Effects of Buspirone and Chlordiazepoxide on Plasma Catecholamine and Corticosterone Levels in Stressed and Nonstressed Rats

SIETSE F. DE BOER, JEF L. SLANGEN AND JAN VAN DER GUGTEN

Department of Psychopharmacology, Faculty of Pharmacy, University of Utrecht
Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands

Received 24 July 1990

DE BOER, S. F., J. L. SLANGEN AND J. VAN DER GUGTEN. Effects of buspirone and chlordiazepoxide on plasma catecholamine and corticosterone levels in stressed and nonstressed rats. PHARMACOL BIOCHEM BEHAV 38(2) 299-308, 1991

The effects of intragastric administration of the prototypical benzodiazepine (BDZ) anxiolytic drug chlordiazepoxide (CDP) and the non-BDZ anxiolytic agent buspirone (BUSP) on basal and stress-elevated plasma noradrenaline (NA), adrenaline (A) and corticosterone (CS) contents were investigated. Acute dosing of CDP (1-27 mg/kg) produced dose-related increases in basal CS secretion but was without effect on basal NA levels. The high dose of CDP caused a slight short-term A increase. Dose-dependent increases in plasma A, NA and CS contents were observed after acute treatment with BUSP (2 and 20 mg/kg). A medium dose of CDP (9 mg/kg) attenuated the stress-induced CS and A elevations. High doses of CDP that elevated basal CS release prevented a further increase of CS by stress and inhibited the NA and A response to stress. BUSP (2 and 20 mg/kg) was not effective in decreasing the stress-elevated rise of CS, NA or A. Conversely, the 20 mg/kg dose of BUSP enhanced the stress-induced A response. Repeated administration of CDP (9 mg/kg/day for six days) produced tolerance to the elevation of basal CS triggered by acute CDP treatment, but increased the efficacy of the drug’s CS and A attenuating action in stressed rats. Repeated administration of BUSP (2 mg/kg/day for six days) also produced tolerance to the acute BUSP-induced effect on basal CS release, but did not affect the stress-induced CS, NA and A responses. It is concluded that the clinically effective anxiolytic BUSP does not have the BDZ-like property to inhibit stress-induced elevations in CS, NA and A. Furthermore, the present data support other evidence that activation of 5-HT1A receptor mechanisms increases plasma catecholamine and corticosterone concentrations.

Noradrenaline Adrenaline Corticosterone Chlordiazepoxide Buspirone Stress Rat

THE novel anxiolytic drug buspirone (BUSP) has a chemical structure and a neuropharmacological mechanism of action different from that of the prototypical benzodiazepine (BDZ) chlordiazepoxide (CDP) [see (15) for review]. BUSP, a 5-HT1A receptor ligand, was reported to possess potent BDZ-like activity in animal behavioral tests of anxiolytic efficacy, and to be devoid of the sedative, anticonvulsant, muscle-relaxant and addicting effects typical of BDZs (15, 18, 48).

Whereas BDZs and BUSP both have various behavioral effects indicative of anxiolytic activity, the BDZs are also known to have effects on circulating stress-related hormones such as the glucocorticoid corticosterone (CS) and the catecholamines noradrenaline (NA) and adrenaline (A). In general, acute administration of low to moderate doses of BDZs block or attenuate stress-induced elevations in these hormones (4, 10, 16, 17, 24, 27, 28, 30, 32, 35, 39, 44, 47), while relatively high doses of BDZs cause an enhancement of CS secretion in unstressed animals (30, 32, 39, 44). The former effect has been considered to reflect the anxiolytic property of BDZs, whilst the latter effect has been attributed to their sedative/ataxic action (20, 28, 30). In accordance with this view are results regarding the effects of repeated (subchronic) BDZ administration on glucocorticoid secretion. Most investigators have reported that tolerance develops rapidly to the BDZ-induced elevation in basal CS concentrations but not or at least less quickly/completely to their glucocorticoid-attenuating action in stressed rats (4, 16, 28, 32).

