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1 Introduction 

Every scheme X carries a sheaf r of generalized Witt vectors. In w we study the 
cohomology groups H"(X, "WCx) under the reasonable hypothesis (2.4). Implicitly 
this is a study of the formal groups of Artin and Mazur [1], but for our purpose 
there is no need to make these formal groups more explicit. In w we consider after 
base changing X/A to a p-adic situation X | R/R the cohomology of the sheaf of 
p-typical Witt vectors H " ( X |  R, ~r174 The crucial, and fairly restrictive, 
hypothesis in this section requires that the Frobenius operator Fp acts bijectively 
on the fibers H"(X~, ~(5'x ) at the geometric points s of Spec(R/pR). We show that 
after further base changing to R at, the p-adic completion of an infinite &ale 
extension of the ring R, the ~/r H"(X | R at, "r174 ) has a basis 
_~ consisting of elements which are fixed by Fp. Let A:= k e r ( F p -  1). Then A is 
a free 2gp-module with basis ~. Projection of Witt vectors onto their first coordinate 
induces an injection of A into H"(X, (gx) | R at and in fact 

A | at ~ Hm(X, Cx) |  +t �9 

In terms of the basis ~ of A and an A-basis 09_ of Hm(X, (gx) this isomorphism is 
described by an invert]ble matrix C with entries in Ret: _~ = C~. 

In w we discuss the interpretation of A as the fiber at Spec f2 of a p-adic 6tale 
locally constant sheaf on Spec(R/pR); here f2 is an algebraically closed field 
containing R/pR. Thus the algebraic fundamental group 7tl := rcl(Spec(R/pR), f2) 
acts on A. We call this representation ~/: ~ ~ Autz,(A) the p-adic monodromy 
representation. With respect to the basis ~ one finds ~/'(z)_~ = C'C - ld for r e  nl.  

This result is not new. Much of it goes back to Dwork's pioneering work on the 
variation of the zeta function in a family of hypersurfaces; see [5, 13, 14]. Many 
related results and generalizations have appeared in the literature; e.g. [1 5, 4, 7, 10] 
(this list is far from complete, but any list of references on this subject would 
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probably be incomplete; a complication in reading the literature is the variety of 
formulations and techniques). Nevertheless we want to present our modest attempt 
to understand something of this material and demonstrate in w how the approach 
via Witt vector cohomology leads to a method for explicitly computing the p-adic 
monodromy group in non-trivial examples of hypergeometric curves. 

The cohomology of the sheaf of Witt vectors gives the slope < 1 part of 
crystalline cohomology [1, 11]. Under the hypothesis of w it gives precisely the 
slope 0 part: the unit root subcrystal [133. For curves there is still the complement- 
ary slope 1 part, which escapes our methods. Accordingly A gives only one half of 
the p-adic solution space of the hypergeometric differential equations. More 
precisely the group of n-th roots of unity acts on the hypergeometric curve 
y" = xa(x - 1)b(x -- 2) ~ and splits its H~R into isotypical pieces, each of which 
corresponds to one hypergeometric differential equation. In general these isotypi- 
cal pieces are mixed by Frobenius and for A we are dealing with a system of related 
hypergeometric differential equations. Nonetheless, A gives only one half of the 
solution space. It would be very interesting to also understand the other half and 
then compare p-adic and classical monodremy. 

2 Generalized Witt vector cohomology 

2.1 Every scheme X carries a sheaf ~t/Cx of generalized Witt vectors [3, 9]. The 
underlying sheaf of additive groups for ~/f(~x is the sheaf of multiplicative groups 
l + t ( g x [ [ t ] ] .  The sheaf of generalized Witt vectors of length n is 
~.(_gx:= ~ ( g x / F i l . ~ C x  with Fil.~tY'(_gx:= 1 + t"+l(~x[[t]] .  

If a is a section of (9 x we write a for the power series of (1 - at) -  ~ viewed as 
a section of ~/U(_gx. For  n e N the substitution t ~ t" induces an endomorphism V. 
of ~#/-~x. Every section of 1 + t (gx[[t]]  can be written uniquely as a t-adically 
converging product 1-I,_z 1 (1 - a , t")-1 with all a. sections of C x. Thus the sections 
of ~ x  can be written uniquely as 

~_, V,,a,,. (1) 
.=>I - -  

One can construct a continuous product on ~g'(gx so that ~ C x  becomes a sheaf 
of topological commutative rings with unit, and continuous endomorphisms F.  for 
n ~ N (see [9]). The following relations are satisfied and give practical tools for 
computing in ~VCx 

F,.Vm = m, F~,F. = F,., ,  V~V. = V~., 

F.(~fl) = (F.~)(F.fl) ,  V.(a(F, fl)) = (V.a)fl, 

a . b  = a b ,  F .a  = a " ,  

V.Fk = Fk V. , 

for m, n, k ~ N with (n, k) = 1, sections a, fl of ~(_gx and sections a, b of Ox. There is 
a homomorphism of sheaves of rings ~: ~Y'(Px ~ r  sending a Witt vector written 
as in (1) to its first coordinate at .  

2.2 The operators F.  and V. on 3q/'(gx give endomorphisms F. and V. of the 
cohomology groups H"(X, ~ C x ) .  ~ gives homomorphisms 

re: H"(X, r  Hm(X, Cx).  
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2.3 A morphism g: Y ~  X gives a homomorph i sm ~KCx -~ g .  ~r of sheaves on 
X sending a to g*(a); here a is a section of t0x and g*(a) its image in (.or. This induces 

homomorph i sms  H"(X,  ~ K C x ) ~  H"(Y, "gPCr) compatible with the operators F .  
and V. and with the maps 7z. 

2.4 Basic hypotheses. From now on S will be an affine scheme, S = Spec A, which 
is smooth  over an open part  of Spec 7/ and f :  X ~ S is a smooth  projective 
morphism. We assume that Hm(X, Cx) is a free A-module for every m. 

