems 4.8 
and 4.9 where the concept of controlled invariance is 
directly related to the well-known differential geometric 
notion of an integrable  connection. 

It would be interesting  to look for similar results in the 
case of degenerate controlled invariance,  as sketched in 
Remark 4 of Section 111. As already  stated  in some of the 
remarks,  after solving the local controlled  invariance  there 
remain global problems. Essentially we can divide them 
into two categories, namely 

1) we may only locally be able to construct  a  feedback; 
and 

2) the  controlled  invariant  distribution may not be fac- 
tored  out globally (in  a  smooth fashion). 
Both problems seem to involve the whole machinery of 
algebraic topology. 

Finally,  in  this  paper we have treated only the regular 
case: all our  distributions have constant  dimension.  It 
seems interesting  and useful to extend the  results to the 
nonregular  (but,  for  instance,  analytic) case. 
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