The neuroendocrine effects of BUSP, however, have not been clearly established. Although acute administration of BUSP consistently produced dose-dependent increases in basal CS secretion (26, 33, 45), the effects of this drug on stress-induced CS elevations are scarce and conflicting; i.e., either a small inhibition (45) or no effect at all (33). In addition, no data are available concerning the effects of BUSP on basal and stress-elevated plasma NA and A concentrations. Furthermore, effects of chronic BUSP
FIG 1 Time course of plasma corticosterone (A), adrenaline and noradrenaline (B) levels after intragastric administration of saline (2 ml/kg) or chlordiazepoxide (CDP, 1-27 mg/kg) to unstressed rats. Data represent mean ± SEM (n=12). For the adrenaline and corticosterone data, ANOVA revealed significant Dose [A F(2,22)=4.44, CS F(2,22)=4.11] and Time [A F(5,55)=5.26, CS F(5,55)=25.2] main effects, as well as a Dose × Time interaction [A F(10,110)=4.24, CS F(10,110)=13.7]. No significant effects were found for noradrenaline. *Significantly (at least p<0.05) different from saline-treated controls at similar time points or 0 time point. †Significantly different from corresponding lower drug dose values.

Treatment on these stress-related hormones have not been investigated.

The present series of experiments were designed to determine the effects of acute as well as of subchronic BUSP and CDP administration on the dynamics of plasma NA, A and CS concentrations in unstressed and stressed rats.

METHOD

Animals and Housing

Male Wistar rats (Harlan-CPB, Zeist, The Netherlands) weighing 250-275 g on their arrival in the laboratory were used as subjects. They were housed individually in clear Plexiglas cages (25×25×30 cm) on a layer of woodshavings. For at least two weeks prior to surgery, cages were placed in a room under conditions of constant temperature (21±2°C) and a fixed 12-h light/dark photoperiod (lights on at 7:00 a.m.). Subjects were in full view, sound and smell of each other, had free access to food and water at all times and were handled daily for weighing purposes.

Surgery and Blood Sampling

Under Hypnorm anesthesia (10 mg/kg fluanisone and 0.2 mg/kg fentanyl) and premedicated with atropine (1 mg/kg) and diazepam (5 mg/kg), animals were provided with a silastic cannula (i.d. 0.4 mm, o.d. 1.4 mm, Dow Corning, USA) into the entrance of the right atrium via an external jugular venotomy according to the techniques basically described by Steffens (40). This cannula allows frequent withdrawal of small amounts of blood without disturbing the animal either behaviorally or physiologically (40,49). Animals were also provided with a silicon cannula (i.d. 0.8 mm; o.d. 1.4 mm) into the antrum wall of the stomach. The outer ends of both cannulae were extended subcutaneously to emerge at the top of the head and anchored to the skull (43). This indwelling catheter allows intragastric drug administration in the freely behaving and undisturbed rat. After surgery, the rats were allowed to recover for at least one week before the start of the experiments. During this period, animals were accustomed to the blood sampling procedure.

At least ninety minutes before an experiment, the indwelling cannulae were extended with polyethylene tubes (1 0.5 mm; o.d. 1.45 mm; i.d. 0.75 mm) allowing blood sampling and intragastric drug infusion. Blood samples of 0.35 ml were withdrawn for determination of NA, A and CS concentrations. Immediately after each blood sample an equal volume of heparinized (12.5 IU/ml) blood, freshly obtained from a cannulated donor rat, was transfused through the catheter. At the end of the experiment, the indwelling part of the heart cannula was filled with 0.9% (w/v) NaCl containing 500 IU heparin/ml plus 60% polyvinylpyrrolidone (Merck, Darmstadt, FRG). The indwelling part of the stomach catheter was filled with 0.9% saline.

Drugs

Chlordiazepoxide hydrochloride (Hoffmann-La Roche, Basel, Switzerland) and busipirone hydrochloride (Bristol-Myers, Evansville, IN) were dissolved in physiological saline. The vehicle
consisted of an acidified (HCl) saline solution with a similar acidity as the respective drug solutions (pH 3.2-3.9). Solutions were freshly prepared before every test. In order to minimize the non-drug-related stress associated with the most commonly used methods of drug administration (e.g., handling, IP or SC injection, oрогastrectomy), drug and vehicle solutions were administered via an intragastric cannula in a volume of 2 ml/kg.

**Experimental Procedures**

All experiments were performed in the light period between 9:00 a.m. and 1:00 p.m.

**Experiment 1 Effects of CDP and BUSP on Plasma CA and CS Levels in Unstressed Rats**

Twenty subjects were used in this experiment. Twelve animals were sampled under vehicle and 4 doses of CDP (1, 3, 9 and 27 mg/kg), and eight animals under vehicle and 2 doses of BUSP (2 and 20 mg/kg), using a randomized repeated measures within-subject design with an intertest interval of 1 week. Immediately after the first blood sampling (t=0), drug or vehicle solutions (2 ml/kg) were slowly infused via the intragastric cannula. Subsequently, animals remained undisturbed in their home cages. Following the t=15 min blood sample, the rats were picked up by hand and placed into an unfamiliar cage for 120 min (novel environment stress; NES). Blood was sampled at t=59, 61, 90, 120 and 180 min after drug treatment.

