Synthesis of 3-Aminoalkyl Substituted Carbapenems via a Phosphorane Intermediate

Vries, Johannes G. de; Sigmund, Gerhard

Published in:
Tetrahedron Letters

DOI:
10.1016/S0040-4039(00)94906-2

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1985

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Download date: 16-03-2019
SYNTHESIS OF 3-AMINOALKYL SUBSTITUTED CARBAPENEMS VIA A PHOSPHORANE INTERMEDIATE

Johannes G. de Vries *1 and Gerhard Sigmund
Sandoz Forschungsinstitut
Brunnerstrasse 59, A-1235 Vienna, Austria

Abstract: Reaction of azetidinone phosphoranes J, with aldehyde &, gave the olefins $, which were converted into carbapenem esters 5 in 4 steps. Hydrogenation of $ gave the title compounds.

In our search for carbapenems with better chemical and biological stability we wanted to synthesize carbapenems substituted in the 3-position with aliphatic side chains, preferably provided with a basic functionality. The four general syntheses known for this class of compounds have their limitations: In the two Merck procedures the variable side chain is introduced as Grignard or cuprate reagent onto an azetidinone aldehyde or thiol ester, which limits the choice of side chain substituent. The other two methods from Sanraku Ocean chemists and from us have the advantage that derivation occurs at a late stage in the synthesis on a bicyclic intermediate, but they only serve to introduce side chains with strongly electron-withdrawing groups on the α-carbon atom.

Since very few reactions can be performed on the bicyclic carbapenem or 3-oxo-carbapenam system without opening at least one of the two rings we preferred to introduce the variable side chain on an azetidinone intermediate. As it turns out, the azetidinone phosphorane La is a very suitable intermediate: not only is it chemically very stable, but also, its low basicity allows Wittig reaction with aldehydes that can have a wide range of substituents including acidic ones such as amides and alcohols. Phosphorane 1a (mp. 152–155°C) was easily prepared from the previously synthesized bromo-ketone 2c (see Scheme and Reaction conditions) in 90% yield. Optically active 1b (mp. 164–165°C) was synthesized in a more direct way by reacting ester 3b with 2.5 eq of Ph₃P=CH₂ in THF at -20°C. Reaction of 1a with PhCHO in refluxing toluene gave the expected olefin 4a (only trans, mp. 112–114°C) in 60% yield. Woodward’s elaboration via phosphorane 5a (48%) gave carbapenem 6a (61%) as a yellow solid (mp. 155–160°C). Short (20 min.) hydrogenation of 6a did not produce the expected carbapenem potassium salt, instead, we only found carbapenam 7 as a mixture of 2α,3α (22%) and 2α,3β (6%) isomers which was separated by RP 18 chromatography (H₂O-CH₃CN, 0–10%). In spite of this discouraging result, we proceeded by reacting 3a with protected aminoaldehyde 8. This reaction took place at much lower temperatures (60–80°C) than the one with benzaldehyde. Presumably, the reaction is catalyzed by intramolecular hydrogen bonding between the amide NH and the developing alkoxy anion in the transition state.
1. a. \(R_1 = R_2 = H, (+) \)
 b. \(R_1 = R_2 = H, (+) \)
 c. \(R_1 = H, R_2 = CH_3, (+) \)
 d. \(R_1 = CH_3, R_2 = H, (-) \)

2. \((+) \)

3. b. \(R_1 = R_2 = H, (+) \)
 c. \(R_1 = H, R_2 = CH_3, (+) \)
 d. \(R_1 = CH_3, R_2 = H, (-) \)

4, 5, 6. a. \(R_1 = R_2 = H, R_3 = Ph, (+) \)
 b. \(R_1 = R_2 = H, R_3 = CH_2CH_2NHCO_2PNB, (-) \)
 c. \(R_1 = H, R_2 = CH_3, R_3 = CH_2CH_2NHCO_2PNB, (opt. act.) \)
 d. \(R_1 = CH_3, R_2 = H, R_3 = CH_2CH_2NHCO_2PNB, (opt. act.) \)

7. \((+) \)

8.

9. a. \(R_1 = R_2 = H, (+) \)
 b. \(R_1 = H, R_2 = CH_3, (opt. act.) \)
 c. \(R_1 = CH_3, R_2 = H, (opt. act.) \)

10. \((+) \)

11. a. \(R_1 = H, R_2 = CH_3, (opt. act.) \)
 b. \(R_1 = CH_3, R_2 = H, (opt. act.) \)
Reaction conditions:

2 → 1a:
1. PPh₃, CH₂Cl₂
2. NaHCO₃, H₂O

3 → 1b:
Ph₃CCH₂Br-, n BuLi, THF, -78°C → 20°C

1 → 4:
RCHO, benzene or toluene, reflux

4 → 5:
i. PNBO₂CCH(OH)₂, benzene, azeotropic reflux
ii. SOCl₂, Et₃N, THF, -20°C
iii. Ph₃P, THF, RT

5 → 6:
Toluene, reflux

6 → 7, 9, 11:
H₂, Pd/C (10%), EtOAc, phosphate buffer pH 7

7a → 10:
i. 2.5 eq LDA, 5 eq HMPA, THF, -78°C
ii. CH₃I, -78°C

The resulting olefin 4b (only trans, mp. 118-121°C, 93%) was converted to the phosphorane 5b (43%) which was cyclized to carbapenem 6b (mp 143-146°C, 55%). Fortunately, hydrogenation of 6b gave 3-(4-aminobutyl)-carbapenem 9a in 84% yield after RP-18 chromatography and lyophilization.

