Lactose Transport System of Streptococcus thermophilus. The Role of Histidine Residues
Poolman, Berend; Modderman, Roel; Reizer, Jonathan

Published in:
The Journal of Biological Chemistry

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1992

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Download date: 10-01-2019
Lactose Transport System of *Streptococcus thermophilus*

THE ROLE OF HISTIDINE RESIDUES*

(Received for publication, November 6, 1991)

Bert Poolman‡, Roei Modderman‡, and Jonathan Reizer†

From the ‡Department of Microbiology, State University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands and the †Department of Biology, University of California at San Diego, La Jolla, California 92093

The lactose transport protein (LacS) of *Streptococcus thermophilus* is a chimeric protein consisting of an amino-terminal carrier domain and a carboxyl-terminal phosphoenolpyruvate:sugar phosphotransferase system (PTS) IIA protein domain. The histidine residues of LacS were changed individually into glutamine or arginine residues. Of the 11 histidine residues present in LacS, only the His-376 substitution in the carrier domain significantly affected sugar transport. The region around His-376 was found to exhibit sequence similarity to the region around His-322 of the lactose transport protein (LacY) of *Escherichia coli*, which has been implicated in sugar binding and in coupling of sugar and H⁺ transport. The H376Q mutation resulted in a reduced rate of uptake and altered affinity for lactose, a-galactoside, melibiose (α-galactoside), and the lactose analog methyl-β-D-thiogalactopyranoside. Similarly, the extent of accumulation of the galactosides by cells expressing LacS(H376Q) was highly reduced in comparison to cells bearing the wild-type protein. Nonequilibrium exchange of lactose and protons and galactosides demonstrated using purified Enzyme IIA protein domains of *Streptococcus thermophilus* and *Streptococcus thermophilus*. The heterologous exchange of lactose for galactose most likely occurs during metabolism of lactose by *S. thermophilus* and *Lactobacillus bulgaricus* (Poolman, 1990).

Although the overall similarity between the carrier domain of LacS and the lactose carrier (LacY) of *E. coli* is not significant (Poolman *et al.*, 1989), a region (H376/E379) in LacS can be identified that is similar to the H322/E325 region in LacY (Fig. 1). Evidence has been presented indicating that His-322, Glu-325 (putative helix X), and Arg-302 (putative helix IX) of LacY are in close contact with each other and that these residues could form a "charge relay" system that participates in the coupled transmembrane movement of protons and galactosides (Puttn et al., 1986, 1989; Carrasco et al., 1986, 1989; Menick et al., 1987; Lee et al., 1988). Recently, the requirement of an ionizable histidine residue at position 322 in LacY for galactoside/proton symport has been questioned (King and Wilson, 1989a; 1989b; Franco and Brooker, 1991). It has been shown that some His-322 mutants of LacY, which do not build up a galactoside concentration gradient, catalyze galactoside-dependent proton transport (King and Wilson, 1989a, 1989b; Franco and Brooker, 1991). Moreover, the H322N mutant of LacY still accumulates lactose against a concentration gradient, although the levels of accumulation are low compared to those of the wild-type strain (Franco and Brooker, 1991).

In this study, we assess the role of the histidine residues in the carrier and IIA protein domains of the lactose transport protein of *S. thermophilus*. The results indicate that His-552 is phosphorylated by HPr(His-P) from *Bacillus subtilis*, but that the conserved histidine residues in the IIA protein domain of LacS are not essential for transport. His-376 in the carrier domain of LacS could serve a role similar to that of His-322 in LacY. The similarities and differences between the proposed active-site residues of LacS and LacY are discussed.

* The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

‡ Supported by a fellowship from the Royal Netherlands Academy of Arts and Sciences. To whom correspondence should be addressed. Tel.: 51-50-632170; Fax: 51-50-635295.
EXPERIMENTAL PROCEDURES

Bacterial Strains and Plasmids

Bacterial strains are described in Table I. The cells were grown aerobically in Luria broth at 37 °C (Sambrook et al., 1989) unless indicated otherwise. Plasmid pEKS8 containing a 4.1-kilobase EcoRI chromosomal fragment of *Klebsiella pneumoniae* KAY2026, encoding the lactose transport protein (LacS), has been described (Poolman et al., 1989, 1990). For the construction of pSKE8, the 4.1-kilobase EcoRI fragment of pEKS8 was ligated in the EcoRI site of pBluescript IIISK+ (Stratagene). Plasmid pAVL1 is pACYC177 that carries a 9.5-kilobase HindIII chromosomal fragment of *Klebsiella pneumoniae* KAY2026, carrying the nag operon, including nagE, which codes for IICBA-N-acetylglucosamine (Vogler et al., 1986).

