Role of platelets in early pathogenesis of viridans group streptococcal endocarditis

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1988

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
? (1988). Role of platelets in early pathogenesis of viridans group streptococcal endocarditis: a study on thrombodefensins. A study in which penicillin tolerance is shown to be associated with increased virulence. Groningen: Drukkerij van Denderen.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
In the pathogenesis of infective endocarditis the adherence of circulating bacteria to a preexisting cardiac vegetation (VC) and the survival of bacteria adherent to VCs are major events. One objective of the study was to determine whether the capacity of various *Streptococcus sanguis* type II strains to adhere to VCs coincided with the ability of the strains to produce endocarditis in rabbits with left heart catheter-induced vegetations (Chapter II). A significant difference in the frequency of culture-positive VCs between two test strains was observed when low concentrations of the bacteria were injected. The incidence of endocarditis caused by one of the test strains (strain 1) was significantly lower than the incidence of culture-positive VCs at 5 min after challenge. It appeared that adherent bacteria of strain 1 to VCs disappeared quite rapidly with time. Disappearance was neither due to detachment of bacteria nor to the complement-dependent serum bactericidal system. Phagocytosis of attached bacteria, as demonstrated in in vitro studies did not occur.

Since platelets accumulate at the vegetational surface after bacterial deposition, further studies were performed whether platelets attributed to the mechanism by which adherent bacteria on the cardiac VCs disappeared early after deposition (Chapter III). In vitro studies showed that washed rabbit platelets stimulated by thrombin released platelet-associated bactericidal substances (PABS). PABS displayed a rapid bactericidal effect on strain 1, but slightly affected the viability of the other strain used in this study, strain 2.

Since it has been reported that in rabbits sub-inhibitory serum levels of streptomycin prevented the development of enterococcal endocarditis, we treated rabbits with a low dose of streptomycin, yielding sub-inhibitory serum levels of streptomycin, and injected them with ID$_{90}$ inocula of strain 1. None of these rabbits developed endocarditis. The frequency of infection due to strain 2 in streptomycin-treated rabbits was not different from control rabbits. In vitro tests revealed that the killing effect by PABS in combination with sub-inhibitory concentrations of streptomycin on the PABS-susceptible strain 1 was enhanced, but not on the PABS-resistant strain 2. Therefore, the selectivity of the interactions of PABS with the strains observed in vitro may well explain the results noted in vivo.

The antibacterial activity and factors modulating this activity of PABS prepared by thrombin-sensitized or the absence of thrombin were followed by lysozyme-resistant enzymes were the iso-electric focus of low-molecular weight immunoglobulins released these for PABS: thrombin is a proteinase activity.

Since it has been reported that in rabbits sub-inhibitory serum levels of streptomycin prevented the development of enterococcal endocarditis, we treated rabbits with a low dose of streptomycin, yielding sub-inhibitory serum levels of streptomycin, and injected them with ID$_{90}$ inocula of strain 1. None of these rabbits developed endocarditis. The frequency of infection due to strain 2 in streptomycin-treated rabbits was not different from control rabbits. In vitro tests revealed that the killing effect by PABS in combination with sub-inhibitory concentrations of streptomycin on the PABS-susceptible strain 1 was enhanced, but not on the PABS-resistant strain 2. Therefore, the selectivity of the interactions of PABS with the strains observed in vitro may well explain the results noted in vivo.

The antibacterial activity and factors modulating this activity of PABS prepared by thrombin-sensitized or the absence of thrombin were followed by lysozyme-resistant enzymes were iso-electric focus of low-molecular weight immunoglobulins released these for PABS: thrombin is a proteinase activity.

Since it has been reported that in rabbits sub-inhibitory serum levels of streptomycin prevented the development of enterococcal endocarditis, we treated rabbits with a low dose of streptomycin, yielding sub-inhibitory serum levels of streptomycin, and injected them with ID$_{90}$ inocula of strain 1. None of these rabbits developed endocarditis. The frequency of infection due to strain 2 in streptomycin-treated rabbits was not different from control rabbits. In vitro tests revealed that the killing effect by PABS in combination with sub-inhibitory concentrations of streptomycin on the PABS-susceptible strain 1 was enhanced, but not on the PABS-resistant strain 2. Therefore, the selectivity of the interactions of PABS with the strains observed in vitro may well explain the results noted in vivo.

The antibacterial activity and factors modulating this activity of PABS prepared by thrombin-sensitized or the absence of thrombin were followed by lysozyme-resistant enzymes were iso-electric focus of low-molecular weight immunoglobulins released these for PABS: thrombin is a proteinase activity.