**Experiment 2 Effects of CDP and BUSP on Novelty Stress-Induced CA and CS Elevations**

Twelve subjects were used in this experiment. Six animals were sampled under vehicle and 2 doses of CDP (9 and 27 mg/kg) and the other six under vehicle and 2 doses of BUSP (2 and 20 mg/kg), using a balanced repeated measures within-subject design with an intertest interval of 1 week. After the first blood sampling (t=0), drug or vehicle solutions (2 ml/kg) were slowly infused via the intragastric cannula. Subsequently, animals remained in their home cage for 60 min, thereafter they were picked up by hand and placed into an unfamiliar cage for 120 min (novel environment stress; NES). Blood was sampled at t=59, 61, 90, 120 and 180 min after drug treatment.

**Experiment 3. Effects of Acute and Repeated Administration of CDP and BUSP on Basal and Water Stress-Induced CA and CS Release**

Two groups of twenty rats each were used in this experiment. Rats in each group received six consecutive daily pretreatments with either vehicle (saline, n=10) or drug (9 mg/kg CDP or 2 mg/kg BUSP). During the whole experiment only one drug was used for each group. Drug and vehicle solutions were administered intragastrically at approximately the same time each day. On the test day (i.e., day 7), half of the vehicle- and drug-pre-treated groups were given vehicle, whereas the other half received drug treatment. Thus for each drug-treatment group, a factorial design consisting of the following four subgroups was created (pretreatment/test treatment) A, Vehicle/Vehicle; B, Vehicle/Drug; C, Drug/Vehicle; D, Drug/Drug. On the test day, immediately after taking the first baseline blood sample (at t=−60 min), drug or vehicle solutions (2 ml/kg) were slowly infused via the intragastric cannula. After 59 min (at t=−1 min) another blood sample was taken from the unstressed animals in their home cages, whereas after (at t=0 min) rats were picked up by hand and placed for 15 min into a new cage containing 5 cm of water of 35+2°C (water stress, WS). Blood samples were taken at t=1 min and t=15 min. Following the t=15 min blood sample, the rats were returned to their home cages and additional blood samples were taken at t=60 and t=120 min.

**Chemical Determinations**

Blood samples were immediately transferred to ice-cooled centrifuge tubes containing 10 μl heparin solution (500 IU/ml). For the determination of plasma catecholamine contents, an aliquot of 250 μl transferred blood was rapidly pipetted into chilled tubes containing 10 μl of a solution of 25 mg/ml disodium EDTA and 27.5 mg/ml reduced glutathione in order to prevent CA degradation. The remaining 100 μl blood was used for the CS and, in case of the CDP experiments, for the BDZ-receptor binding assays. After centrifugation (4000×g for 10 min at 4°C), supernatants were removed and stored at −30°C until assayed.

The concentrations of NA and A were measured in duplicate in 20 μl perchloric acid-deproteinized plasma according to a radioenzymatic COMT-procedure (12,46). In short, the CAs were converted into their [3H]-methoxy derivatives by incubation with S-adenosyl-L-[methyl-3H]methionine (80 Ci/nmol; NEN Chemicals) in the presence of catechol-O-methyltransferase. Labeled products were isolated by organic extraction and paper chromatography. After elution of the labeled products, activity was counted in a liquid scintillation analyzer (Phillips, The Netherlands). CA concentrations were calculated from net DPM values for samples and internal standards and expressed as pg/ml. The intra- and interassay variabilities were less than 10% and 15%, respectively. The sensitivity of the assay was 1 pg for both NA and A.

Plasma CS concentrations were determined in duplicate according to a competitive protein-binding method (37). Corticoste-
Benzodiazepine activity in plasma was measured according to a radioreceptor procedure (23), modified with respect to radioligand and receptor preparation (36) and adapted to small plasma samples. CDP was extracted from 50 μl samples in 175 μl ethyl acetate. Extract fractions were evaporated and incubated in duplicate with 900 μl bovine frontal cortex homogenate and 25 nCi (methyl-3H)flunitrazepam (60 Ci/mmol; NEN Chemicals) at 4°C for 60 min. Unbound benzodiazepine was removed by rapid filtration through Whatman GF-B filters. CDP standards were used to calculate CDP equivalent levels in plasma. A plasma CDP concentration of 3.1 ± 0.3 nmol/ml resulted in 50% inhibition of specific binding.