2.5 Proposition. In the situation of (2.4) the sequence 

V~ 

0 ~ H"(X,  g'x) , H ' ( X , ~ . O x ) ~ H " ( X , ~ _ . _ , C _ x ) ~ O .  

is exact for all n, m. Consequently the maps ~ are surjective: 

n: H~(X, ~K(gx)+ H~'(X, (gx). 

Vn 

Proof. Consider the exact sequence 0 --* (9 x , _~ff. _(gx --* _~ff,- 1 _Cx -* 0 and the 

associated cohomology  sequence. One has the map F, :  ~__',(2x --" (9x and F .  V, = n. 
Since H"  + 1 (X, (gx) is a free A-module  and A is flat over Z, multiplication by n, and 
hence also V,, is injective on Hm+I(X, 6%). Z] 

2.6 Fix m. Let {(ol, �9 . �9 , cob} be a basis of the free A-module H"(X,  (gx). Choose 
@ e Hm(X, ~g'Cx) such that 7c@ = cot for i = 1 . . . .  , h. Define for every n > 1 the 
h x h-matrix B, = (b,,u) with entries in A by 

h 

7zF,@ = ~ b,,uo9 j 
j = t  

for i = 1 . . . . .  h; or with an obvious and very convenient notat ion 

7zF,_e5 = B,_o). 

Explicit examples will be presented in Sect. 5. 
We write _~ff(A) for the ring of generalized Witt vectors over A. Then ~W(_gx is 

a sheaf of ~ ( A ) - m o d u l e s  and Hm(X, "/r is a ~ff(A)-module. 

2.7 Corollary. Let the hypotheses and notations be as in (2.4)-(2.6). Then every 
element ~ of H"~(X, "r can be written uniquely as 

h 

n__>l i = 1  - -  

with a,i~ A. This sum converges in the topology defined in (2.1). 
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2.8 Remark. Let el . . . . .  ~q~Hm(X, ~(gx) .  Then according to (2.7) there exist 
q x h-matrices A, = (a,,q), n ~ N, such that 

_~ = ~ ~(A~O); 
n > l  - -  

here An is the matrix with entries a.,~j in _~(A) and ~ is the column vector with 

components o51 . . . . .  eSn; similarly for ~, ~. Define the matrices M. by: 

~F,_~ = M. ~ ,  

Then: 
M s  ~ . a  (N/.) . . . . . .  ~/. (2) 

.IN 

for every N e  N; here A. (x/") is the matrix with entries _s/. (An, i j ' 

2.9 Corollary. In (2.7): ~ = 0~rcF~,~ = O for all N o N .  

Proof The implication ~ can be proved by means of formula (2), the fact Bt = I 
and induction showing A~. = 0 for all N. 

2.10 Remark, Choosing c31 . . . . .  ( / ~ h  in (2.6) amounts to choosing coordinates 
~1, �9 �9 �9 % for the Artin-Mazur formal group H ' ( X ,  Gm, x) [1]. The logarithm of 
the formal group law corresponding to these coordinates is ~.>= 1 n - i B * z "  with 
B* the transpose of the matrix B. in (2.6) and ~" = column vector with components 
~ , . . . ,  ~ .  

3 Vectors fixed by Frobenius 

3.1 We keep the hypotheses and notations of (2.4)-(2.6). We fix a prime number 
p and assume detBpr Let 

A ~  A[(de tBp) - ' ] ,  Ao := A~ ~ A ^ = limA~ ~ 
~ n  

It can be seen from (2) that these rings are independent of the choices in (2.6). 
Being smooth over lFv the ring A0 is a direct product of domains corresponding 

to the connected components of Spec Ao. Take one such component  and let R be its 
inverse image in A ^. This construction implies immediately that R has properties 
(i)-(iii) below and that R is formally smooth over 2~v. Because of this formal 
smoothness R is flat over Zp (whence (iv)) and the • fa lgebra  map al: R --* R/pR, 
al  (x) = x p rood pR, lifts to a projective system of 2gfalgebra maps cz,: R ~ R/pnR 
(n > 1) and to an endomorphism o- of R as in (v). The properties of R are: 

(i) pR is a prime ideal of R, 0 ~ pR :# R 
(ii) R = lim R/p"R, 0 p"R -- 0 

~ t l  n 

(iii) det B e is invertible in R 
(iv) p is not a zero divisor in R 
(v) the Zv-algebra R has an endomorphism a such that for all x ~ R 

tr(x) =-- x p mod pR . 
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3.2 Let P be the set of  primes . p. Let Y be a scheme such that every t e P  is 
invertible in (5 r. Then the expression Ep: = 1-[t,P (1 - l - 1 Vz Fl) defines an idem- 
potent  operator  on ~( f i r ,  such that 

EpVp = FpEp, EpFp = FvEp, EpV~ = F~Ep = O, Ep(ab) = (Epa)(Epb) 

for all I e P  and for all sections a, b of ~(f ir .  
We write ~UCr instead of Ep~lCrCr suppressing p in the notation. One calls ~'(fir 

the sheaf of p-typical Witt vectors on Y. 

3.3 Let ~r be the ring of p-typical Witt vectors over R and let, as before, n: 
~r ~ R be the projection onto the first Witt vector coordinate. In general there 
will be many endomorphisms a of R as in (3.1v). Given one choice for a there is 
a unique homomorph i sm of rings (see L9, (17.6.9)]) 

2: R -* ~K(R),  

such that  nF~2 = o" for all n e N; in particular n2 = id. 

3.4 In the sequel we use the following notations. Instead of a(x) we often write xL 
For  a matrix M = (m~j) with entries in R we set 

M (p') = (mi~"), M ~ = (rni~"), 2 (M)  = ( 2 ( m l j ) )  , m = (mi j )  . 

