Strategic IT, but not by ITself
Breukel, Adriaan Willem Vincent

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1996

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
CHAPTER 7

RESULTS

7.1 INTRODUCTION

In this seventh chapter, the results of the study are presented. These results are the outcomes of the testing of the hypotheses. To that end, the data have been analyzed as indicated in the previous chapter. The outcomes were also used to answer the research questions. A profound discussion regarding the theoretical and practical consequences of these results will take place in the following, eighth, chapter.

The structure of this chapter is based on the scheme of analyses described in the previous chapter. We start with the test of the first main hypothesis, in which the effect of the fit between IT, strategy and structure on the competitive performance is stated (section 7.2). Testing this hypothesis required various analyses which were performed in several steps. The following two sections (7.3 and 7.4) handle the other two main hypotheses, in which are the extent to which the opportunities of IT are exploited by organizations are assessed. The chapter finishes with the conclusion, in which the outcomes of the tests of the hypotheses are summarized and the answers to the research questions are given.

7.2 THE STRATEGIC IMPORTANCE OF THE FIT BETWEEN IT, COMPETITIVE STRATEGY AND ORGANIZATIONAL STRUCTURE

7.2.1 Introduction

In this section, the first hypothesis is tested. The hypothesis, as worded in section 5.7, is repeated here as a reminder:

Hypothesis 1. Fits between IT, competitive strategy and organizational structure have a positive effect on the realization of the strategic opportunities of IT.
Answering the first hypothesis started with determining the scores of the organizations on the variables IT, competitive strategy, organizational structure and strategic performance. For this, factor analyses were used. At the same time, the assumptions, like the partial correlations between variables and the reliability of the factors, were to be verified. After the factors of strategy, structure and IT had been detected, the hypothesis could be made operational in terms of the factors found.

Subsequently, study was performed as to whether the three variables had synergetic effects on performance. For this purpose, the interaction effects of the variables were studied with ANOVAs. Again, the assumptions, such as the normal distribution of the data, were evaluated.

Finally, study was carried out as to whether the synergetic effects were in line with the predictions. To analyze the effects in a three-factor design, simple interaction tests were used to compare the cell means. The results of these test were examined to see if they provided support for the first hypothesis.

7.2.2 Step 1a: aligning the values on the variables IT, competitive strategy, organizational structure and strategic performance from the questionnaire data via a factor analysis

IT
First the IT items were analyzed (see appendix B. 3). Four factors emerged with an eigen value higher than 1 with a drop after the fourth factor. We recognized the three predicted IT structure dimensions from Ein-Dor & Segev using the factor analysis, namely (Ein-Dor & Segev 1982):

- **IT centralization:** refers to the centralization of development and implementation of applications. The items used can be found in the appendices B. 2;
- **IT concentration:** refers to the deployment of hardware through the organization, ranging from a central mainframe to dispersed minis and micros;
- **IT integration:** via data distribution, organizational members can be integrated without the use of lateral organizational

1 For step 1b, see subsection 7.4.2
Also a fourth factor arose. However, this fourth factor consisted of only two items. Therefore, it was excluded from further analyses. The content of the remaining three dimensions (IT concentration, IT centralization and IT integration) was thoroughly discussed in the second chapter, subsection 2.3.2.3. The IT function variables (IT for enhancing the efficiency, effectiveness and innovation) did not arise from the data at all. Hence, we continued the research with the IT structure variables.

The assumptions concerning the factor analysis were met. The reliability of the items of the three factors was satisfying to low. Although IT integration had a reliability which was less than desirable, it was retained because of its theoretical centrality.

Competitive strategy
Subsequently, the competitive strategy of the organizations studied was analyzed (see appendix B.4). There were four factors with an eigen value higher than 1. The plot indicated a scree (drop) after the ninth factor. We identified the four dimensions expected, namely:

- innovation: indicates how an organization differs from the competitors by the use of new products, services and technologies;
- focus: states in what way the organization is geared to the particular needs of certain customers;
- marketing differentiation: indicates the organization's efforts like service, advertising, quality image, which add to the function of its product or service in order to distinguish the organization from others;
- (low) costs: makes clear that the organization is distinguished by the lowest costs in the creation of products and services.