Similarly, plasma 5-HT₁A activity was measured according to a radioligand displacement method. BUSP and its metabolites were extracted into 175 μl toluene from 25 μl plasma to which had been added 12.5 μl 0.5 M sodium phosphate buffer, pH 10.5. Extract fractions were evaporated and incubated in duplicate with purified bovine frontal cortex homogenate and 75 nCi(propyl-2,3-rmg-1,2,3-3H)8-hydroxy-DPAT (125 Ci/mmol, NEN Chemicals) in a final volume of 600 μl at 37°C for 10 min. A plasma BUSP concentration of 3.1 ± 0.3 nmol/ml resulted in 50% inhibition of specific binding.

Statistical Analyses

The response-time patterns of the plasma constituents were evaluated by use of two-way analyses of variance (ANOVA) with drug treatment as within-(Experiments 1 and 2) or as between-(Experiment 3) subject factor and sampling time as repeated measures within-subject factor. The multivariate model was used for the repeated measures factor (11). Further analyses were made by paired Student t-tests (individual within-group comparisons) or by Duncan's new multiple range test (individual between-group comparisons) to determine the source of the detected significance in the ANOVA's (7). The criterion of significance was set at p<0.05.

RESULTS

Experiment 1

Under nonstress conditions, acute intragastric administration of CDP (9 and 27 mg/kg) resulted in dose- and time-related elevations of plasma CS levels (Fig. 1A; see legends to the figures.
CDP AND BUSPIRONE EFFECTS ON STRESS HORMONES

FIG 4. Time course of plasma buspirone levels (as determined by 5-HT1A radioreceptor assay) following acute intragastric administration of 2 and 20 mg/kg buspirone to unstressed rats. Data are expressed as mean ± SEM for 3–8 animals. Results from ANOVA are as follows: F(dose)(1,9) = 9.77, p < 0.05; F(time)(5,5) = 7.09, p < 0.05; F(dose × time)(5,5) = 2.72. * Indicates significant (at least p < 0.05) differences between the two doses for detailed results of ANOVA). These doses of CDP did not affect basal NA concentrations but a small increase in A levels was observed 40 min following the 27 mg/kg dose (Fig. 1B). Figure 2 shows the dynamics of CDP levels expressed as CDP binding equivalents in blood after administration of 9 and 27 mg/kg CDP. A clear dose-related increase was found for CDP, reaching peak levels at 20–40 min and remaining high during the rest of the sampling period.

Marked dose- and time-dependent increases in plasma CS concentrations (Fig. 3A) as well as in plasma NA and A contents (Fig. 3B) were observed following acute administration of BUSP (2 and 20 mg/kg). Figure 4 shows the dynamics of BUSP levels expressed as buspirone binding equivalents in blood after administration of 2 and 20 mg/kg buspirone. A clear dose-related increase was found, reaching peak levels at t = 15 min.

Experiment 2

Exposure of vehicle-treated rats to mild stress in the form of a novel environment resulted in reliable plasma CS elevations (significant at t = 90 and 120 min), as well as rapid but transient increases (2.5-fold) in plasma NA (significant at t = 61 and 90 min) and A (significant at t = 61 min) concentrations (see Figs. 5 and 6). The effects of CDP and BUSP administration on these stress-elicited rises in circulating CS, NA and A concentrations are illustrated in Figs. 5 and 6, respectively. Pilot experiments showed that 1 and 3 mg/kg CDP did not affect either basal or novelty stress-elevated CS, NA and A concentrations (data not shown). As in Experiment 1, the 9 mg/kg dose of CDP caused a slight increase in basal CS levels but almost completely blocked the novelty-induced CS release. Furthermore, this dose of CDP significantly attenuated the A response to NES and tended (p = 0.053) to reduce the NA stress response. The high (27 mg/kg) dose of CDP strongly elevated basal CS release, but prevented a further increase by novelty stress. This dose almost completely inhibited the stress-induced increases in plasma NA and A. One hour (i.e., t = 61 blood sample) after administration of 9 and 27 mg/kg CDP, plasma levels of CDP were 14.2 ± 1.6 and 29.6 ± 3.3 nmol/ml, respectively.