We write F for Fp. If A '  is an A-algebra X | A '  stands for X x s S p e c A ' .  Note:  
under the hypotheses of (2.4) Hm(X | A', 6~X.A ,) = H"(X,  (fix) |  A ' .  

3.5 Theorem. Fix an endomorphism o of  R as in (3.1v) and the corresponding 
2: R ~ ~ ' ( R )  as in (3.3). Let further the notation be as in (2.6). Then 

(i) There exists an invertible h x h-matrix H with entries in R such that 

Bp,+ , =- B ~ H  m o d  p r+ l for all r >= O . 

(ii) There exist elements oh1 , . . .  , d~ in Hm(X | R, ~/UCx| such that 

FQ = 2 ( H ) ~  and n@ = ~oi 

in Hm(X | R, (fiX| rig_ is the column vector with components tbt, . . . , ~bh. 

Proof. (i) We apply the computa t ions  in (2.8) with ~i = F/5 i .  To simplify the 
nota t ion we set Dr = Bvr and Ur = Apr. Then (2) yields for r > 0 

Dr+l = ~ f fU}Vr-')Dr-i .  
i = 0  

In particular Uo = Dl = B v and Dr+ 1 = U(orr)Dr rood p. So each Dr is invertible over 
R. Using (x ')  p" - x p" +~ rnod pn + 1 for all n and for all x e R one proves with induction 
(D;) -  l Dr+ ~ - (D;_ l ) -  ' Dr mod  p" for r > l .  Thus H : = l i m r ~ o ( D ~ ) - l D r + ~  
converges p-adically and has the desired properties. 

(ii) We set 
~_ = Ep E V'v(V_._t~), ~ F , ~  = M,~_ . 

r>=O 
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Because of (2.9) the desired relations for (ii) amount to M, = 0 ifn is not a power of 
p and Mp, = H~"M, if n = p'. The latter is equivalent with Mp, = M~,H. Using (2) 
this can be turned into 

Uy+I = -- ~ p~--?__l(u} p . . . .  ~)Dr+l_ i __ UTtp,-,)DY_iH) . 
i = 0  

The recurrence has a solution with Uo = I. This proves the theorem. [] 

3.6 We fix an algebraically closed field 1'2 containing R/pR. The set M of finite 6tale 
extensions of R/pR in 12 is a directed system. Indeed, if B~ and B2 in ~ are given, 
take Ba := the image of B1 | B2 in f2. Then B 3 is a finite 6tale extension of R/pR 
which contains B1 and B;. We define 

(g/pR) at := lim B.  

This is an infinite 6tale extension of R/pR contained in O. Its Galois group is the 
algebraic fundamental group nl (Spec(R/pR ), t2 ). 

The assignment R' ~ R'/pR' gives an equivalence of categories between finite 
6tale extensions of R and finite 6tale extensions of R/pR (see ES, (18.3.2)]). Each 
B e �9 lifts uniquely to a finite 6tale extension/3 of R. We define 

R 6t :--- the p-adic completion of l im/~. 
- - +  

B e ~  

Let a be an endomorphism of R be as (3.1v). Then for every finite &ale extension R' 
of R there is a unique extension a': R' ~ R' of 0r which satisfies a'(x) = xPmodpR ' 
for all x a R'.These extensions of a pass to an endomorphism, again denoted by a, 

~ ~ h e ~  t (f2~ ~aPR! eo ~R~ e ; ~ i  ~u~ti~!!!iti~ebsP(hPoe!tined a(ira) e (n~)a ~ g ~3 ~ P 

(Ret) "' = R, (Ret)" = Z v. (3) 

3.7 Proposition. 
that 

There exists an invertible h • h-matrix C with entries in R 6t such 

C"H = C.  (4) 

Proof The system of equations C~P)H - Co = 0, 6" det Co - 1 = 0, 
C'(,P+)IH - Ci+l + p - I [ C 7  - C[P)]H = 0 (i > 0) can inductively be solved with 

et  t h xh-matrices Ci over R . Then C:= ~,ip'Ci is a solution for (4). [] 

3.8 The inclusion R c R ~t induces an embedding of H " ( X |  R, "r162174 into 
H m ( X |  6t, "lCK(PX| ). Denote the image of @ (see (3.5)) also by @. Let 
2: R~t---~ "r162 ~t) be the homomorphism which (3.3) associates with the endo- 

et m el  morphism a of R ' .  Define r . . . . .  ~heH (X | R ' ,  ~F(Px| by 

_~ = ~ ( c ) o  (5) 
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where C is any solution of (4) and _~ resp. _e5 are the column vectors with compon-  
ents ~1 . . . . .  ~h resp. e51 . . . . .  eSh. Then by (3.7), (3.5) and (3.3) 

Fr = ~ and n~ = Coo. (6) 

3.9 Proposition. (i) H " ( X |  6t, "~/'(flX | is a free ~U(R~t)-module with bases 
{r . . . .  , Ch} and {doz . . . . .  d~h}. 

(ii) H " ( X  | R, ~ ( g X , n )  is a free "~#(R)-module with basis { o 5 1 , . . . ,  d)h}. 

Proof (i) By (6) {n~l . . . .  , n~h} is an R6t-basis of H " ( X  | R 6t, (gx| So every 
element e of H m ( X |  R 6t, ~[,U(gX| ) can be written uniquely as in (2.7). The 
opera tor  Ev fixes c~ and r �9 . �9 , ~h. Moreover  EvV, = 0 if n is not  a power of p. 
Thus 

~'= E ~" Vp(Ep(arl)~I)= ~ (~>=o = i=1 r = 

where the second equality is a consequence of Fp{~ = {~. This proves that  
H'~(X | R ~t, ~g'(Px | n~t) is a free ~//~(Ret)-module with basis {i t  . . . . .  ~h}. By (5) 
{c51 . . . . .  Cbn} is also a r162 for this module. 