Since it has been reported that in rabbits sub-inhibitory serum levels of streptomycin prevented the development of enterococcal endocarditis, we treated rabbits with a low dose of streptomycin, yielding sub-inhibitory serum levels of streptomycin, and injected them with ID$_{90}$ inocula of strain 1. None of these rabbits developed endocarditis. The frequency of infection due to strain 2 in streptomycin-treated rabbits was not different from control rabbits. In vitro tests revealed that the killing effect by PABS in combination with sub-inhibitory concentrations of streptomycin on the PABS-susceptible strain 1 was enhanced, but not on the PABS-resistant strain 2. Therefore, the selectivity of the interactions of PABS with the strains observed in vitro may well explain the results noted in vivo.
ence of and the various led with
significant were
culture-adherent
viability
were
viability
were killed without lysis. Viability of Gram-negative bacteria, so far tested was not affected. Antibacterial activity was best expressed at acidic condition (pH 5). Bacterial killing was independent of the presence of calcium, complement, and lysozyme. Lysosomal platelet enzymes were not present in the supernatants. SDS-PAGE analysis and iso-electric focussing revealed that the bactericidal activity was confined to low-molecular weight (ca. 2,000 - 6,000 dalton) proteins with a high cathodal migration. Short stimulation with low amounts of thrombin released these proteins from platelets. We have introduced a new term for PABS: thrombodefensins. This term indicates that the presence of thrombin is a prerequisite and that the proteins exhibit antibacterial activity.

Since it is thought that bacteria deposited onto the cardiac vegetations induce platelet aggregation, it seemed of interest to investigate whether or not bacteria-induced platelet aggregates released thrombodefensins (Chapter V). Platelet aggregation was induced by S. sanguis type II and two platelet agonists, ADP and thrombin alone or in combination. The platelet release reaction by assaying serotonin, lactate-dehydrogenase and thrombodefensins, was evaluated to gain insight into platelet storage sites of thrombodefensins. Bacteria- or ADP-induced platelet aggregates showed a minimal release of thrombodefensins. Bacteria sequestered within these aggregates remained viable. In response to sequential treatment by thrombin, the bacteria- or ADP-induced aggregates rapidly released thrombodefensins. Indomethacin a cyclooxygenase inhibitor, prevented almost completely the release of thrombodefensins from platelets stimulated with very low concentrations of thrombin. Most probably platelet α-granules are storage sites for thrombodefensins.

In platelet clots bacteria lost markedly viability. Apparently, a cooperative interaction between platelet-released thrombodefensins and acid lysosomal enzymes exists, since these enzymes lower the pH level
within clots.

The response of *S. pneumoniae* and *S. sanguis* type I and type II strains to thrombodefensins was reminiscent of the response to penicillin. Therefore, the response of these strains to penicillin in relation to the susceptibility to thrombodefensins was studied further (Chapter VI). Two penicillin-susceptible *S. pneumoniae* strains (R6 laboratory strains and a wild-type strain) showed lytic death on exposure to penicillin and thrombodefensins.

Penicillin and thrombodefensins induced both non-lytic death of cells of the penicillin-susceptible *S. sanguis* type II strain, but had a slight bactericidal effect with a lack of lysis on the genotypic penicillin-tolerant *S. pneumoniae* (Ly 4-4) strain and on *S. sanguis* strains. Viability of a penicillin-resistant *S. sanguis* type II strain was also slightly affected.

Penicillin pretreatment of thrombodefensins-susceptible strains blocked in part the bactericidal action of thrombodefensins. Competitive interaction between penicillin and thrombodefensins did not occur. We assume that penicillin-induced cell wall changes hindered thrombodefensins to reach the biologic target on the cytoplasmic membrane. The differences in susceptibility to thrombodefensins among streptococci may reflect altered cell wall synthesis in penicillin-tolerant and penicillin-resistant streptococcal strains. Another phenomenon noted in this chapter was that cells escaping the killing action of thrombodefensins, were even stimulated to grow. This effect was caused by other trypsin sensitive, heat-stable cationic platelet proteins.

Since penicillin-tolerant viridans group streptococci were resistant to the action of thrombodefensins, some studies were performed to improve the detection of penicillin-tolerant strains (Chapter VII and VIII). Penicillin susceptibility determinations made for strains of *S. sanguis* type II by two different broth dilution tests revealed small numbers of tolerant strains regardless of the volumes (0.01 and 0.1 ml) of subcultured broth. The addition of penicillinase to the subculture medium increased the number of tolerant strains significantly (Chapter VII).

In chapter VIII, we tested strains of nutritionally variant streptococci for their susceptibility to penicillin by a broth dilution method. All strains, except one were isolated from blood cultures of patients with endocarditis by exposure with endocarditis. Some of the strains obtained from this disk (C. H. C. M. and L. H. S.) have occurred with endocarditis, penicillin-tolerant. All strains were penicillin-tolerant.

The degree of penicillin coined by exposure with endocarditis have occurred by thromboplax, thrombin obtained from study the role...
and type II response to penicillin in R6 strains (R6 was also found to have a slight penicillin-glucose strains. Competitive inhibition did not occur. We have observed that cytoplasmic thrombodefensins among penicillin-tolerant strains of ST57 (Chapter VIII and Chapter IX). The prevalence of penicillin tolerance among isolates obtained from gingival sulcus flora cultures taken from these patients and from patients with a cardiac disease at risk for endocarditis, was low: 65 (21%) of 314 strains were tolerant to penicillin. All S. sanguis type I isolates, except one appeared to be tolerant.

