Surgical Options after Fontan Failure

A Multi-Center European Congenital Heart Surgeons Association (ECHSA) study

Joost P van Melle, Djoeke Wolff, Jürgen Hörer, Emre Belli, Bart Meyns, Massimo Padalino, Harald Lindberg, Jeffrey P Jacobs, Ilkka P. Mattila, Håkan Berggren, Rolf MF Berger, Rene Prêtre, Mark G Hazekamp, Morten Helvind, Matej Nosál, Tomas Tlaskal, Jean Rubay, Stojan Lazarov, Alexander Kadner, Viktor Hraska, José Fragata, Marco Pozzi, George Sarris, Guido Michielon, Duccio di Carlo, Tjark Ebelsa
Abstract

Objective: The objective of this European multicenter study was to report surgical outcomes of Fontan takedown, Fontan conversion and HTX for failing Fontan patients in terms of all-cause mortality and (re-)heart transplantation (HTX).

Methods: A retrospective international study was conducted by the European Congenital Heart Surgeon Association among 22 member centres. Outcome of surgery to address failing Fontan was collected in 225 patients among which were patients with Fontan takedown (n=38; 17%), Fontan conversion (n=137; 61%) or HTX (n=50; 22%).

Results: The most prevalent indication for failing Fontan surgery was arrhythmia (43.6%), but indications differed across the surgical groups (p < 0.001). Fontan takedown was mostly performed in the early postoperative phase after Fontan completion, while Fontan conversion and HTX were mainly treatment options for late failure. Early (30 days-) mortality was high for Fontan takedown (i.e. 26%). Median follow-up was 5.9 years (range 0-23.7 years). The combined endpoint mortality/HTX was reached in 44.7% of the Fontan takedown patients, in 26.3% of the Fontan conversion patients and in 34.0% of the HTX patients, respectively (log rank p=0.08). Survival analysis showed no difference between Fontan conversion and HTX (p=0.13), but their ventricular function differed significantly. In patients who underwent Fontan conversion or HTX ventricular systolic dysfunction appeared to be the strongest predictor of mortality or (re-)HTX. Patients with valveless atriopulmonary connection (APC) take more advantage of Fontan conversion than patients with a valve-containing APC (p=0.04).

Conclusions: Take down surgery for failing Fontan is mostly performed in the early postoperative phase, with a high risk of mortality. There is no difference in survival after Fontan conversion or HTX.
Introduction

For patients with various forms of functional univentricular congenital heart defects (CHD), a direct routing of the systemic return to the pulmonary arteries, in the absence of a pulmonary cardiac chamber, has been adopted as the usual surgical option. Since its invention, independently by both Fontan1 and Kreutzer2 in 1971 in respectively France and Argentina, a large series of surgical improvements and refinements have resulted in a better outcome for these patients3. Nowadays, it can be estimated that about 2.3:10000 newborns with CHD is evaluated for the staged Fontan pathway, and of these, the majority reaches adulthood4.

However, a growing body of evidence reveals that life threatening complications inevitably occur from adolescence onward. Therefore the term “Failing Fontan” has been introduced to refer to a clinical situation with major rhythm disturbances refractory to maximal medical therapy, thrombotic events in the Fontan circuit, protein losing enteropathy (PLE), plastic bronchitis, chronic edema and ascites, cirrhosis and hepatic malignancy5 or ventricular failure.6 The surgical solutions for failing Fontan patients have evolved over time. Nowadays, three surgical options are embraced worldwide: Fontan takedown11, Fontan conversion to an energetically more favourable connection (i.e. lateral tunnel12 or extra-cardiac conduit13), and heart transplantation14,15 (HTX). These high risk procedures have been advocated based on institutional experience with limited data and non-uniform midterm results. The objective of this international multicenter study is to perform a comprehensive analysis of the midterm surgical outcome for failing Fontan surgery, in order to suggest an effective decision-making process for this growing subset of critically ill patients.