Site-directed Mutagenesis

The mutagenic primers are listed in Table II. Site-directed mutagenesis was carried out by the method of Kunkel et al. (1987).

Mutations in pSKE8—Single-stranded uracil-containing DNA of pSKE8 was isolated from *E. coli* CJ236 (dur+, ung+); pSKE8 after infection with helper phage M13KQ7 (Sambrook et al., 1989). Closed-circular heteroduplex DNA with the desired mutations was synthesized in *in vitro* as described (Kunkel et al., 1987) and transformed into *E. coli* JM101 (ung+). Plasmid DNA was isolated from a number of transformants, and plasmids bearing the desired mutation(s) were identified by digestion with restriction enzymes for which a site was lost or created by the mutagenesis (see Table II). Subsequently, mutations were verified by nucleotide sequencing of double-stranded DNA using the dideoxy chain termination method (Sanger et al., 1980).

Preparation of Cell Suspensions

Overnight cultures or exponentially grown cells (A∞0 = 0.4−0.8) were harvested by centrifugation, washed twice, and resuspended to a final protein concentration of 20–80 mg/ml in 50 mM potassium phosphate (pH 6.5), 5 mM magnesium sulfate (KPM buffer). Measurements of the membrane potential and analysis of the effects of ionophores (valinomycin, nigericin) on transport were performed with

E. coli cells that were treated with EDTA essentially as described previously (Sarkar et al., 1988). Concentrated cell suspensions were stored on ice until use.

Transport Assays

Transport experiments were performed at 20, 30, or 37 °C as specified in the figure legends.

Active Transport—Cells were diluted to a final protein concentration of 0.6−1.2 mg/ml in KPM buffer containing 10 mM D-lithium lactate as the electron donor. After 2 min of pre-energization in the presence of oxygen, radiolabeled substrate was added; and at appropriate time intervals, the uptake reaction was stopped by addition of 2 ml of ice-cold 100 mM LiCl. Cells were collected by filtration on a 0.45-μm cellulose nitrate filter (Millipore Corp.) and washed with 2 ml of ice-cold LiCl.

Efflux and Exchange—Preloading of cells with sugars was achieved by incubation (overnight at 4 °C) of the concentrated washed cell suspensions with the appropriate concentration of radiolabeled galactoside in the presence of deoxyribonuclease I (20 μg/ml). The next day, potassium azide and carbonyl cyanide m-chlorophenylhydrazonate were added to final concentrations of 30 mM and 50 μM, respectively; and the cells were incubated for another 2 h at room temperature essentially as described (King and Wilson, 1990). For efflux and exchange, 1-μl aliquots of concentrated cell suspension (50–80 mg/ml) were diluted into 500 μl of KPM buffer containing no substrates and unlabeled galactosides, respectively. The transport reaction was stopped by rapid filtration as described above.

Isolation of Membranes

For the isolation of inside-out membrane vesicles of *E. coli* T184, T184/pEKS8, T184/pEKS8(H552Q), T184/pEKS8(H537A), and T184/pEKS8(E548/E556D), cells were lysed by a 2-fold passage through a French pressure cell (20,000 p.s.i.), and membranes were collected as described (Poolman et al., 1983). The membranes were washed and resuspended to 20–30 mg of protein/ml in 10 mM Tris-HCl (pH 7.5) containing 0.5 mM phenylmethylsulfonyl fluoride.

Protein Purification

Enzyme I and HPr of *B. subtilis* and *E. coli* were purified as described previously (Reizer et al., 1989, 1992).

Phosphorylation Assay

Inside-out membrane vesicles (5 mg/ml) were incubated in 50 mM Tris-HCl (pH 7.5) containing 5 mM MgCl2, 0.1 mM dithiothreitol, 0.5 mM NaEDTA, purified HPr (0.5 mg/ml) and Enzyme 1 (0.35 mg/ml), and [32P]enolpyruvate (Reizer et al., 1984). The phosphorylation reaction was carried out at 37 °C for 15 min in a total volume of 15 μl. The reaction was terminated by addition of an equal volume of Laemmli sample buffer (Laemmli, 1970), and proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (12.5% electrophoresis gel) and stained with Coomassie blue. The proteins were visualized by exposure to X-ray film.

