University of Groningen

The generation of metabolic energy in bacteria
Brink, Bart ten

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1984

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
SUMMARY

The electrochemical proton-gradient ($\Delta \mu_{H^+}$) plays a central role in bacterial metabolism. A $\Delta \mu_{H^+}$ can be generated by the translocation of protons from the cytoplasm to the external medium, as a result of electron transport in membrane-bound electron transfer chains and/or ATP hydrolysis by the membrane-bound ATPase. Since protons are positively charged, proton extrusion results in the generation of both a pH-gradient ($\Delta \mu_{pH}$) and a membrane potential ($\Delta \psi$): $\Delta \mu_{H^+} = \Delta \psi - 2 \Delta \mu_{pH}$. The electrochemical proton gradient is a driving force and a regulatory parameter in various cellular processes, such as motility, ATP synthesis and the transport of solutes across the cytoplasmic membrane.

Anaerobic bacteria which do not possess electron-transfer chains seem to be able of $\Delta \mu_{H^+}$ generation by ATP hydrolysis only. This could be a problem, since in these bacteria usually only very little ATP is produced during breakdown of the energy source. This problem could be partly solved, if the excretion of the metabolic endproducts would supply the cell with additional energy. The transport of various solutes across the membrane is mediated by specific membrane bound proteins, the carriers. The $\Delta \mu_{H^+}$ is used in many transport systems to transport solutes across the membrane, since concomitant with this transport also proton- and/or charge translocation occurs. The energy present in $\Delta \mu_{H^+}$ is then converted in energy of solute gradients. On the other hand, translocation of solutes in the opposite direction results of course in the generation of a $\Delta \mu_{H^+}$, and this is what led to the postulation of the "energy-recycling" model.

The basic assumption of the "energy-recycling" model is that during carrier-mediated excretion of metabolic endproducts also protons and/or positive charges are excreted. Endproduct excretion then results in $\Delta \mu_{H^+}$ generation and therefore can contribute to the metabolic energy requirement of the bacteria. In this thesis the excretion of the metabolic endproduct lactate is studied in experiments with membrane vesicles of Escherichia coli and intact cells of Streptococcus cremoris. The artificial creation of an outwet gradient in E. coli vesicles results in a membrane potential which is inhibited by uncoupling agents. S. cremoris lead to a proton gradient in growing cells of S. cremoris. Of course it is very important that are translocated across the membrane; this problem could be solved, if the excretion of the metabolic endproducts would supply the cell with additional energy. The transport of various solutes across the membrane is mediated by specific membrane bound proteins, the carriers. The $\Delta \mu_{H^+}$ is used in many transport systems to transport solutes across the membrane, since concomitant with this transport also proton- and/or charge translocation occurs. The energy present in $\Delta \mu_{H^+}$ is then converted in energy of solute gradients. On the other hand, translocation of solutes in the opposite direction results of course in the generation of a $\Delta \mu_{H^+}$, and this is what led to the postulation of the "energy-recycling" model.

The basic assumption of the "energy-recycling" model is that during carrier-mediated excretion of metabolic endproducts also protons and/or postive charges are excreted. Endproduct excretion then results in $\Delta \mu_{H^+}$ generation and therefore can contribute to the metabolic energy requirement of the bacteria. In this thesis the excretion of the metabolic endproduct lactate is studied in experiments with membrane vesicles of Escherichia coli and intact cells of Streptococcus cremoris. The artificial
H plays a central role generated by the sm to the external membrane-bound charged, proton ex- a pH-gradient (\(\Delta \text{pH} \)). The electro- and a regulatory such as motility, ATP loss the cytoplasmic tran- electrontransfer n by ATP hydrolysis se bacteria usually kdown of the energy, if the excretion the cell with addi- tes across the mem- proteins, the car- systems to transport mitant with this location occurs. The in energy of solute a of solutes in the one generation of a nation of the "energy- ling" model is that ic endproducts also. Endproduct excre- therefore can con- of the bacteria. In endproduct lactate cyto- of Escherichia cri. The artificial creation of an outwardly directed lactate concentration gradi- ent in E. coli vesicles results at pH 6.6 in the generation of a membrane potential \(\Delta \psi \) (inside negative) and can drive the up- take of the amino acid proline. Both processes are completely inhibited by uncoupler (a \(\text{H}^+ \)-ionophore), indicating that lac- tate efflux results in proton extrusion. Similar experiments in S. cremoris lead to the same conclusion: lactate excre- results in \(\Delta \text{pH} \) generation. In addition it is shown that in growing cells of S. cremoris indeed always an outwardly di- rected lactate gradient is present.