The assumptions concerning the factor analysis were met. The reliability of the items of the four factors was also satisfying.

Organizational structure
After researching the competitive strategy, we analyzed the organizational structure (see appendix B.5). Four factors had an eigen value higher than 1. The plot indicated a drop (scree) after the seventh factor. We saw the same three dimensions as Miller & Dröge, namely (Miller & Dröge 1986):

- formalization: aimed at regulating individual behavior using formal
prescriptions for jobs and the work flow or general rules for all kinds of situations;

- (vertical) centralization: concerns the vertical division of decision-making power, up or down through diverse (management) levels;
- integration: refers to direct contact between people to direct their actions and decisions without asking for approval of higher management levels.

The evaluation of the assumptions delivered satisfying results. The reliability of the items of three of the four factors was good. The reliability of the training items was only 0.28. Therefore this factor was excluded from further analysis.

Competitive position
Finally the dependent variable, the (subjective) competitive position, compared with equally-sized organizations in the same industry, was determined (see appendix B.6). The factor analysis confirmed that there was one latent dimension underlying the four items: NOP (related to equally-sized competitors), NOP development (related to equally-sized competitors), the market share (related to equally-sized competitors) and the market share development (related to equally-sized competitors). We refer to this dimension as the (subjective) competitive position. The scores of the four items were added because they all contributed to the one factor. This sum reflected the relative competitive position (COMPOS).

The ability to assess the 'right’ competitive position was supported by the significant positive correlation between the subjective and objective return figures (see subsection 6.4.2).

Determining the competitive position completed the first tentatively step. The value of SISP was determined at a later stage in accordance with the same procedure (see subsection 7.4.2). We could proceed with specifying the measurable hypotheses, based on the 8 partial hypotheses of hypothesis 1 (see section 5.7).

7.2.3 Step 2: making the data usable for testing hypotheses

This second step started with excluding several partial hypotheses (see section 5.7), because they could not be tested with our data. We already deleted 'training' from the organizational structure factors (see the previous subsection 7.2.2). Therefore partial hypothesis 3 could not be tested. Then partial hypothesis 7 was also excluded from the test. Distributed IT could not be tracked, because the factor analyses did not produce the IT function factors.
The translation of the partial hypotheses a measurable state took place according to the rules given in the scheme of analysis (see section 6.5). The application of these rules is stated below.

1.1 Niche marketers with simple structure with unconnected IT have a high strategic performance.

 Measurable hypothesis I: high focus - low formalization - low IT integration

A high focus is not unique to niche marketers. Niche innovators have a high focus too. Low formalization is not unique to simple structures. Adhocracies have a low formalization too. Low IT integration is unique to unconnected IT, although concentrated IT has a low to average IT integration. The combination of factors, however, is unique to the combination of types of niche marketers, simple structure and unconnected IT, as stated in partial hypothesis 1.1.

1.2 Cost leaders with a machine bureaucracy with concentrated IT have a high strategic performance.

 Measurable hypothesis II: high (low) costs - high formalization - high IT concentration

High (low) costs are not unique to cost leaders. Low cost marketers have high (low) costs too. The other two factors are unique to their types as stated in partial hypothesis 1.2.

 Measurable hypothesis III: low (marketing) differentiation - high centralization - high IT concentration

This measurable hypothesis, which is also deduced to test partial hypothesis 1.2, refers to the use of the high centralization of machine bureaucracies, based on Mintzberg's connotation on the centralized nature of machine bureaucracies (Mintzberg 1979, pp. 195, 209-210). High centralization is not unique to machine bureaucracies, it is also seen by niche marketers. Also the low emphasis on marketing differentiation is used, in contrast to partial hypothesis 6, using a high marketing
differentiation. A low marketing differentiation is unique to cost leaders. Finally, a high IT concentration is unique to concentrated IT. The combination of factors is unique to this combination of types.

1.3 Marketers with a professional bureaucracy with distributed IT have a high strategic performance.

This partial hypothesis was excluded from testing because of the reasons stated at the start of this subsection.