Phosphorylation of *B. subtilis* and *E. coli*

Table I

<table>
<thead>
<tr>
<th>Strain</th>
<th>Genotype</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DW1</td>
<td>lac*, ∆lac(ZY), ∆mel(AB), strA</td>
<td>Wilson and Wilson (1987)</td>
</tr>
<tr>
<td>PPA209</td>
<td>DW2, pta1001 rse/Tn10</td>
<td>Postma a (1987)</td>
</tr>
<tr>
<td>T184</td>
<td>lacI+OXYZ(A), rpsL, met, thr, recA, hasD, hasM (F' lacIqO+ZU'18(Y+A+))</td>
<td>Teather et al. (1980)</td>
</tr>
<tr>
<td>LR2-162</td>
<td>thi-1, hisG1, argG6, metB1, galT8, xyl-7, supE44, rpsL104, dphoA8, tonA2, ptaM, mani, man-162, asnB+Tn5, F'</td>
<td>Vogler et al. (1988)</td>
</tr>
<tr>
<td>LR2-167</td>
<td>L2, nagE</td>
<td>Vogler et al. (1988)</td>
</tr>
<tr>
<td>LMA</td>
<td>L2-162, nagE, crp-1</td>
<td>Vogler et al. (1988)</td>
</tr>
<tr>
<td>JM101</td>
<td>spoE, thi, ∆(lac-pro-AB) (F'), traD36, proAB, lacI53M15</td>
<td>Yanisch-Perron et al. (1985)</td>
</tr>
<tr>
<td>CJ236</td>
<td>dut-1, ung-1, thi-1, relAI/pCJ105 (CamB)</td>
<td>Kunke et al. (1987)</td>
</tr>
<tr>
<td>HB101</td>
<td>hasS20(trm ma)+, recA13, ara14, proA2, lacY1, galK2, rps (sm3a), xyl-5, mtl-1, supE44, λ+, F'</td>
<td>Boyer and Roulland-Dussoix (1969)</td>
</tr>
</tbody>
</table>

a P. W. Postma, unpublished data.
Lactose Transport in S. thermophilus

The nucleotides changed by the site-directed mutagenesis are underlined. The nucleotide changes resulting in the desired amino acid substitution are indicated in boldface type. The last column indicates whether a new restriction was created or a restriction site was lost as a result of the mutagenic event(s).

<table>
<thead>
<tr>
<th>Mutation</th>
<th>Sequence of mutagenic primer</th>
<th>Restriction analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>H8Q</td>
<td>5'-TCCTACTCGCmTGCAGTTGGTA</td>
<td>New BamHI</td>
</tr>
<tr>
<td>H8Q</td>
<td>5'-GCAAAAAATGCAATAGTCTATATTAC</td>
<td>Loss of SmaBl</td>
</tr>
<tr>
<td>H155Q</td>
<td>5'-CGTGTCTCTGAGATCTGCAAAGCGAA</td>
<td>New XbaI</td>
</tr>
<tr>
<td>H376Q</td>
<td>5'-AAGCGGGAACGGGGATATTGCAC</td>
<td>New EcoI</td>
</tr>
<tr>
<td>H422Q</td>
<td>5'-ACACACACACACACACATTTTACTTAACACTTGAAGATTTGGGCAATTC</td>
<td>Loss of HindIII</td>
</tr>
<tr>
<td>H457Q</td>
<td>5'-AGGACGTCAGAACCAAATTTGGAAGAATTTGGGCAATTC</td>
<td>New SfiI</td>
</tr>
<tr>
<td>H466Q</td>
<td>5'-TTGTTGAGAAGTCGAAACACCTTTAGCG</td>
<td>New HindII</td>
</tr>
<tr>
<td>H52Q</td>
<td>5'-TCCTAAGTCAAGATCGAATTTCTTTGCTCA</td>
<td>Loss of BatXI</td>
</tr>
<tr>
<td>H537A</td>
<td>5'-TCTCTACTCGGCCGTCAAGTTGGTA</td>
<td>New KpnI</td>
</tr>
<tr>
<td>H537B</td>
<td>5'-GTCTTTATCCAGTTGGCATCGTTACGTTAAC</td>
<td>New Aul</td>
</tr>
<tr>
<td>H612Q</td>
<td>5'-GTCTTTATCCAGTTGGCATCGTTACGTTAAC</td>
<td>New ClaI</td>
</tr>
<tr>
<td>H548E/G556D</td>
<td>5'-AGATGGTGTCAGAATCTTTATCCACGTGGCATCGATACGTATACGATAC</td>
<td></td>
</tr>
</tbody>
</table>

Materials

[^14C]Benzoic acid (50 mCi/mmol), methyl-[^14C]-glucopyranoside (50 mCi/mmol), and D-glucose-[^14C]lactose (57 mCi/mmoll were obtained from the Radiochemical Centre (Amersham, United Kingdom).[^13C]Methyl-[^14C]-thiogalactopyranoside (50 mCi/mmol) was obtained from Dr. LeBlanc (Bassilana et al., 1987).

