Asymmetric 1,3-Dipolar Cycloadditions to 5-Menthyloxy-2[5H]-furanones.
Lange, Ben de; Feringa, B.L.

Published in:
Tetrahedron Letters

DOI:
10.1016/S0040-4039(00)80747-9

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1988

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
ASYMMETRIC 1,3-DIPOLAR CYCLOADDITIONS TO 5-MENTHYLOXY-2[5H]-FURANONES.

Ben de Lange and Ben L. Feringa
Department of Organic Chemistry, University of Groningen,
Nijenborgh 16, 9747 AG Groningen, The Netherlands

Summary: Cycloadditions of various 1,3-dipolar reagents to chiral butenolides 1 and 5 proceed with diastereomeric excess of 20-100%.

Recently we reported a new class of C-4 and C-5 chiral synthons based on optically pure γ-alkoxy-butenolides. Examples are (1)-5-menthyloxy-2[5H]-furanone (1) and its enantiomer, which are readily prepared from 5-hydroxy-furanone and either l- or d-menthol. Using 1 as a chiral maleic anhydride analogue excellent diastereoselectivity was achieved in Diels Alder reactions with various dienes to yield, after methanolysis, enantiomerically pure cycloadducts (eq. 1). These results prompted us to study asymmetric 1,3-dipolar cycloadditions using 1 as a dipolarophile.

In contrast to asymmetric Diels Alder reactions the analogous cycloadditions with 1,3-dipolar reagents have only recently been successful. Intramolecular dipolar cycloadditions were applied in total syntheses of several natural products e.g. d-luciduline, 1-daunosamine and d-lividosamine. Application of chiral dipolar reagents, such as nitrones based on glucose or α-phenylethylamine or a chiral nitrileoxide, in intermolecular cycloadditions resulted in diastereoselectivities up to 90%.

More widely investigated has been the use of chiral dipolarophiles i.e. nitrileoxide additions to (S)-isopropylidene-3-butene-1,2-diol, (S)-vinylglycine and chiral acrylate esters (d.e. 4-82%) and nitrone additions to chiral vinylsulfonoxides (d.e. 90%). High stereocontrol (d.e. >95%) has been reached by double asymmetric induction using a chiral dipolarophile and a chiral nitronitroxide.

The prospect of preparing optically active multifunctional compounds by 1,3-dipolar additions to chiral γ-alkoxybutenolides in a highly stereo-controlled fashion is particularly attractive. The results of 1,3-dipolar...
cycloadditions to enantiomerically pure butenolides 1 and 5 are summarized in the table.

A regioselective addition of diazomethane to butenolides 1 and 5 is found13. The diastereoselectivity is however poor, presumably due to the relatively unhindered attack of the small 1,3-dipolar reagent. The high regioselectivity is in accordance with earlier observations with butenolides and acrylate esters and it is mainly determined by HOMO, LUMO interactions13,14. Recently a related regioselective addition of CH\textsubscript{2}N\textsubscript{2} to optically active 5-hydroxymethyl-2[5H]-furanone has been found but unfortunately the diastereoselectivity was not indicated15.

The addition of ethyldiazoacetate proceeds with complete regio and diastereofacial-selection to yield enantiomerically pure 2. However, the stereochemical control by the smaller methoxy-substituent, as is present in racemic 4, is lower in this case. It should be noted that isomerization to the 2-pyrazoline structure has taken place in adducts 8 and 9.

Excellent diastereofacial control is exerted by the menthyloxy-substituent in nitro- and nitrileoxide -additions to yield 10 and 11 respectively. The diaphenylnitrore addition to 1 resulted in both endo-(10a) and exo-(10b) products epimeric at one of the three newly created chiral centers. The trans relationship of the acetal - and carbon-4-hydrogen atoms and consequently the π-face selectivity in $6a,7a,8a,9,10a$ and 11 was established by 1H-NMR. A singlet is observed in the 1H NMR spectrum for the acetal hydrogen atom in all cases as expected from molecular model studies of the angles between the vicinal hydrogens in a trans relationship in these bicyclic products16.

This observation is in accordance with re-face Diels Alder additions to 11, and trans additions of amines to 117. The stereochemistry of the amine adducts of 1 has been proven by X-ray analysis17.

The asymmetric 1,3-dipolar cycloadditions described here show that carbon, oxygen or nitrogen functionalities are readily introduced into the α- and β-positions of the lactone moiety. In this way useful precursors for natural product synthesis are accessible. The potential applications are illustrated in the preparation of enantiomerically pure cyclopropane annelated lactone 12. One crystallization of the mixture of $6a$ and $6b$ from petroleum ether, ethylacetate gave diastereomerically pure $6a$ (40%, [\(\alpha\)]\textsubscript{D}20 +131.1°, C 1, CHCl\textsubscript{3}). Photolysis (180-300 nm) of $6a$ in dichloromethane in the presence of 2 equivalents of benzophenone yielded diastereomerically pure 12 (71%) and 5-menthylxy-4-methyl-2[5H]-furanone 13 (29%).

Under these conditions no cycloreversion takes place in contrast to results with pyrrolidones18. Preliminary studies indicate that the photolysis is strongly depending on the solvent and the amount of sensitizer used.
New products are fully characterized by 1H-, 13C-NMR, IR and HRMS.

All starting materials and products shown (except 4, 8a, 8b) are enantiomerically pure according to 1H-NMR.

Byproduct (5%), the structure of which is not established yet, was readily removed by chromatography.

Thermal conversion of the mixture of 6a and 6b in refluxing toluene resulted in the loss of nitrogen to provide enantiomerically pure 13 quantitatively.

Lactone 12 is an attractive precursor for natural α-(carboxycyclopropyl-)glycines. Investigations along these lines are in progress.
References

13. Farina and coworkers described an excellent series of studies on addition reactions to 5-alkoxy-2[5H]-furanones. Recently they were the first to report regioselective diazomethane additions to racemic 5-methoxy-2[5H]-furanones, c.f. Fariña, F.; Martin, M.V. and Sanchez, F., Heterocycles 1986, 24, 2587.

(Received in UK 23 August 1988)