1.4 Innovators with an adhocracy with decentralized IT have a high strategic performance.

Measurable hypothesis IV: high innovation - high integration - high IT integration

The high innovation is not unique to innovators. Niche innovators have a high innovation too. High integration and high IT integration are unique to their types. The combination of factors is unique to the combination of these types.

1.5 Marketers with a simple structure with unconnected IT have a high strategic performance.

Measurable hypothesis V: high (marketing) differentiation - low formalization - low IT integration

High marketing differentiation is not unique to marketers. Low costs marketers have it too. Low formalization is not unique to simple structures. Adhocracies have a low formalization as well. Low IT integration is unique to unconnected IT, although concentrated IT has also a low to average IT integration. The combination of factors, however, is unique to this combination of types.

1.6 Low cost marketers with a machine bureaucracy with concentrated IT have a high strategic performance.

Measurable hypothesis VI: high (marketing) differentiation - high
formalization - high IT concentration

It has been stated earlier that high marketing differentiation is not unique to low cost marketers. Other marketers also have a high marketing differentiation. A high centralization cannot be used here for machine bureaucracies. In that situation, the measurable hypothesis VI would use the same ANOVA design as the second measurable hypothesis III. Therefore, high formalization is applied, unique to machine bureaucracies. Finally, a high IT concentration is unique to concentrated IT. The combination of factors with these values is unique to the combination of these types.

1.7 Low cost marketers with a machine bureaucracy with distributed IT have a high strategic performance.

This partial hypothesis was excluded from testing because of the reason stated at the start of this subsection.

1.8 Niche innovators with adhocracy with decentralized IT have a high strategic performance.

Measurable hypothesis VII: high focus - high integration - high IT integration

High focus is not unique to marketers. Niche marketers have it too. High integration, however, is unique to adhocracies and high IT integration is unique to decentralized IT as well. The combination of these factors, however, is unique to the combination of the types of niche innovators, adhocracy and decentralized IT.

Thus, the translation resulted in the 7 measurable hypotheses, which all measured a particular fit between strategy, structure and IT. Figure 7.1 below indicates these fits, which are hypothesized to have a significant high strategic performance.
Step 3: the effect of combining three variables on strategic performance was studied with interaction via an analysis of variance (ANOVA).

Synergetic effects demonstrate that certain combinations of variables result in a higher performance than is to be expected, due to the competitive impact of the variables itself. Interaction tests are a way to find these synergetic states. Interaction demonstrates that the effect of one variable on another variable is changed by variation in a third variable.

Three of the seven designs (of the measurable hypotheses) showed significant three-way interactions, namely:

- III: low (marketing) differentiation - high centralization - high IT concentration;
- IV: high innovation - high integration - high IT integration;
- V: high (marketing) differentiation - low formalization - low IT integration.

The ANOVAs and the check of the assumptions are presented in the appendix B.7.

Reviewing step 3, we concluded that hypothesis 1 could be supported by
Results

affirmative answers to the following questions:

A. was the number interactions found sufficient to statistically support the first main hypothesis?
B. did the interactions shown by the three supported measurable hypotheses allude to the predicted fits?

These questions are answered in step 4 of the analyses.

7.2.5 Step 4: analyzing if the hypothesized fit between three variables causes the interaction via simple tests

About half the hypothesized measurable interactions were supported by the data. To answer question A., we had to investigate whether the 3 interactions found were sufficient to statistically support the first main hypothesis. Obviously there was some three-way interaction measured, but this might be the result of chance capitalization. For instance, without any interaction at all, 100 tests at a significance level of 5% would deliver about 5 critical values, and 20 tests about 1 value. Therefore, we had to calculate the chance of finding 3 out of 7 interaction effects if there had been no three-way interaction at all. If this chance were less than 5% we could conclude that there was interaction.

We started by stating the null hypothesis that there was no interaction between the three variables. At a significance level of 5% there was a probability of 95% that non-critical values would be found if this hypothesis were true. Now we could calculate the probability that 2 or more significant values would be found using 7 tests, under the condition that the null hypothesis would be true (at a significance level of 5%).