RESULTS

Histidine Mutagenesis—The lactose transport protein (LacS) of S. thermophilus contains 11 histidine residues (circled in Fig. 1A), of which 5 are present in the carrier domain and 6 in the IA protein domain. Each of the histidine residues was replaced by site-directed mutagenesis with glutamine or arginine (Table II). Glutamine and arginine were chosen as replacements on the basis of amino acid similarity coefficients that were obtained from the main chain torsion angle distributions of highly resolved protein structures (Niefold and Schomburg, 1991). Plasmids with the histidine mutations were transformed into E. coli HB101, and transformants were streaked on lactose MacConkey agar plates. The lactose transport properties of the LacS mutants were assayed (data not shown). To ensure that secondary mutations did not contribute to the observed phenotype, the transport activity of each mutant was determined with two independent isolates. The data from a second set of mutants did not differ significantly from those presented in Fig. 2. To analyze the transport properties of each of the mutants in more detail, the affinity constant (K_T) and maximal rate of uptake (V_max) for lactose were determined (Table III). The data show that the H376Q mutant had a lower K_T and V_max for lactose, whereas the kinetic properties of the other mutants were not significantly affected.

Since LacS transports lactose as well as melibiose (α-galactoside), TMG, galactose, and other galactosides, the effects of the H376Q mutation on the uptake of these carbohydrates were compared (Fig. 3). To avoid metabolism of lactose and melibiose, transport studies were carried out with E. coli DW1 (ΔlacZY, ΔmelAB/pSKE8(wild type) and DW1/pSKE8(H376Q)). The kinetic parameters for lactose uptake by E. coli DW1 bearing the wild-type or H376Q mutant proteins were similar to those obtained with E. coli DW2 bearing the corresponding transport protein (Table II). The data presented in Fig. 3 show that uptake of melibiose and TMG was markedly more affected by the H376Q mutation than uptake of lactose. In fact, the uptake rates were too low to determine accurately the kinetic parameters of the H376Q mutant (Fig. 3, B and C, insets). The K_T values for uptake of lactose, melibiose, and TMG by LacS(wild type) were 0.7, 0.53, and 0.27 mM, respectively. The V_max values for uptake of lactose, melibiose, and TMG were 270, 140, and 60 nmol/min/mg of protein, respectively.

In contrast to transport of lactose (Fig. 3A), TMG was not accumulated against a concentration gradient by the H376Q mutant (Fig. 3C). To establish whether this difference indeed reflected differences in the ability to accumulate various sugars or whether the apparent failure to accumulate TMG was due to higher efflux by passive and/or facilitated diffusion, a number of experiments were carried out. First, efflux of TMG was analyzed by diluting [14C]TMG-loaded cells into buffer without TMG. No significant differences were observed between the wild-type and H376Q mutants (Fig. 4). Second, the level of accumulation of TMG by the wild-type and H376Q proteins was determined over a wide range of concentrations (5–165 μM) and at different pH values (5.5–8.0). If passive efflux of TMG, in combination with a reduced rate of uptake, affects the accumulation level, one might observe a significant

1 Bassell, unpublished data.
The region corresponds to the loop that connects helices X and XI of LacS. Sources of sequences are as follows: E. coli (ec) RaflB, Aslanidis et al. (1989); K. pneumoniae (kp), LacY, Memorrow et al. (1989); E. coli LacY, Büchel et al. (1988); S. thermophilus, (st) LacS, Poolman et al. (1989); L. bugaricus (lb) LacS, Poolman et al. and E. coli MelB, Yazyu et al. (1984). C. Conserved residues in IIA protein domain of LacS. The region shown corresponds to the proposed phosphorylation site of LacS. Sources of sequences are as follows (see also B): Crr, Nelson et al. (1983); NagE, Rogers et al. (1988); HglS (also indicated as BglF); Schnetz et al. (1987); Streptococcus mutans (sm) SerA, Sato et al. (1989); and B. subtilis (bs) PtsG, Gonzy-Tréboul et al. (1989) and Sutrina et al. (1990). Residues corresponding to His-537 and His-552 in LacS, Poolman et al. (1984). Histidine residues are conserved in the PTS proteins, but not in LacS.

Transport proteins, although raffinose (trisaccharide) was more effective inhibitor of LacS(H376Q) compared with LacS(wild type).