(ii) follows from (i) and (3). [] 

3.10 Define 

A := ker(F - 1: H ' ( X  | R 6t, ff'[/'(~X| -'~ H " ( X  | R et, 3~(~OX| . 

Because of (2.9) the map n: H " ( X  | R 6t, ~W(gX| ) --* H " ( X  | R 6t, (gx| 
restricts to an isomorphism n: A ~ hA. We will use n to identify A and its elements 
with their image and write A resp. ~ instead of nA resp. n~. 

3.11 Theorem. A is a free Zp-module with basis {41 . . . . .  ~h}" 

H"(X,  (gx) |  ~t = A @ z R  6t . 

In terms of the A-basis 02 of H"(X,  (2x) and the 7Zp-basis ~_ of A this equality is 
given by (6): _~ = Co.  

Proof According to (3.9) every element of A can be written as a linear combinat ion 
of ~1 . . . . .  ~h with coefficients in "~r r. Argueing as in (2.9) one shows that the 
projection n: ~ ( R  ~) ~ R a restricts to an isomorphism ~f(R~t) r - n(~Y(R~t)F). 
The inverse isomorphism is 2. F rom n F ~ . - - a  (see (3.3)) and (3) we then see 
rc(~//(R6t) r)  = (R+t) ~ = 7Zp. This shows that A is spanned over 7lp by ~ . . . .  , ~h. 
The rest follows from (3.9), (3.10) and (6). [] 

3.12 The algebraic fundamental  group 'gl :--- nl(Spec(R/pR), O) acts on R ~t. By 
functoriality this induces an action of nl on Hm(X, (gx) | R6t and on H " ( X  | R 6t, 
~KC x | n~t). The maps F and n are nl equivariant. Thus one obtains a representa- 
tion 

Jg: nl (Spec(R/pR), ~)  ~ Autz,(A) 

which we call the p-adic monodromy representation. Its image - g ( n l )  is called the 
p-adic monodromy group. In terms of the basis {~1, �9 �9 �9 ~h} this is described by 

,At(T)~_ = C'C-*~_ for z e n l  . 
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4 p-adic monodromy 

In this section we want to justify the terminology p-adic monodromy representa- 
tion in (3.12). We keep the hypotheses of (2.4). Throughout this section p is a fixed 
prime and we write F and V instead of Fp and Vp respectively. 

4.1 Let s be a geometric point of S of characteristic p, i.e. a homomorphism 
A --* k(s) into an algebraically closed field k(s) of characteristic p. The fiber o f f  over 
s is Xs := X | Spec k(s). We apply (2.3) to X~ ~ X and project with Ep onto the 
p-typical part (3.2). We thus obtain for every m the commutative diagram 

Hm(X, ~r , H"(X~, ~r ) 

,L ,[ ~ (7) | k(s) 
H'(X,  (_gx) , Hm(X,, 6~ . 

The Frobenius endomorphism of Cx~ which raises sections to the p-th power 
induces a a-linear endomorphism F on Hm(Xs, Cx,); here a is the Frobenius 
endomorphism of k(s). In (7) a, and the right hand ~z commute with F. The left hand 
~t is surjective by (2.5). This implies the surjectivity of the right hand ~z. 

The diagram (7) shows that for m fixed as in (2.6) the matrix of the a-linear 
endomorphism F of Hm(X~, (_gx,) with respect to the basis {e~l . . . . .  ~oh} is pre- 
cisely Bp(s), the image of Bp with entries in k(s). The matrix Bp(S) is known as the 
Hasse-Wit t  matrix of X~/k(s) in dimension m. 

Using the exact sequences in (2.5) for X~ and the fact that in characteristic 
p Frobenius F v commutes with all V, one checks: 

F is bijective on H~'(X~, # 'Cxs)c~detBp(S)  4: O. 

4.2 The set of geometric points s of S with char k(s) = p and det Bp(s) 4: 0, coincides 
with the set of geometric points of SpecA0 (see (3.1)). Let s lie on the connected 
component So:= Spec(R/pR)  of SpecA0, corresponding to a homomorphism 
p: R ~k ( s ) .  This homomorphism extends in many ways to a homomorphism 
R 6t --~ k(s); any two extensions differ by an element of ~1 (So, s Fix one extension 
~: R ~t ~ k(s). It induces a homomorphism 

fi*: H"(X @ R 6t, "t[/'(gX| ) --~ H"(X~, ~r �9 

As in (3.11) one shows that {P*r . . . . .  t~*~h} is a basis of the flee ~Ep-module 
Hm(Xs, "r F. So ~* induces the first isomorphism in 

A m H"(X~, r162 ~ ~- H~t(X~, Zp). (8) 

The second isomorphism is constructed in ([11, II(5.2); 12, IV (3.5.1)]). The right 
hand side of (8) is the fiber at s of the 6tale locally constant sheaf R~t (fo), (Zv) on So; 
here fo: X |  So ~ So is induced by f The canonical representation of the funda- 
mental group hi(So, t~) in the fiber of this local system at Spec ~ coincides via (8) 
with the representation in (3.12). 

This appearance of the representation in (3.12) as the canonical representation 
of the fundamental group in the fibers of a p-adic 6tale locally constant sheaf is one 
good reason for calling it p-adic monodromy representation. 
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4.3 Assume in addit ion to (2.4) that  all cohomology  groups W(X,  f2)/s ) are free 
A-modules  and p + 2. Then we can combine  the results of  Sect. 3 with those of [18, 
w The Gauss -Man in  connect ion on the De R h a m  cohomology  of X / S  induces 
a p-adically cont inuous connect ion 

V: ]l-Ir~(x, (2~;/S) @ R & ~ IHm(X ,  (2~/s) @ 0 1  . . . .  t 
R~t/Zv " 

As in loc. cit. one can show that, because all elements of A are fixed by F the 
inclusion A ~ H" (X ,  6x )  | R & lifts to an inclusion 

A c ker V =  IHm(X, ~2~js)| R at . 