For the 5% level alpha this probability is:

\[1 - \sum_{i=0}^{1} \binom{7}{i} (\alpha)^i (1-\alpha)^{7-i} = 0.04 \]

Because the probability that our two significant values would be found, if the null hypothesis were true, was less than 5%, we had to reject the null hypothesis, and could state that there was a significant interaction between the three variables IT, competitive strategy and organizational structure. In addition, we found a third
6.5% interaction.

The next question was whether the interactions alluded to the predicted fits (question B.). Three-way interaction demonstrates that the effect of a two-way interaction is not consistent across the third variable. There had to be combinations of IT, strategy and structure where the competitive position was significantly high (or low), compared with the sum of the main effects. The cells of the ANOVA could be studied via simple interaction tests, to explore whether the significantly high competitive positions were present in the cells as predicted in the measurable hypotheses. We applied the procedure that Maxwell & Delaney stated to find fits (Maxwell & Delaney 1990).

1. Fixing the level of strategy.
Three-way interaction meant that the interaction between two variables (IT and organizational structure) was not consistent across the third variable (competitive strategy).

2. Comparing the two-way designs (structure x IT) via simple interaction tests.
The interaction effect of structure and IT depended on strategy. That meant that in the one design, the interaction effect of structure and IT was absent, whereas in the other design, this interaction (indicating that the effect of structure was dependent on the value of IT) was present. Accordingly, there was a favorable combination of IT, strategy and structure.

3. Fixing IT to research simple, simple main effects (contrast research).
It was explored which use of IT was favorable because of the interaction between structure and IT. If structure had a positive significant effect on using IT in a certain way, then the cell means had to be studied to see if its value was higher or lower than the other cell means. This would indicate whether or not the predicted fit was really present.

4. Checking the synergy
The sums of the main effects had to be compared with the observed cell means of the fit combination to control the synergetic effect. The utilization of IT with certain levels of strategy and structure had to perform better than with other combinations.

Applying this procedure resulted in the following results. Firstly, it was explored if the three-way interaction between marketing, centralization and IT concentration was caused by the favorable combination of low (marketing) differentiation - high centralization - high IT concentration (measurable hypothesis III, see subsection
7.2.4). This proved to be true: we found that the fit showed a mean competitive position of 15.3, while using IT in a decentralized structure resulted in a competitive position of 12.7 (scale of the competitive position: 4-24). If there were no interaction at all, the fit combination would have had a competitive position of 14.6. The data supported the existence of the hypothesized fit.

The second three-way interaction (significance 10%) was then studied. High innovation - high integration - high IT integration (measurable hypothesis IV) should give the highest competitive position. However, not the predicted combination, but another combination was responsible for the interaction. If IT had a low level of integration, the average competitive position was 17.4. If the level of IT integration was raised, the average competitive position dropped to 14.5. If interaction were absent, the non-hypothesized fit had a competitive position of 15.6. The data supported the existence of another, reverse, fit, compared with the predictions.

A possible explanation is that organizations which were already structured for integration, did not need the integrative opportunities of the IT as well. This is not necessary and thus too expensive. Hence IT does not reflect the decision-making structure. Maybe they used specialized, unconnected applications with innovative opportunities. However, the IT function variable did not emerge, therefore this element remains unknown in our research.

Finally, the third three-way interaction was studied. High (marketing) differentiation - low formalization - low IT integration (measurable hypothesis V) was supported by the data as the right combination with a competitive position of 18.2. If the organizational structure were formalized, the position would drop to 15.2. The lack of interaction would result in a competitive position of 15.5.

Summarizing, we see that two out of three interactions were caused by the predicted fits, and even the non-predicted combination could support the concept of fit. This was sufficient to support the first main hypothesis. In section 7.5 of this chapter, we shall go deeper into this result.
7.3 THE LACK OF EXPLOITATION OF THE IT OPPORTUNITIES

7.3.1 Introduction

In this section, the second main hypothesis is handled. The hypothesis (as worded in section 5.7) is repeated below.