The data presented above describe the effect of H376Q substitution on uphill (Δp-driven) transport by the lactose carrier protein. Under these conditions, a complete translocation cycle includes binding and release of H+ and galactoside as well as reorientation of the loaded and unloaded binding sites. Since LacS also catalyzes an exchange reaction involving only binding and release of galactoside and reorientation of loaded binding sites, nonequilibrium exchange of TMG and lactose by the wild-type and H376Q transport proteins were compared (Figs. 4 and 5). For the exchange reaction, cells were preloaded with [13C]TMG or [15C]lactose and, following addition of with azide/carbonyl cyanide m-chlorophenylhydrazone (see “Experimental Procedures”), diluted 500-fold into buffers containing unlabeled TMG (or lactose) at concentrations ranging from 0 to 20 mM. Since the rate of net galactoside uptake was negligible in these “energy-poisoned” cells (inferred from uptake by unlabeled cells) (data not shown),

Lactose Transport in S. thermophilus

Fig. 2. Lactose uptake by E. coli DW2/pSKE8 wild-type and histidine LacS mutants. Cells were suspended in KPM buffer (pH 6.5) supplemented with 10 mM D-lithium lactate to a final protein concentration of 0.8 mg/ml. After 2 min of pre-energization, [14C]lactose was added to a final concentration of 10 μM, and uptake was assayed for different time intervals. Cells harvested in the stationary phase of growth were used; the assay temperature was 30 °C. HxQ, histidine mutants except H155Q and H376Q; O, wild-type (WT) LacS; □, H155Q mutant; □, H376Q mutants. The shaded area denotes the results obtained with all other histidine mutants of LacS.

Table III
Kinetic parameters of lactose transport by wild-type and histidine LacS mutants

<table>
<thead>
<tr>
<th>Mutation</th>
<th>Kᵢ (mM)</th>
<th>V_max (nmol/min/mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild type</td>
<td>0.8</td>
<td>210</td>
</tr>
<tr>
<td>H39Q</td>
<td>1.0</td>
<td>163</td>
</tr>
<tr>
<td>H51Q</td>
<td>1.2</td>
<td>180</td>
</tr>
<tr>
<td>H155Q</td>
<td>1.1</td>
<td>215</td>
</tr>
<tr>
<td>H376Q</td>
<td>0.27</td>
<td>40</td>
</tr>
<tr>
<td>H422Q</td>
<td>1.1</td>
<td>214</td>
</tr>
<tr>
<td>H457Q</td>
<td>1.4</td>
<td>235</td>
</tr>
<tr>
<td>H466Q</td>
<td>0.6</td>
<td>150</td>
</tr>
<tr>
<td>H502Q</td>
<td>0.8</td>
<td>160</td>
</tr>
<tr>
<td>H537R</td>
<td>0.9</td>
<td>170</td>
</tr>
<tr>
<td>H552Q</td>
<td>1.0</td>
<td>174</td>
</tr>
<tr>
<td>H612Q</td>
<td>0.9</td>
<td>180</td>
</tr>
</tbody>
</table>

the observed isotope exit reaction reflects the real exchange of galactoside. Fig. 4 shows that initially the release of [14C]TMG from the cell was monoeponential with a slope that depends upon the external TMG concentration. The exchange reaction catalyzed by the H376Q mutant was somewhat slower than that of the wild-type strain (the Kᵢ values for external TMG were very similar, i.e. between 0.6 and 1.0 mM). This can be seen more readily from the kinetic analysis of lactose_out/lactose_in exchange (Fig. 5). At an internal lactose concentration of 4.5 mM (see legend to Fig. 5), the exchange kinetics yielded Kᵢ values for external lactose of ~10 mM, which is about an order of magnitude higher than that of Δp-driven lactose uptake (Fig. 3 and Table III).

Role of IIA Protein Domain—The homology between the IIA protein domain of LacS and the IIA protein (domain) of the glucose, N-acetylglucosamine, β-glucoside, and sucrose PTSs (Fig. 1C) suggests that Enzyme I and HPr can catalyze P-enolpyruvate-dependent phosphorylation of His-552 of the lactose transport protein. The data presented in Fig. 2 and

Fig. 3. Uptake of lactose, melibiose, and TMG by E. coli DW2/pSKE8 LacS(wild type) and LacS(H376Q). Experimental conditions were the same as described in the legend to Fig. 2, except that for the time course of galactoside uptake, cells harvested in the exponential phase of growth were used; [14C]lactose, [3H]melibiose,
varying from 10 p~ to 1 mM. The assay temperature was 37 °C; the pEKS8 (ptsI-) were compared. The results obtained with the final protein concentrations were between 0.8 and 1.2 mg/ml. WT, wild type.