As in [18, Theorem (4.6)], this result can be reformulated in terms of differential 
equat ions for the entries of the matrix C. 

Thus A becomes the set of solutions of a system of differential equations and the 
action of the fundamenta l  group is the precise analogue of what  is classically called 
m o n o d r o m y .  

5 Hypergeometrie curves 

In this section we illustrate the general theory in the preceding sections with explicit 
results for hypergeometr ic  curves. In part icular  we demons t ra te  in (5.2) and (5.4) 
how one computes  for H 1 of these curves the data  ~ ,  ~ and BN in (2.6). For  the 
curve yS = x(x  - 1) 2 (x - 2) 3 we determine in (5.14) the p-adic m o n o d r o m y  group. 

5.1 Let 0 < a, b, e < n be integers with gcd(n, a, b, e) = 1. Let/~n be the group of 
n-th roots  of unity. The hypergeometric curve X = X,; a, b, c with parameters  n, a, b, 
e is the smooth  projective model  over  A := 7 l [# , ]  [2, (n2(1 - 2 ) ) -1]  of the affine 
equat ion  

y" = xa(x _ 1)b(x - A) c . 

The name hypergeometr ic  curve refers to its relation with hypergeometr ic  differen- 
tial equat ions (see (5.3)). 

Let  S : =  SpecA. The curve X / S  is an n-fold covering of the projective line 
Ps ~ with branch locus {0, 1, or,  2}. The Riemann-Hurwi tz  formula  computes  the 
genus rankA H I ( X ,  (5'x) of X to be equal  to h := n + 1 - �89 + dl + do~ + dz) with 
do = (n, a), dl = (n, b), d~ = (n, e), d~ = (n, a + b + e). 

5.2 The open affine covering {x + oo } w {x + 0) of P~ pulls back  to an open affine 
covering X1 w X2 of X. The  group H I(X, (gx) is equal to the (2ech cohomology  

group ~/1 ({X 1, X2 }, 6~x) with respect to this covering. 
For  more  detailed descriptions we need: 

~ =  a/n, ~=b /n ,  ? = c / n ,  

Ill I] = - [ -  ( l e )  - ( t f l )  - ( I ~ ) ]  for t E Z / n Z ,  

: : :  ( ( l , j )~ (Z/nZ)  x ZI0 < j  < IIg[I} ; 
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here [-]  and ( ' >  denote the usual integral and fractional part functions. Note 
111 li ~ {0, 1, 2, 3}. For l~ Z/n;E set 

v~ = y~x-(i'=~(x - 1)-ffr -- 2) -ff~l . 

with l'e N, I = ~mod n. Then, in the function field of X, 

I-(X1, (fix) = OleZ/nz A[x]v t  

F (X2 ,  (gx) = 01~z / . z  A [x -  ~]x-tl~ilv e 

F ( X t  c~ X2 ,  (-fix) = ~ / . ~  A [x, x -  ~ ] v~ 

For ( l , j ) e~ -  define (b(t.2):= n-XxJ- l v i -~dx  and 

co.,2) := the cohomology class of the (~ech 1-cocycle x-Jvt.  

Then (o)(t,j~),.~)~e is a basis of H~(X, (gx) and {d9(t,~)}it,~)~ is the dual basis for 
H~ f2x~/s). 

5.3 It is well known (e.g. [-6, 16, 17]) that the Gauss-Manin connection V on 
~-II(X, O~/s) leads to hypergeometric differential equations as follows. Define for 
(l,j) ~ 3-- the differential operator Pet, j) by 

O(O - - j  + <Ic~> + (/~,>) -- 2(0 + </7>)(O - - j  + <l~> + <lfl> + </7>) 

d 
with O = 2 ~-~. A straightforward calculation shows that P(,.~)(x j -  l vi-1) is equal to 
d 

-~x((lT>.~xJ(x - 1)(x -- .~)-lvl- 1) and hence 

I7(P..i))&..j) = 0 in IW ( x ,  Oils) 

5.4 We lift co(t, j) to an element 69,,j) of H 1 (X, ~(gx) as follows, x-Jvt  is a section of 
~r over X1 c~ X2. The (~ech cocycle condition is trivially satisfied. Take 

~5,,j) = cohomology class of the (Sech 1-cocycle x-Jv t .  

Choosing _o and _& this way we can compute the matrices BN, defined in (2.6): 

nFN~_ = BN~_. 

The element 7tFNaS(~,i ) of Ha(X, Cx) is just the cohomology class of the 0ech 
1-cocycle (x-Jvz) N. Note 

(x-Jvt) N = (X-JNX[N<ta>](X _ l ) t u < t a > l ( x  _ ,~)t~<~>J)v~, 

with I' = 1N in 7//n7I. Thus, indexing the rows and columns of Bu with the elements 
of ~", we find that the entry BN,(z.j),(v,y) in row (l,j) and column ( l ' , j ' )  is 0 if I' + IN, 
whereas in case l' = IN 

Bu,(I,j),(V.y)=(--1)L \ 5 "  L - k  ] \  k ] 

with L = j '  - i N  + [N(I~>] + [ N  ( l f l )  ] + [N(Iy>]. 
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5.5 Example.  Assume l ' =  IN in 2Un7Z. Then Br~,lz.j~,~r,y~ is annihilated by the 
differential opera tor  0 ( 0  + [N  ( I f l )  ] - L) - ~,(0 - [N  ( l~)  ])(O -- L). F r o m  this 
observation one easily sees 

V{P I,.,j,~ ) BN,(z,i~, (r.j'~ - 0 rood N A . 