Hypothesis 2. Organizations are not relatively often in those balanced fit situations.

The 7 translations from the partial hypotheses into measurable hypotheses also formed the basis for the testing of the main hypotheses 2 and 3. As stated in chapter 6 (section 6.5.6), hypothesis 2 can be tested by researching the correlations between IT, strategy and structure in these measurable fits. If these correlations are present, organizations would be represented in the favorable IT-strategy-structure combinations to a significantly greater extent than the main effects of IT, strategy and structure would predict.

Table 7.1 THE DISTRIBUTION OF ORGANIZATIONS DETERMINED BY THEIR MEASURES ON IT CONCENTRATION, MARKETING AND CENTRALIZATION

<table>
<thead>
<tr>
<th></th>
<th>INFOCON</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.00</td>
<td>2.00</td>
</tr>
<tr>
<td>CE</td>
<td>CE</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>16</td>
<td>21</td>
</tr>
<tr>
<td>2.00</td>
<td>10</td>
<td>19</td>
</tr>
</tbody>
</table>

Loglinear models can measure the relation between these three variables. However, we shall first give an indication of the attractive power of the three fits. How many organizations were observed in the fits? This indication was only illustrative
because the effects of the relation between two variables were not subtracted. For this, we needed the loglinear analyses in subsection 7.3.3, which are presented after the illustrations, shown in subsection 7.3.2.
Measurable hypothesis III: low (marketing) differentiation - high centralization - high IT concentration

As far as III is concerned, we see in Table 7.1 that only 19 of the organizations in the ANOVA-design were represent in the low (marketing-)differentiation - high centralization - high IT concentration fit. If the three variables had no relation at all, the expected cellcount would be 20 organizations. We see that organizations were not attracted to the fit.

Measurable hypothesis IV: high innovation - high integration - low IT integration

There were 15 organizations in the high innovation - high integration - low IT integration fit (see Table 7.2). Without any relations between strategy, structure and IT, this would be 13 organizations. Hence, organizations were not in the right situation to exploit the IT opportunities to a significantly greater extent than a random sample.

Measurable hypothesis V: high (marketing-)differentiation - low formalization -

<table>
<thead>
<tr>
<th>INFOINT</th>
<th>1.00</th>
<th>2.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTEG</td>
<td>1.00</td>
<td>2.00</td>
</tr>
<tr>
<td>1.00</td>
<td>29</td>
<td>8</td>
</tr>
<tr>
<td>2.00</td>
<td>13</td>
<td>15</td>
</tr>
</tbody>
</table>

Table 7.2 THE DISTRIBUTION OF ORGANIZATIONS DETERMINED BY THEIR MEASURES ON IT INTEGRATION, INNOVATION AND INTEGRATION
low IT integration

Finally, high (marketing-) differentiation - low formalization - low IT integration did not attract either. Table 7.3 shows that the observed amount of organizations (12) was not significantly higher than the expected cellcount without any relations (15), in fact, it was but even lower (3).

Table 7.3 THE DISTRIBUTION OF ORGANIZATIONS DETERMINED BY THEIR MEASURES ON IT INTEGRATION, MARKETING AND FORMALIZATION

<table>
<thead>
<tr>
<th></th>
<th>INFOINT</th>
<th></th>
<th>FOR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.00</td>
<td>2.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOR</td>
<td>1.00</td>
<td>2.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>2.00</td>
<td>1.00</td>
<td>2.00</td>
</tr>
<tr>
<td>MA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>18</td>
<td>20</td>
<td>15</td>
<td>12</td>
</tr>
<tr>
<td>2.00</td>
<td>12</td>
<td>15</td>
<td>17</td>
<td>28</td>
</tr>
</tbody>
</table>

These illustrations gave reason to suppose that hypothesis 2 was correct. However, the evidence did not take into account the possible relations between two of the three variables. To subtract this influence, we needed to use the loglinear analyses.