Table IV

Substrate specificity of LacS(wild type) and LacS(H376Q)

<table>
<thead>
<tr>
<th>Sugar excess</th>
<th>LacS(wild type)</th>
<th>LacS(H376Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V<sub>lac</sub></td>
<td>V<sub>lac</sub></td>
</tr>
<tr>
<td></td>
<td>nmol/min/mg</td>
<td>%</td>
</tr>
<tr>
<td>No additions</td>
<td>10.8 (100)</td>
<td>1.3 (100)</td>
</tr>
<tr>
<td>Lactose</td>
<td>0.7</td>
<td><0.1</td>
</tr>
<tr>
<td>Melibiose</td>
<td>0.7</td>
<td><0.1</td>
</tr>
<tr>
<td>TMG</td>
<td>0.3</td>
<td><0.1</td>
</tr>
<tr>
<td>TGd<sup>a</sup></td>
<td>0.4</td>
<td><0.1</td>
</tr>
<tr>
<td>Galactose</td>
<td>0.4</td>
<td><0.1</td>
</tr>
<tr>
<td>Maltose</td>
<td>9.5</td>
<td>88</td>
</tr>
<tr>
<td>Sucrose</td>
<td>10.7</td>
<td>99</td>
</tr>
<tr>
<td>IPTG</td>
<td>0.3</td>
<td><0.1</td>
</tr>
<tr>
<td>Raffinose</td>
<td>9.0</td>
<td>83</td>
</tr>
</tbody>
</table>

^aTDG, β-D-galactopyranosyl-1-thio-β-D-galactopyranoside; IPTG, isopropyl-1-thio-β-D-galactopyranoside.

Table III, on the other hand, indicate that the H552Q mutation does not affect transport activity. This suggests that phosphorylation of His-552 does not occur or that phosphorylation of the protein is not essential for transport activity. To assess the functional activities of the IIA protein domain of LacS, several approaches were undertaken. First, Δp-driven uptake and exchange of lactose by DW2/pEKS8 and PFA209/pEK88 (pEKS8) were compared. The results obtained with the and [¹⁴C]TMG were added to final concentrations of 45, 44, and 43 μM, respectively, and the assay temperature was 37°C. For the kinetics of galactoside uptake (insets), cells harvested in the stationary phase of growth were used. Initial rates of uptake were estimated from uptake after 10 s (in triplicate) at galactoside concentrations varying from 10 μM to 1 mM. The assay temperature was 37°C; the final protein concentrations were between 0.8 and 1.2 mg/ml. WT, wild type.

FIG. 4. Nonequilibrium exchange of TMG by E. coli DW2/pSKE8 LacS(wild type) and LacS(H376Q). Cells were preloaded (equilibrated) with 9 mM [¹⁴C]TMG as described under "Experimental Procedures." Equilibration of TMG was confirmed from the estimated amount of [¹⁴C]TMG taken up (expressed as nanomoles/milligram of protein) assuming a specific internal volume of 3 μl/mg of protein. Exit of [¹⁴C]TMG was determined following 500-fold dilution of a concentrated cell suspension (60-80 mg of protein/ml) into KPM buffer (pH 6.5) containing no TMG (efflux) or 0.1 (C), 0.4 (B), 2 (D), or (A) 10 mM TMG (nonequilibrium exchange). The assay temperature was 30°C.

Lactose Transport in S. thermophilus

FIG. 5. Nonequilibrium exchange of lactose by E. coli DW2/pSKE8 LacS(wild type) and LacS(H376Q). Cells were loaded in the presence of 2.9 mM [¹⁴C]lactose as described under "Experimental Procedures." From the amount of [¹⁴C]lactose taken up (expressed as nanomoles/milligram of protein) and using a specific internal volume of 3 μl/mg of protein, the final internal lactose concentrations were estimated to be 4.5 and 4.8 mM for E. coli DW2/pSKE8 LacS(wild type) and LacS(H376Q), respectively. Exit of [¹⁴C]lactose was determined following 500-fold dilution of a concentrated cell suspension (~80 mg of protein/ml) into KPM buffer (pH 6.5) containing no lactose (efflux) or 0.1, 0.2, 0.4, 1.0, 2.0, 4.0, 10, or 20 mM lactose (nonequilibrium exchange). The release of [¹⁴C]lactose from the cell was monoeponential, and first-order rate constants (k = ln2/t_{1/2}) could be determined. The initial rates (V) of exit were obtained by multiplying k with the internal lactose concentration (V = k × S). The assay temperature was 30°C.