This gives a nice illustration of [18, Theorem (4.6)], 

5.6 Proposition. Let p be a prime number not dividing n and let l e7]/nZ, 
t 4=0. Assume I-p(l:~)] + [ p ( I f l ) ]  + [p(17)  ] > p. Then the polynomial 
Be.~l, 1), (pz. 11 mod  p e IFp[~,] has degree u and has zeros of  order v resp. w at 2 = 0 resp. 
1 with 

u = min( [p<lT) ] ,  [p<lcc)] + [p<l/~)]  + [p<lT)]  + 1 -- p) 

v = max(0, [ p ( l @ ]  + [ p ( l T ) ]  + 1 - p) 

w _<_ max(0, [ p ( l f l ) ]  + [ p ( l T ) ]  + 1 - p) .  

The zeros of Bp,(l, 1),(pz,1)modp in lFp different from 0 and 1 are simple zeros. 

Proof. The values of u and v can immediately be read off from the explicit formula 
for Bp,~z, l),(pz, l) in (5.4). To  compute  w one uses Be,(~ ' ~,(pz, l) = 

( _ l ) L ~ m ( [ P ( l f l ) ]  + [ P ( I ' ) l - m )  _ . \ p - l - [ p ( l ~ ) ]  ( [ P  (m/?)]) (2 l)m 

The zeros of Bp,(~, ~,~pz, ~ m od p different from 0 and 1 are simple zeros because this 
is a polynomial  of degree < p annihilated by a differential opera tor  of the form 

5.7 Condition. Ill II = 2 for every non-zero leTZ/nZ. 
Equivalently: 1 < (lc~) + ( l f l )  + (17) < 2 for every non-zero l e7Z /nZ  

5.8 Example.  (5.7) holds for (n; a, b, e) = (2; 1, 1, 1), (3; 1, 1, 2), (5; 1, 2, 3). 

5.9 As a consequence of (5.7) the indexing set ~--consists exactly of  the pairs (l, 1) 
with l ~ 7Z/n7Z, l 4: 0. So we identify 9- with (2Un2g)\(0 } and simplify the nota t ion by 
writing 1 instead of (l, 1). 

The  multiplicative group (7//n2g)* acts on  J -  by multiplication. We define the 
permutat ion matrix ~N = (4~N, zr) for Ne(7Z/nZ)* by 

q0s, u , = l  if l' = Nl, cI)mzr = O if l' 4: Nl  (1,1' ~ J - )  . 

We fix a primitive n-th root  of unity ( and set 

2:= ~ ~4~,. 
N e (Z/nZ)* 

The crucial proper ty  of this matrix is: E" = E(P~ = E4~- 1. 
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5.10 Assume condit ion (5.7). Fix a pr ime n u m b e r  p > n. Then the condi t ion of 
Proposi t ion (5.6) is also satisfied for every I. Using the explicit form of the matr ix  Bp 
and (5.6) one checks de tBeCpA.  So the theory of Sect. 3 applies here. We use the 
nota t ions  R, R ~t, ~r, H, C, A, 7Zl . . . .  as in Sect. 3. 

Fo r  every r such that p" - 1 m o d  n, the matrices Bv. and ~b~- 1B~,+I are diagonal  
matrices. Consequent ly  r  is also a diagonal  matrix. 

Lemma.  The equation C~H = C has a solution C = 3G with G a diagonal matrix 
with entries in (Ret) *. 

Proof  Write H = ~pQ.  Then C"H = C is equivalent  to c b 7 1 G ~ v Q  = G; i.e. in 
terms of the entries of the diagonal  matrices G and Q: gvt = gTqvt for all l ~ 3_. Fo r  
a given I let m > 1 be minimal  such tha t  pml = I. Then this leads to an equat ion of 

~rn 
the form g~ gg kt which has a solution in (Rat) *. Once a solution g~ is fixed O,, is 
determined for 1' = pl . . . . .  p"-~l. 

5 . t l  This l emma  leads to an "upper  bound"  for the p-adic m o n o d r o m y  group. 
Recall (3.12): 

~#Qh)  = { C ' C - 1 [ z e ~ l }  ~ GI,_ l(~p) �9 

Since the n-th roots  of unity are contained in the base ring A they are fixed 
by every r E r q .  In particular,  • ' =_= .  Therefore  C ~ C - I =  S G ' G - C E  -z  and 
cbp- 1 (G ~G 1)#~p = G,G - ~. Thus  we see 

J/g(rq) c ~ Z - ~  

where ~ is the group  of diagonal  matrices D in Gl, I(~U(IFp)) which satisfy 
cbp- ~ D#Cbp = D. Not ice  the i somorph i sm 

Plogqa . . . . .  Plogq~ are the lengths of  the orbits of mult ipl icat ion by p on ~-. 

In general it is difficult to compute  J / ( ~ l )  more  precisely. Specific propert ies  of 
(n; a, b, e) s trongly influence the result. One has for instance 

5.12 Proposition. Assume besides (5.7) also b + c = n and p > n. Then the diagonal 
entries gl (le ~-)  o f  the matrix G in (5.10) satisfy 

g~ = d~2<tB>-(a)g(_l) 

for certain constants dl e #~(]Fvs)*; here f is the order o f  p in (7//n7/)*. 

Proof  
BN, I, Nt in (5.4) (with I instead of (l, 1)) shows 

BN,(_I),(_NI ) = ( - -  1) N -  I ~[N(t~)]-tN(ta)]BN, t,~, t 

for every l ~ Y ,  N e IN. So 

~ _ I B N ~ _ I  = U N B N  U - 1  �9 

b + e = n implies ( l f l )  + ( ly )  = 1 for every I ~ - .  The explicit formula  for 

(9) 

(lO) 
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U is the diagonal matrix with//-entry - 2  <'r (~>e R 6t. In view of (10) the matrix 
H satisfies 4~_ 1Hq~_ ~ = U ~ H U  - 1. Consequently ~ b _  1Gq~_ 1 U is another solu- 
tion of (4) and hence 

~ _  t GcI)_ I U D  = G (11) 

for some matrix D e ~  (see (5.11)). [] 

5.13 Recalling Jg(z) = C r : C  - 1  ~- ~ G ~ G - I ~  -1  for z E n l  we see that (11) leads to 
a new constraint on monodromy: 

q) 1 G ~ G - l q ) _ I  U ~ U - 1  = G~G -1 

5.14 E x a m p l e .  Let us compute the p-adic monodromy group for H 1 of the hyper- 
geometric curve 

y5 = x ( x  - 1)2(x - ,L) ~ . 