Merck chemists discovered that introduction of a 4β-methyl group on 3-thio substituted carbapenems greatly improved their stability towards renal dehydropeptidase. Synthesis of 9c therefore seemed a worthwhile goal, particularly since 9a had insufficient DHP-stability. Direct methylation (2.5 eq. LDA, HMPA, CH₃I) of 1a did not give (+) 1c,d: all we could isolate (63% yield) was the unexpected elimination product 10. Better results were obtained when a 2:1 mixture of 2c and 3d was treated with 2.5 eq. of Ph₃P=CH₂ in THF at -20°C overnight. After work-up and medium pressure chromatography we obtained pure α-methyl-phosphorane 1c (mp 153-155°C, 27%), a mixture of 1c and 1d (9%), and pure 3d (27%) uncontaminated by 3c. Being more interested in the β-methyl-phosphorane 1d we tried to equilibrate 1c to 1d (LDA, -78°C; HOAc, -78°C). As this was unsuccessful we reacted recovered 3d once more with Ph₃P=CH₂. This gave phosphoranes (1c:1d = 19:81) in 47% yield. Eventually, 1d was obtained pure after rechromatography and crystallization (CH₂Cl₂-i-Pr₂O, mp. 78-82°C) in 7% overall yield. Further elaboration of 1c and 1d to 2c and 6d proceeded uneventfully; no epimerization occurred in any of these steps and deliberate attempts to epimerize 4c, 5c and 6c to their β-methyl counterparts all remained fruitless. Hydrogenation of 6c produced a mixture of 6b (15%) and 11a (21%) which was separable on RP-18 (H₂O-CH₃CN, 0-10%) allowing us to evaluate the effect of the conjugated double bond on biological activity. Hydrogenation of 6d likewise produced a mixture of 6c (44%) and 11b (16%) but we were unable to separate this. Prolonged hydrogenation produced pure 6c in 42% yield. Full experimental details and biological activity of these compounds will be published elsewhere.

ACKNOWLEDGMENT: We thank Dr. C.P. Mak for discussions and Dr. G. Schulz for interpretation of NMR spectra.

REFERENCES:
1. Present address: Sandoz Institute for Medical Research, c/o University College, Gower Street, London, WC 1E 6BT.

6. J.G. de Vries, G. Hauser, and G. Sigmund, Heterocycles, accepted for publication.

7. Selected spectral data (NMR spectra in CDCl₃ or D₂O, UV's and rotations in CH₂Cl₂ or H₂O): a: ¹H NMR: δ 4.95 (1H, dd, J=9.5, 2.2 Hz, H-4), 3.12 (1H, dd, J=2.2, 1.4 Hz, H-3), 1.42 (3H, dd, J=24.4, 6.3 Hz, CH₃). IR (KBr): v(C=O) 1789 cm⁻¹, v(C-Cl) 623 cm⁻¹. b: UV: λ max 265, 272, 294 nm, [α] D²¹ = +58.7°. c: ¹H NMR: δ 3.67 (1H, dd, J=10.5, 2.0 Hz, H-4), 1.24 (3H, d, J=6.8 Hz, CH₃). d: ¹H NMR: δ 3.86 (1H, dd, J=4.9, 2.4 Hz, H-4), 1.22 (3H, d, J=6.5 Hz, CH₃). e: IR (KBr): v(C=O) 1796 cm⁻¹, v(C-Cl) 623 cm⁻¹.

8. The presence of LiBr is essential: With phosphorane prepared from Ph₃P⁺CH₃Br⁻ and NaNH₂ (Instant ylid, Fluka) no reaction occurred.

10. For stereochemical assignment see ref 14 in ref 2b.

11. Ethylene glycol protected 3-amino-propanaldehyde was prepared from the bromide (Gabriel), N-protected with ClCO₂PNB and the aldehyde deprotected (dioxane, 0.1 N HCl, reflux).

13. From 2₉, by treatment with 3 eq of LDA in THF at -78°C, followed by CH₃Br. C.P. Mak, unpublished results. See also ref 12.

14. Stereochemical assignment from NOE experiments performed on 2₆ and 2₇: Irradiation at the 4-methyl frequency caused enhancement of the H-5 absorption in 2₆ and not in 2₇.