ptsI mutant were similar to those of the wild-type mutant (data not shown). Second, manipulation of the level of PTS phosphoprotein intermediates by addition of nonmetabolizable sugar analog methyl-α-D-glucopyranoside and 2-deoxyglucose (Nelson et al., 1986) did not affect the lactose transport activities. Third, pEKS8 (lacS⁺) was unable to complement E. coli LM1 (crr⁻, nagE) with respect to transport of α-methylglucoside. In accordance with previous observations (Vogler et al., 1988), pAV1 containing nagE was able to restore the uptake of α-methylglucoside in E. coli LM1 to ~20% of the wild-type activity (strain LR2-167). Fourth, by examining the sequences of the IIA protein(s) (domains) of the lactose transport proteins of S. thermophilus and L. bulgaricus and the PTS proteins indicated in Fig. 1C, two positions were identified at which the lactose transport proteins differed significantly from the PTS proteins, i.e. Ile-548 and Gly-556. Three residues are close to proposed phosphorylation site residue (His-552); and the crystal structure of the IIA^{Glc} protein domain of the glucose PTS of S. subtilis indicates that the equivalent residues, i.e. Glu-79 and Asp-87, can assume a role in recognition of the interactive PTS proteins (the IIB protein domain or HPr) and facilitate the phosphorlys transfer reaction (Liau et al., 1991). The double mutant LacS^{1548E/G556D} was constructed, but the I548E/G556D mutations did not affect lactose transport activity (data not shown).

Phosphorylation of Lactose Transport Protein—To establish whether LacS could be phosphorylated by HPr(His-P), inside-out membrane vesicles of E. coli T184/pKK223-3 (lacS⁺, vector control) and T184/pEK88 (lacS⁺) and various mutants

ptsI mutant were similar to those of the wild-type mutant (data not shown). Second, manipulation of the level of PTS phosphoprotein intermediates by addition of nonmetabolizable sugar analog methyl-α-D-glucopyranoside and 2-deoxyglucose (Nelson et al., 1986) did not affect the lactose transport activities. Third, pEKS8 (lacS⁺) was unable to complement E. coli LM1 (crr⁻, nagE) with respect to transport of α-methylglucoside. In accordance with previous observations (Vogler et al., 1988), pAV1 containing nagE was able to restore the uptake of α-methylglucoside in E. coli LM1 to ~20% of the wild-type activity (strain LR2-167). Fourth, by examining the sequences of the IIA protein(s) (domains) of the lactose transport proteins of S. thermophilus and L. bulgaricus and the PTS proteins indicated in Fig. 1C, two positions were identified at which the lactose transport proteins differed significantly from the PTS proteins, i.e. Ile-548 and Gly-556. Three residues are close to proposed phosphorylation site residue (His-552); and the crystal structure of the IIA^{Glc} protein domain of the glucose PTS of S. subtilis indicates that the equivalent residues, i.e. Glu-79 and Asp-87, can assume a role in recognition of the interactive PTS proteins (the IIB protein domain or HPr) and facilitate the phosphorlys transfer reaction (Liau et al., 1991). The double mutant LacS^{1548E/G556D} was constructed, but the I548E/G556D mutations did not affect lactose transport activity (data not shown).

Phosphorylation of Lactose Transport Protein—To establish whether LacS could be phosphorylated by HPr(His-P), inside-out membrane vesicles of E. coli T184/pKK223-3 (lacS⁺, vector control) and T184/pEK88 (lacS⁺) and various mutants
presented above, phosphorylation of LacS could not be de-
phorylation reaction using membranes that do not bear LacS.
The protein of
L. bulgaricus, the Lacy (indicated by arrows) are also conserved in the homol-
gous (Poolman et al., 1987; Lee et al., 1989). Although evidence against this proposal has been presented (King and Wilson, 1989a, 1989b; Franco and Brooker, 1991), it is evident that this region is crucial for energy transduction by the carrier protein. Mutations at position 322 in LacY also affect the sugar recognition properties of LacY (Franco et al., 1989; Collins et al., 1989). Indeed, some properties of the LacY(H322) mutants resemble those of LacS(H376Q). For instance, active accumulation of lactose, melibiose, and TMG is highly compromised in cells bearing the H376Q protein. Furthermore, the affinity for galactosides (lactose) is altered by the H376Q substitution. The histidine residue corresponding to His-376 in LacS and His-322 in LacY is not conserved in MelB. Recent experiments in which the histidine residues of MelB were replaced with arginine residues indicated that only His-94 is important for transport activity (Pourcher et al., 1990a). The H94R mutation caused complete loss of sugar binding and transport, whereas melB was expressed normally.