Fix a prime number p > 5. Proposition (5.12) shows 

g l  = dl '~l/Sg4 -, g2 = d 2 ~ y s g 3  �9 

We distinguish four cases depending on p mod 5. 

(12) 

Case p = 1 rood 5. We will show that in this case: 

0 

rla 

) 
a, be;g* , 

J r/~It5 
(13) 

The inclusion c follows from (12). Let us prove the inclusion =.  Note that 77" is 
generated by any two elements ~c and 1 + pv with v @ 0 m o d p  and ~cmodp 
a generator of IF*. It therefore suffices to show that both sides in (1 3) have the same 
image in Gl4(77/pZ2g). 

Equation (4) reads in this case G ~  = G. As in the proof of (3.7) we set 
G = ~i>=opiGi . Then Go and G1 must satisfy 

G g - I H  =- I m o d p  

G f H  - G1 + p - I [ G ' ~ H  - Go-] ~ 0 m o d p .  

Note H = Bpmodp and H =- B ; " B p 2  m o d p  2. We multiply the second equation by 
(BpGo  1 )~ and set F := B p G o  1 G t .  This leads to the following equivalent system of 
equations 

G ~ -  I Bp =- I m o d p  (14) 

B p F  p - B ~ F  + p - l [ B p 2  - "pn'~-"a'-'o j =- 0 m o d p  . (15) 

Each of these matrix equations represents four scalar equations. According to (5.6) 
the polynomial Bp, t,~ m o d p  has at least one simple zero different from 0 and 1. 
Therefore each scalar equation in (14) is irreducible and gives a cyclic extension of 



322 J. Stienstra et al. 

R/pR with Galois group ]F*. By (5.6) Bv, L~ modp and Bp,2, 2 modp are both 
p - 1  

polynomials of degree ~ which do not vanish at 0 and 1. Checking the values at 

0 and 1 one sees that By, 1.1 rood p and Bp,2,2 mod p are not multiples of each other. 
So each has at least one zero which is not a zero of the other. Consequently the two 
extensions of R/pR by 91 rood p and g2 mod p are independent. On the other hand 
one has (12). Taking into account that the extensions by gl modp  and g2 modp  do 
not ramify at 2 = 0 whereas the extension by 21/5 does ramify at 2 = 0, we conclude 
that the solution of (14) gives an extension of R/pR with Galois group 
IF* x lF* x/~5. More precisely the image of the monodromy group o/r in 
G/4(IFp) coincides with the image of the right hand group in (13). 

Next consider Eq. (15). Remark (2.8) applied to _~ = Fv(5__ shows that there is 
a matrix Ap with entries in the ring A such that Bp~ = BCpP)Bp + pA r So one can 
write 

p-l[Bv~ u ~ 1 - ~ 1  - , - ,puo  a = a p + p  ~[B~-B~,]Bp+p-~[Bp--,~o~-~q~Pmodpj~,p . 

Again we look at a zero of Bp, t.~ modp different from 0 and 1. Lemma (5.15) will 
show that the//-entry of Ap mod p is not zero at this point. Granting this for the 
moment we see that each scalar equation in (15) is irreducible and gives a cyclic 
extension of our previous extension of R/pR with Galois group IFp. The extension 
corresponding with the fourth (resp. third) line of(l  5) coincides with the one for the 
first (resp. second) line. On the other hand looking at the ramification one sees that 
the extensions corresponding with the first and second line are independent. 
Following the arguments back to the equation C~H = C one finds that both sides 
of(13) have the same image in G&(;g/p271). So to complete the proof of (13) we only 
have to show: 

5.15 Lemma. The lt-entry of Apmod p is not zero at a zero oj" Bp,z,t modp different 
from 0 and 1. 

Proof Take l = 1 to fix ideas. Let s be a geometric point of S corresponding to 
a homomorphism p: A ~ IFp such that p(2) + 0, 1 and p(Bp,1,1) = 0. Because of(9) 
then also p (By,4, 4)  = 0. Assume p (Bp, 2, 2) 4: 0; hence also p (Bp, a, 3) 4 = 0. The matrix 
p(Bp) is the Hasse-Witt matrix describing the action of F on H~(Xs, (gxs) (cf. (4.1)). 
In the present situation p(Bp) is a diagonal matrix with exactly two non-zero 
entries. This implies that the Newton polygon for the action of F on H~ys(Xs) has 
a slope 0 segment of multiplicity 2 and a slope 1 segment of multiplicity 2 [2]. As 

a consequence the rank of the free ~K(lFp)-m_odule HI(Xs, ~W(2~xs) is 6 (see [11, 
II(2.19), (3.5)]). So in the exact sequence of IFfvector  spaces 

V 
o ~ H~(X~, ~Ox~) /F  --, H'(X~, ~Ox~)/p  ~ HI(X~, ~ G x ~ ) / V ~  0 

the middle term has dimension 6 and the right hand term has dimension 4. Hence 
dimHt(Xs,~cU(gxs)/F = 2. Recall that we obtained Ap from Remark (2.8) with 
_~ = FpO, i.e. Fp_e5 = ~ V.(A.~). This specializes at s to 