7.3.3 Step 5a: studying the relation between several variables vi a loglinear models

Loglinear analyses are based on functions that relate the number of organizations in the different cells to the various effects of the variables and their mutual relations. If variables are related with each other, then the amount of variables in

2 For step 5b, see subsection 7.4.3
a cell differs from a random distribution. Loglinear analyses start with the creation of the saturated, model in which the effects of all the variables and their interactions are taken into account. Then the effects of the relations between three and two variables is subtracted from the model, and subsequently the effect of the variables (the main effects) themselves. The aim of the analysis is finding the most stripped (final) model which does not differ significantly from the saturated model. Then the subtracted effects do not have a significant impact.

All three analyses made clear that deleting the relations between the three variables did not have a significant impact on the cellcount (see appendix B.8). Also the assumptions were verified. These results supported the second main hypothesis. Organizations were not attracted to the fits. This might be a reason for under-exploiting the IT. In chapter 8 we shall discuss this result.

7.4 THE MANAGEMENT OF IT: THE EFFECTIVENESS OF SISP FOR THE EXPLOITATION OF IT

7.4.1 Introduction

In this section the effect of the SISP on the exploitation of IT is researched. The hypothesis is, that the existence of SISP has a significantly positive effect on the presence of organizations in fit situations. The fit is seen as an intervenient variable between SISP and competitive performance (Jansen 1982, p. 35).

This section has the following structure. Firstly, the values of SISP per organization had to be known. Therefore, we performed factor analyses, comparable with the analyses for the IT, strategy, structure and strategic performance (subsection 7.4.2). Then the effect of SISP was studied via several analyses (subsection 7.4.3). Finally, at the end of subsection 7.4.3, the conclusion on the effectiveness of SISP was drawn.

7.4.2 Step 1b: aligning the values on the variables of SISP from the
questionnaire data via a factor analysis

In the factor analysis, the following two dimensions of SISP were found (appendix B.9):

- **SISP1**, which stands for the content of SISP: formal SISP was present (containing strategic IT objectives, information architecture and applications portfolio), and the strategy and structure were relevant for making SISP. The reactive or proactive nature of SISP did not become clear from the data.

- **SISP2**, which represents the support of top management and line management. The IT management is not the only stakeholder in planning, developing, implementing and using the IT.

These two factors had an eigen value higher than 1. Although the second factor consisted of only two items, it was still included because of its high reliability (0.90) and its important theoretical value. The factor analysis assumptions were met.

7.4.3 Step 5b: studying the relation between several variables (including SISP) via loglinear models

The third hypothesis, as worded earlier in section 5.7, is stated as follows:

Hypothesis 3. The existence of mature SISP has a positive effect on the presence of organizations in those balanced fit situations

There were two ways of testing this hypothesis with loglinear modelling. The first way was to split the sample into two groups: organizations with high values on SISP and organizations with low values on SISP. It was expected that in the 'high SISP' group, the three variables were related to each other in such a way that significantly more organizations were represented in the observed fit situation.

The second way was to directly add the SISP factors as new variables to the loglinear analyses. We have already seen that IT, strategy and structure did not cause favorable distributions of organizations within the fit cells. If SISP1, IT, strategy and structure had a four-factor relation that could not be not deleted from the saturated model, then SISP1 would have caused the skewed distribution of
organizations that favors the exploitation of IT.

Three situations had to be explored because SISP was not a uni-dimensional construct:

- organizations using SISP1;
- organizations using SISP2;
- organizations using SISP1 and SISP2.

The impact of SISP on the three observed fits was studied. The first fit under scrutiny was fit situation III: low (marketing) differentiation - high centralization - high IT concentration (see appendix B. 10).

The loglinear tests indicated that in the situation of high SISP1, organizations were not represented to a significantly greater extent in fit situation III than in the other combinations between marketing, centralization and IT concentration.

The impact of SISP2 on the three observed fits was also studied. The loglinear tests indicated that in the situation of high SISP2 organizations were not represented to a significantly greater extent in fit situation III either.

Finally the impact of SISP1 and SISP2 on the three observed fits was studied. This combination referred to the most mature form of SISP as determined in this research. The loglinear tests indicated that in the situation of high SISP1 and high SISP2 organizations represented to a significantly greater extent in fit situation III than in the other combinations.