Interestingly, the residue corresponding to Glu-325 of LacY (Fig. 1B, arrow 4) is conserved in the lactose transport proteins of E. coli, K. pneumoniae, S. thermophilus, and L. bulgaricus; the raffinose transport protein of E. coli; and the melibiose carrier of E. coli. Substitution of Glu-325 in LacY leads to a transport protein that does not catalyze lactose/H+ symport or lactose efflux, but catalyzes exchange and counterflow at normal rates (Carrasco et al., 1986). Similarly, substitution of the corresponding residue in MelB (Glu-361) for glycine, aspartate, or alanine affects sugar and cation translocation, but not recognition of the substrates (Pourcher et al., 1990b).

Mutations of the conserved lysine (Fig. 1B, arrow 2) have been isolated for LacY after selection for enhanced recognition of maltose (α-glucoside) and resistance for TDG (Collins et al., 1989). The LacY(K319N) mutant protein exhibits diminished recognition of β-galactosides and β-glucosides. The conserved acidic residue corresponding to arrow 1 (Fig. 1B) has not been investigated in any of the transport proteins. Overall, comparison of the sequences presented in Fig. 1B and the data obtained from mutagenesis experiments suggests that the region connecting helices X and XI of LacS is important for substrate recognition.

A difference worth noting between the LacS and LacY regions is the higher polarity of the residues around His-376 (LacS) in comparison to the region around His-322 (LacY). As a consequence, hydropathy analysis predicts the His-322 region of LacY to be in the membrane, whereas the His-376 region of LacS is predicted to be in a cytoplasmic loop. Nevertheless, the local environment of the important residues in both protein segments might be similar if the regions are located near the head groups of the lipid bilayer.

The effect of the H376Q substitution on galactoside transport by LacS has been analyzed by measuring Δp-driven uptake and exchange under nonequilibrium conditions. Assuming that the Vmax of the exchange reaction reflects the level of expression of the lactose transport protein, the effect of the H376Q mutation on the kcat of Δp-driven uptake is ~2-fold smaller than indicated by the Vmax values for uptake of lactose, melibiose, and TMG (Fig. 3). The observation that Δp-driven transport of galactosides is more severely affected by the His-376 mutation than the exchange reaction suggests that the histidine at position 376 is important for energy transduction, i.e. coupled movement of galactosides and protons. The results also indicate that His-376 is not obligatorily

5 V. Swarte and B. Poolman, unpublished data.

FIG. 6. In vitro phosphorylation of wild type and mutants LacS proteins. Phosphorylation of LacS was achieved as described under “Experimental Procedures.” The minus and plus signs refer to the absence and presence of 1 mM 2-deoxyglucose in the phosphorylation assay. The positions of phosphorylated Enzyme I (E1) and LacS are indicated. The first lane shows the results of a control phosphorylation reaction using membranes that do not bear LacS, WT, wild type.
required for the active accumulation of galactosides.

The in vitro phosphorylation assays indicated that LacS can be phosphorylated by HPr(His-P) of B. subtilis and that His-552 in the IIA protein domain is most likely the phosphorylation site. Nevertheless, the in vivo transport experiments that were performed in E. coli bearing LacS did not provide an indication regarding the functional and/or regulatory role(s) of the phosphorylation reaction. Although B. subtilis IIA^Gic can readily replace E. coli IIA^Gic with respect to sugar transport and regulation (Reizer et al., 1992), it is possible that the IIA protein domain of LacS is a poor phosphoryl acceptor and/or phosphoryl donor of the E. coli HPr(His-P) and/or the IIB^Gic domain, respectively. Consequently, discerning the role of LacS phosphorylation may require the use of PTS constituents derived from homologous systems (or other Gram-positive bacteria) rather than the heterologous system used in the in vitro studies described here. In addition, we cannot exclude the possibility that phosphorylation of the IIA protein domain of LacS does not play a direct role in the translocation of lactose across the membrane, but rather functions in the intracellularly formed glucose following hydrolysis of the incoming lactose. Guided by these suppositions, a study is now underway to examine the role of LacS phosphorylation in S. thermophilus.

Acknowledgments—We thank Pieter W. Postma for providing us with various E. coli strains and for helpful discussions and Wil N. Konings for critical reading of the manuscript.

REFERENCES
Franco, P. J., and Brooker, R. J. (1991) J. Biol. Chem. 266, 6693-6699
Manoil, C., and Beckwith, J. (1986) Science 233, 1403-1408

Lactose Transport in S. thermophilus