The 2 and 20 mg/kg doses of BUSP elevated CS values in a dose-dependent fashion. In marked contrast to CDP, BUSP was not effective in attenuating the novelty-elicited rises of plasma CS, NA and A contents. In fact, the 20 mg/kg dose of BUSP elevated basal A levels and enhanced the A response to stress (Fig. 6). One hour after administration of 2 and 20 mg/kg buspirone,
plasma levels of BUSP were $572 \pm 129$ and $1278 \pm 362$ pmol/ml, respectively.

**Experiment 3**

Placement of vehicle-treated rats into shallow water for 15 min was followed by immediate and substantial increases in plasma A (4-fold) and NA (2-fold) concentrations as well as a significant rise (10-fold) in plasma CS contents (see Figs. 7 and 9). During the postwater stress period when the animals were placed back into their home cages, a secondary increase in plasma NA occurred while plasma A and CS levels declined towards basal values. The plasma A and CS levels reached prestress values again at 60 and 120 min, respectively. The postwater stress period was characterized by vigorous grooming and wet-dog shaking behavior.

Figure 7 shows the effects of 9 mg/kg CDP administration on basal and water stress-elevated CS, NA and A release in either vehicle- or CDP (9 mg/kg/day for 6 consecutive days)-pretreated
The main new findings of this study are 1) that BUSP does not have the benzodiazepine-like property to antagonize the stress-in-

FIG 8 Time course of plasma chlordiazepoxide levels following acute administration of chlordiazepoxide (CDP, 9 mg/kg) or saline in saline- and CDP-pretreated (9 mg/kg/day for 6 consecutive days) rats during basal and water-immersion stress (dotted area) conditions. Data represent means ± SEM for 5 animals. ANOVA yielded a significant main effect of Treatment, F(3,15) = 62.2, and Time, F(5,11) = 44.8, as well as a significant Treatment × Time interaction effect, F(15,39) = 6.52. *Significantly (at least p < 0.05) different from corresponding Saline/Saline and CDP/Saline group values. †Significantly different from corresponding Saline/CDP group value.

FIG 9 The effects of buspirone (2 mg/kg) or saline (2 ml/kg) on basal and water stress-elevated corticosterone (A), noradrenaline (B) and adrenaline (C) release in saline- and buspirone-pretreated (2 mg/kg/day for 6 consecutive days) rats. Data represent means ± SEM for 5 rats. Water-immersion stress period is indicated by the dotted area. ANOVA showed a significant main effect of Treatment for CS only, F(3,16) = 28.6. The main effect of Time was significant for all three hormones [CS F(5,12) = 38.5, NA F(5,12) = 91.8, A F(5,12) = 124]. The Treatment × Time interaction was only significant for CS, F(15,42) = 2.62. *Significantly (at least p < 0.05) different from corresponding Saline/Saline group value. †Significantly different from corresponding Saline/Busp group value.
duced elevations in plasma CS, NA and A concentrations and 2) that BUSP (a 5-HT₁A receptor agonist), in contrast to the benzodiazepine CDP, causes marked increases in basal plasma NA and A levels. Furthermore, the results demonstrate that acute enteral administration of CDP as well as of BUSP produces dose-related decreases in basal CS concentrations. These acute CS elevating effects show complete tolerance after repeated drug treatment.

The CS-releasing effects of CDP (27, 28, 32, 44) and BUSP (26, 33, 45) have previously been reported by others using different routes of drug administration (parenteral), different methods of blood sampling (decapitation) and different experimental designs (single injection test interval, between-subjects design). Although CDP and BUSP have similar effects on pituitary-adrenocortical activity in undisturbed rats, these are most likely mediated by different mechanisms of action. BUSP has been shown to produce an increase in pituitary-adrenocortical outflow by activating 5-HT₁A receptor mechanisms (25, 26, 38), whereas the CS-releasing action of CDP is mediated by central-type BDZ receptors (6.9. 22, 41). The importance of such an interaction as to the CDP receptors mediating such effects are located in the brain, at the neurosympathetic and adrenocortical axis that occurs in response to a variety of stressful stimuli. In accordance with this view are the results regarding the effects of repeated CDP treatment: tolerance develops quickly to the BDZ-induced elevation in CS concentrations but not to the drug’s CS- and A-attenuating action in stressed rats [this study, (16,32)]. There is general agreement in the literature that tolerance develops very quickly to the sedative properties of BDZs, whereas its anxiolytic effects are still found after relatively short-term (i.e., one week) treatment.