F~_(s) = Ep(p(A1))~(s) + VEp(p(Av))~(s) + . . .  (16) 
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where Q(s) is the image of ~ under the specialization map a, in (4.1) and Ep is 
as in (3.2). By construction At = B v. Taken modulo F and V 2 relation (16) gives a 
way to determine the dimension of the vector space Ht(X~, ~.r V z) and 
thus get a lower bound for the dimension of Ht(X~, ~f'(gx,)/F. In particular, if 
p(Av, l.1 ) = 0  one finds that these dimensions are > 3, contradicting the fact 
d i m H  ~ (X~, ~ C x , ) / F  = 2. So p(Ap, t , t )  + 0 if p(Bp, t , t )  = 0 and p(Bv,2,2) :1= 0. 
A similar argument can be used to show that p(Av, t,t ) ~ 0 if P(Bp, l , a ) =  0 and 
P(Bv,2,2) = O. [] 

Example (5.14) continued. Case p -  - 1  mod5.  First we pass to the extension 
R[2:/51 of R. The matrix U in the proof of (5.12) is defined over R[)Ys] .  
Combining the Eqs. (4) and (11) we obtain 

G~(DU)-:@vH = G (17) 

where D is some diagonal matrix with entries in ~#'(Fp~)~ R. Following the 
method used in the previous case one now arrives at 

G~- :(DU)-Vq) pBt, =- I m o d p  

(~pBp)F p - (qbpBp)(Bpqbp)V-tF + A =-- 0 m o d p  

with 

A = p-l[Bv~ _ (Bp~v)~(DU)~G~-~] . 

As before By2 = (Bv~v)Vcl)vBv + pAp and 

+ p-~ [q~pBp - (DU)"G~ -~] (BpOp) ~ . 

Note that by (10) we have Bp~p = ~pUPBpU -~ = U - p - I ~ p B p .  So we can proceed 
as before. For the correct statement and proof of Lemma (5.15) in case 
p ~_ - 1  mod 5 one has to replace Bv, z ' t by Bp,l, N. The result of this analysis shows 
that ~-:.//r I2))E is the group of diagonal matrices 
diag(a, b, b, a) with a , b ~ Z * .  The monodromy group Jg(rq),  with 
~: = rc:(Spec(R/pR), f2), is an extension of the one above by a group of order 5. 
Since ~ ' (n~)  is an abelian group by (5.11) and since p is not 0, 1 m o d 5  this 
extension is in fact a direct product. The matrix representation of the 5-cyclic factor 
can be derived from (5.13). The result is: if p -= - 1  rood5 then 

t(,i o) ~/'(~Zl) = 3 t/2b S - t  
tl- 2b 

tl- ta 

a, bGZ*, 

tIG ~5 

Example (5.14) continued. Casep =- 2 mod 5. As in the previous case we first pass 
to R [ )y5  ]. Now ~ -  ~ J/(zcl (Spec((R/pR)[-A t I5]), O))~ is contained in the group of 
diagonal matrices diag(a, a ~, a ", a) with aECU(IFv2)* (use (5.11) and (5.13)). We 
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claim that  the inclusion is an equality. F r o m  this one then concludes as in the 
previous case 

g2aa 

g] - 2 a a 

r / - l a  

a e ~r ~ .  

We shall prove  our  claim that  the inclusion is actually an equality by combining 
equat ions (4) and (11) into 

G ~ 2 - 1 ( U D ) - ~ 2 ~ H ~ H  = I (18) 

and by showing that  08)  modulo  p2 leads to an extension of ]Fp(2) with ramifica- 
tion of order  p2 (p2 _ 1) at any zero 20 4: 0, l of  By, ~, 2 rood p which is not a zero of 

Bp, 2, 4 mod  p. Let  v be a valuat ion of IFp(2) with v(). - 2o) = 1. Equat ion  (18) can be 
solved in two steps 

K ~ a ( U D ) - ' ~ : ~ H " H  = I (19) 

G" + 1 = K . (20) 

To  solve (19) we set K = ~_>o piKi. Then Ko and K~ must  satisfy 

K g -  ~(UD )-  P~ 4~- t(4971Bp)P4)p4); l Bp - I m o d p  (21) 

K1 = Ko 497 1 ((I)p 1 B p ) -  1 C1~pF (22) 

(~v- lBp)rP  --(qbp-lBp)~p-l(#v-lBp)P-tq)pF + A =- O m o d p  (23) 

with 
A p l [ q ~ B f  2 ~ -~ 2 ~2 1 = - - CDpBpH cI)p(UD) Ko -~]  . 

To  solve (20) we set G = ~i>_opiGi with 

G~ +1 - K0 m o d p  2 . (24) 
Then G1 satisfies 

(Gol  G1) p + (GoI G1) - KoX K t  =- 0 m o d p .  (25) 

It suffices to look  at the (1, 1)-entries of the above matr ix  equations.  Equa t ion  (21) 
yields v(Ko,1, t m o d p ) =  - ( p -  1)-1. Using an a rgument  like (5.15) one checks 
v(Al. l m o d p ) = O .  F r o m  (23) and (22) one sees v ( ( K o l K l h ,  l m o d p ) =  
v(Fl , l  m o d p ) =  _ p - 1 .  Then v(Go, l, l m o d p ) = - ( p 2 - 1 )  -1 by (24) and 
v((Go ~ G 1)1, ~ m o d  p) = - p -  z by (25). So the total  ramificat ion for solving (18) 
modu lo  p2 is p2(p2 _ 1). 

The  case p = 3 mod 5 can be developed in exactly the same way as the case 
p --= 2 m o d  5. The  result is exactly the same. 

5.16 Remark. The method  used in (5.14) and (5.15) works  also for 

�9 families of  elliptic curves 
�9 families of  K3-surfaces which have a special fiber where the formal  Brauer  

group  has height 2 
�9 isotypical componen t s  H 1 (X | lFp, ~K(9 x | r , ) t  for the action of p,  induced 

by  (x, y)~-+(x, (y) ((~/~,) in (5.1), provided pl = l and lilt[ = 2. 
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