These results indicate that SISP did not have a significantly positive effect on organizations in terms of being represented in fit situation III, where the opportunities of IT are exploited in a relatively good way. Also the loglinear analyses in which SISP was directly related with the variables of (marketing) differentiation, centralization and IT concentration did not yield positive results (see appendix B. 10).

The impact of SISP on the distribution of organizations in the other two observed fits (fit situation IV: high innovation - high integration - high IT integration; fit situation V: high (marketing) differentiation - low formalization - low IT integration was also studied. Here the impact was absent too ⁴.

Now we can conclude that organizations with a high level of SISP did not find themselves in fit situations to a significantly greater extent than in non-fit situations. Against the expectations we must reject hypothesis 3. Using SISP did

⁴ These results have not been included in the appendix. They can be supplied by the author, if requested for.
not have a noticeable effect on the exploitation of IT. In the following chapter we shall give possible reasons for this result and its theoretical and practical consequences.

We presented the result that there was no effect of SISP on the competitive position via the intervenient variable of ’fit’. Although theoretically not assumed, there could be a direct effect of SISP on the competitive position. The direct relation between SISP and the competitive position was researched with correlation and ANOVA analyses (see also appendix B.11). None of these analyses demonstrated a significant relation between SISP and the competitive position. SISP influenced the competitive position neither directly nor indirectly.
7.5 CONCLUSION

In this concluding section of chapter 7, the results are summarized. Firstly, the outcomes of the testing of the hypotheses are stated. Then the research questions, as given in chapter 5 (section 5.6), can be answered.

Hypothesis 1. Fits between IT, competitive strategy and organizational structure have a positive effect on the realization of the strategic opportunities of IT.

Partial hypotheses belonging to hypothesis 1:

1.1 Niche marketers with a simple structure with unconnected IT have a high strategic performance: not supported.
1.2 Cost leaders with a machine bureaucracy with concentrated IT have a high strategic performance: supported.
1.3 Marketers with a professional bureaucracy with distributed IT have a high strategic performance: not measured.
1.4 Innovators with an adhocracy with decentralized IT have a high strategic performance: not supported (supported with an adjustment to unconnected IT at a significance level of 10%).
1.5 Marketers with a simple structure with unconnected IT have a high strategic performance: supported.
1.6 Low costs marketers with a machine bureaucracy with concentrated IT have a high strategic performance: not supported.
1.7 Low cost marketers with a machine bureaucracy with distributed IT have a high strategic performance: not measured.
1.8 Niche innovators with adhocracy with decentralized IT have a high strategic performance: not supported.

Summarizing:

- two partial hypotheses could not be measured (1.3 and 1.7);
- the results of one partial hypothesis did not follow the theory precisely (1.4);
- two of the five remaining partial hypotheses are supported (1.2 and 1.5).

These results gave enough support for the main hypothesis as a whole. Hence research question 1 (do fits between IT, competitive strategy and organizational structure have a positive effect on the realization of the strategic opportunities of
IT?) is answered positively.

Although the first hypothesis was supported in a significant way, the effect is not very large. We can see this in the simple tests. Besides, four of seven measurable hypotheses were not supported. A possible reason might be that the power of the tests is too low (Slotboom 1987, pp. 82-85).

Hypothesis 2. Organizations are not relatively often situated in those balanced fit situations.

Organizations did not position themselves in the three observed fits. Therefore, hypothesis 2 can be confirmed with the data. They generally do not exploit the strategic IT opportunities. Hence research question 2 (are organizations relatively often situated in those balanced fit situations?) is answered negatively.

Hypothesis 3. The existence of mature SISP has a positive effect on the presence of organizations in those balanced fit situations.

SISP did not yield any effect on the presence of organizations in the fit situation. The third hypothesis is not supported. Hence research question 3 (does the existence of mature SISP have a significantly positive effect on the presence of organizations in those balanced fit situations?) is answered negatively.

This chapter does not discuss the results in terms of their position in the literature, nor in the light of the theoretical and practical goals of this research. That discussion will take place in the following chapter.