Surprisingly, in the present study, it was found that repeated CDP treatment (once daily for six days) increased its potency to antagonize the stress-induced CS and A elevations. This increased potency was accompanied by a parallel increase in plasma CDP concentrations following acute dosing with CDP in these pretreated animals. Recently, a similar pharmacokinetic effect was observed in the dog, i.e., after repeated dosing with diazepam (1 or 2 mg/kg PO 3 times daily for one week), maximum drug and metabolite levels were higher than those determined after the first dosing with diazepam (31). Whether this remarkable pharmacokinetic effect after chronic BDZ pretreatment is the result of an increased rate of drug entry into the blood stream or the result of an attenuated metabolism of the drug is not clear yet. Hence, this point remains open to further investigation.

Development of tolerance is often accompanied by the occurrence of signs of withdrawal after discontinuation of drug administration (21). In the case of BDZs, spontaneous withdrawal is characterized by anxiogenic-like symptoms such as decreased food intake (29), increased body temperature (31), changes in motility (29,31) as well as increased sympathomimetic function (19) and raised adrenocortical activity (9,14). In the present study, CDP-withdrawal from subchronically pretreated rats did not affect basal plasma CS, NA and A concentrations, but increased the postwater-stress-induced NA response and prolonged the CS elevation in response to water stress. The data, therefore, indicate that withdrawal effects on neurosympathetic and adrenocortical outflow are only apparent under nonstressed conditions, i.e., when these systems become activated.

Although BUSP was reported to possess potent anxiolytic-like effects in several animal behavioral models as well as in man without producing the ancillary properties of the BDZs (sedation, myorelaxation, addiction), the drug was not found to be effective in attenuating the stress-elevated rise in CS and/or catecholamine concentrations in this study. Conversely, a high dose of BUSP significantly enhanced the novelty stress-induced A release. An additive effect of BUSP and stress has been observed on CS levels (33,45), but was not replicated in this study. In a previous study it was suggested that the 0.5 mg/kg (IP) dose of BUSP attenuated the CS rise in response to stress (conditioned emotional response paradigm). However, in addition to methodological prob-
plperazine (1 and 10 mg/kg, IP) had the ability to blunt the response of CS to rotational stress. However, diazepam (1 and 10 mg/kg) in their hands also did not significantly alter the stress-reduced increase of plasma catecholamines in the conscious rat. Neuropharmacology 27 975–980, 1988


5 Basset, J. R., Camercock, K. D. Effects of psychoactive drugs on responses of the rat to aversive stimulation. Arch Int Pharmacodyn 212 221–229, 1974


8 Chaouloff, F. Physiological mechanisms underlying the hyperglycemic effect of the 5-HT2a agonist 8-OH-DPAT. Evidence for a peripher al action. Proc Ninth European Conference on Brain Research, les Arcs, 1989 9


11 Davidson, M. L. Univariate versus multivariate tests in repeated measures experiments. Psychol Bull. 77 446–452, 1972

12 De Boer, S. F., Koopmans, S. J., Slangen, J. L. Van der Gutjen, J. Effects of fasting on plasma catecholamine, corticosterone and glucose concentrations under basal and stress conditions in individual rats. Physiol Behav 45 989–994, 1989


14 Eisenberg, R. M. Diazepam withdrawal as demonstrated by changes in plasma corticosterone a role for the hippocampus. Life Sci. 40 817–825, 1987


16 File, S. E. The rat corticosterone response. Habitation and modification by chlordiazepoxide. Physiol Behav. 29 91–95, 1982

17 File, S. E., Pellow, S. The effects of putative anxiolytic compounds 8165, PK 9084 and trazocalone on the rat corticosterone response. Physiol Behav. 35 583–586, 1985


20 Grant, L. F., Christensen, P. Benzodiazepine suppression of cortisol secretion a measure of anxiolytic activity? Pharmacopsychiatry 19 19–22, 1986


29 Lamb, R. J., Griffiths, R. R. Precipitated and spontaneous withdrawal in baboons after chronic dosing with lorazepam and CGS 5986. Drug Alcohol Depend. 14 11–17, 1984


33 Matheson, G. K., Gage, D., White, G., Dixon, V., Gipson, D. A...
comparison of the effects of buspironone and diazepam on plasma cortisol levels in rat. Neuropharmacology 27: 823-830, 1988