The degree of killing of viridans group streptococci by exposure to penicillin coincided with the degree of the reduction of the viable count by exposure to thrombodefensins. This indicates that in the patients with endocarditis caused by viridans group streptococci, selection may have occurred. This selection on these bacteria most likely was mediated by thrombodefensins. No further evidence to this hypothesis can be obtained from human studies. Therefore, we used the rabbit model to study the relevance of the susceptibility to thrombodefensins and...
penicillin among *S. sanguis* type II strains in the pathogenesis of experimental endocarditis (Chapter XI). Two thrombodefensins-susceptible, penicillin-susceptible and two thrombodefensins-resistant, penicillin-tolerant strains were used in this investigation. The frequency of culture-positive VCs at 5 min after injection with a low number of bacteria was significantly higher after the challenge with the thrombodefensins-susceptible strains than after the challenge with the thrombodefensins-resistant strains. However, the frequency of endocarditis was the same for all these strains. No explanation so far can be given for this finding. In vitro studies demonstrated inactivation of the bactericidal activity of thrombodefensins when bound to various plastics. Further in vivo studies are necessary to elucidate the role of the catheter on the susceptibility of the rabbits to endocarditis.

To examine the significance of the susceptibility of *S. sanguis* type II strains to thrombodefensins further, we immunized rabbits with human thrombodefensins. These rabbits developed antibodies, which neutralized the bactericidal activity of rabbit and human thrombodefensins against the test organisms, as demonstrated by in vitro tests. The thrombodefensins-susceptible strain induced endocarditis significantly more often (60%) in immunized rabbits than in controls (21%; p < 0.01). Immunization did not influence the incidence of endocarditis by the thrombodefensins-resistant strain.

These findings support the hypothesis that platelets release thrombodefensins which kill susceptible strains among viridans group streptococci early after bacterial deposition at the vegetational surface.

The results of our investigations described in this thesis lead to the following fourteen conclusions:

- Two mechanisms appeared to be essential in the pathogenesis of experimental endocarditis caused by *S. sanguis* type II. One mechanism concerns the capacity of bacteria to adhere to cardiac vegetations. The other mechanism concerns the survival of adherent bacteria at that site.
- The survival of adherent bacteria was related to the susceptibility of the strains to platelet-released bactericidal substances.
- Platelet bactericidal substances called thrombodefensins most likely stored in the α-granules, were rapidly released by stimulation of low amp.
- Thromboprotein positive
- In clot: (lysosor).
- The response to penicillin positive
- The bacterial strain is resistant from the experiment.
- Addition of diluted substances tolerant to platelet.
- A disk-dilution susceptible detection
- Endocarditis by penicillin tolerant
- Prior to infection with a colony.
- The susceptibility to endocarditis by antibodies.
- Preparation necessary for bacterial proteins in infections.
The detection of low amounts of thrombin.

- Thrombodefensins appeared to be low-molecular weight cationic proteins with antibacterial activity against a limited range of Gram-positive bacteria.

- In clots, a cooperative interaction exists between acid hydrolases (lysosomal enzymes) and thrombodefensins released from platelets.

- The response of pneumococci and viridans group streptococci to thrombodefensins was reminiscent to the response of these bacteria to penicillin. The degree of susceptibility to penicillin coincided with the degree of susceptibility to thrombodefensins.

- The bactericidal action of thrombodefensins on viridans group streptococci is enhanced by the presence of aminoglycoside antibiotics.

- The cell wall composition of penicillin-tolerant and penicillin-resistant viridans group streptococci and pneumococci is different from the cell wall composition of penicillin-susceptible viridans group streptococci and pneumococci.

- Addition of penicillinase to the subculture medium used in broth dilution susceptibility testing improves the detection of penicillin-tolerant viridans group streptococci, including nutritionally variant strains.

- A disk-diffusion test substituting a penicillinase disk for a penicillin susceptibility disk, was a successful rapid screening test for the detection of penicillin-tolerant viridans group streptococci.

- Endocarditis due to viridans group streptococci is commonly caused by penicillin-tolerant, thrombodefensins-resistant strains.

- Prior to a dental procedure evaluation of the oral flora of patients with a cardiac disease at risk for endocarditis is not necessary, since penicillin-tolerant, thrombodefensins-resistant viridans group streptococci are commonly present in the gingival sulcus flora.

- The susceptibility of rabbits with pre-existing cardiac vegetations to endocarditis increased significantly after development of antibodies neutralizing the bactericidal activity of thrombodefensins.

- Preparation, isolation and purification of thrombodefensins are necessary in order to assess further the relevance of these cationic proteins in the innate host defense mechanism against intravascular infections.