Of course it is very important to know the number of protons that are translocated together with one lactate anion, since this ratio, the \(\text{H}^+/\text{lactate} \) stoichiometry (\(n \)), determines the magnitude of the metabolic energy production by lactate excre- tion. in E. coli vesicles the value of \(n \) was determined from lactate uptake experiments: \(n \) is dependent on the external pH and varies between 1 (at pH 5.5) and 2 (at pH 8.0). The \(\text{H}^+/\text{lact-}
ate stoichiometry has also been determined in growing and gly- colyzing cells of S. cremoris. Assuming that in these cells the driving force for lactate translocation is very close to zero, \(n \) can be calculated from the data on \(\Delta \psi \), \(\Delta \text{pH} \) and the lactate gradient (\(\Delta \mu_{\text{lac}} \)): \(n = (\Delta \psi - \Delta \mu_{\text{lac}})/\Delta \mu_{\text{H}^+}. \) The value of \(n \) appears to be dependent on both the external pH and the lactate concentration; decreasing the pH and/or increasing the external lactate concentration results in a lower \(n \) in the S. cremoris cells. \(\text{H}^+/\text{lactate} \) stoichiometries between 1.8 (pH 7.0, 2 mM lactate) and 0.7 (pH 5.5, 50 mM lactate) have been calculated.

In Streptococcus cremoris the metabolic energy (in ATP-equiva- lents) generated by lactate excretion can be calculated if \(n \) is known. During sugar fermentation per lactate anion also one proton is produced internally and 1 ATP is synthesized. Lactate is excreted together with \(n \) protons, the production and excre- tion of one molecule of lactate will therefore result in the excretion of \((n-1) \) protons. Since 2 protons are excreted per ATP hydrolyzed, lactate excretion will supply \((n-1)/2 \) ATP equiva- lents per lactate. The energy gain will be 50% if \(n \) equals 2, whereas for \(n=1 \) no energy is gained by lactate excretion. A higher energy generation during sugar fermentation would of course result in a higher cell yield. This was observed in
continuous cultures of S. cremoris: at pH 7.0 the cell yield was about 12% higher than at pH 5.7, which can be explained by the effect of pH on n and therefore on the contribution of the lactate excretion process to the energy generation.

In conclusion it can be said that this thesis clearly demonstrates that the carrier-mediated excretion of metabolic end-products such as lactate can result in $\Delta\mu_{\text{H}^+}$ generation and can contribute to the energy requirements of bacteria, as was postulated in the "energy-recycling" model.

De electrochemische belangrijke rol in elektronentransportkette kan opgewekt worden door cytoplasma naar het cytoplasma met de hydrolyse van ATP zien protonen positie tot de vorming van een membraanpotentieel chemische protonengra parameter in verschillende synthese en het trans-

Anaerob groeiende
tronentransportkette volledig afhankelijk bleem zou kunnen zijn weinig ATP geproduceerd. Dit proble-
als de uitscheidin opgelevert. Het trans-

geschiedt met behulp de carriers. In vu-

bruikt om een bepa-
teren; aangezien ge-
van protonen en/of
$\Delta\mu_{\text{H}^+}$ wordt dan omge-

gleed trans-

"energy-recycling"

Bij het "energy-
bij de carrier-gem-
ducten ook protonen-
den. Eindproductu-

$\Delta\mu_{\text{H}^+}$ en kan een be-
de bacterie. In de