Methods

Patients

Fontan patients who underwent surgery between 1971 and December 31st 2012 for the clinical syndrome of “Failing Fontan” were eligible for inclusion in the F2 study. Three surgical options were taken into account: 1) Fontan takedown 2) Fontan conversion and 3) HTX. Fontan takedown was defined as a takedown of a completed Fontan circulation to a superior cavopulmonary connection (bidirectional Glenn) or a systemic-to-pulmonary arterial shunt (e.g. Blalock-Taussig shunt), or both. Fontan conversion included a conversion from a traditional Fontan circulation (e.g. anatriopulmonary connection (APC) with or without valve, or a Björk modification) to a lateral tunnel (LT) or extracardiac conduit (EC), and conversion from a LT to an EC. Revisions (i.e. major surgery to modify a suboptimal Fontan circuit without complete Fontan conversion) were excluded from analysis. Patients were identified within participating units of the European Congenital Heart Surgeons Association (ECHSA), with the use of local registries searching for Fontan patients or reviews of hospital patient charts. The University Medical Center Groningen coordinated the study, collected the
data, maintained the database, and performed all the data analyses. Review of medical records was approved by each local committee on clinical investigation. Individual patients were not identifiable, and the need for patient consent was waived.

Patient variables

The collected data on patient characteristics included primary anatomical diagnosis, relevant cardiovascular co-morbidity, surgical interventions before the initial Fontan procedure, important prognostic patient variables previously described in Fontan research, i.e. New York Heart Association functional class (NYHA) and cardiac function (i.e. systolic ventricular function, atrioventricular valve regurgitation) and preoperative cardiac medication use. Furthermore, the indications which led to failing Fontan surgery were classified as deteriorating functional class, refractoriness of arrhythmia treatment, thrombus/emboli, severe right atrial dilatation, hemodynamic important obstruction in Fontan circuit, pulmonary venous obstruction, PLE, atrioventricular valve surgery, Fontan baffle leak or subaortic stenosis. More than one indication was possible within the same patient. Hemodynamic data (i.e. right atrial pressure) from latest heart catheterization was available for 170 patients. Finally, the following variables regarding failing Fontan surgery were documented: aortic cross clamp time, cardiopulmonary bypass time, duration of circulatory arrest, concomitant surgical interventions, and post-operative duration of mechanical ventilation as well as hospital stay. Ventricular assist devices as a bridge to transplant were documented.

Statistical analysis

Data were analyzed with the use of SPSS version 20.0 for Windows. Continuous data were reported as mean ± standard deviations (SD) or median (interquartile range (IQR)) and categorical data as number of patients (percentage of total, within the surgical arm). The primary end-point was all-cause mortality or (re-)HTX. Secondary outcomes included early mortality (within 30 days of failing Fontan surgery) and late mortality. The last follow-up ended at January 1st 2014. Patients’ data were censored at the time of last contact. When appropriate, the primary endpoint was analyzed according to the intention-to-treat principle. Thus, patients with a cross-over in surgical strategy (e.g. Fontan conversion and during follow up HTX) were analyzed according to their initial intervention.

Baseline characteristics across the 3 groups were compared using one-way ANOVA or Chi square analyses, depending on the variable of interest. For other comparisons, the Student’s t-test for continuous measures and the Chi-square test (or Fisher’s exact test) for categorical measures were used. Unadjusted survival rates and survival curves were determined by Kaplan–Meier estimates. The univariate and multivariate risk analyses of mortality/HTX were performed using time-dependent Cox proportional-hazards models. For these survival
and risk analyses, patients with a Fontan takedown were excluded. A two-sided P value < 0.05 was considered to indicate statistical significance.

Results

Two hundred twenty-five patients met the inclusion criteria (figure 1). They were identified from 22 congenital heart centres (range 1-40 patients/centre). Failing Fontan surgery took place in the time era 1986-2012. See table 1 and 2 for the baseline characteristics. Patients were on average 5.9 ± 4.9 years old when they either had Fontan completion or had a one-stage Fontan procedure. In total, 136 patients (60.4%) had some form of APC, whereas the remainder had a TCPC (n=89; 39.6%).

Figure 1. Flowchart failing Fontan patients (n=231)

HTX=heart transplantation; LT=lateral tunnel; EC=extracardiac conduit.
Table 1. Baseline characteristics: demographics & medical history

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>All (n=225)</th>
<th>Conversion (n=137)</th>
<th>Takedown (n=38)</th>
<th>HTX (n=50)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male sex, N(%)</td>
<td>118 (52.4)</td>
<td>69 (50.4)</td>
<td>18 (47.4)</td>
<td>31 (62.0)</td>
<td>0.29</td>
</tr>
<tr>
<td>Diagnosis, N(%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>Tricuspid atresia</td>
<td>85 (37.8)</td>
<td>71 (51.8)</td>
<td>6 (15.8)</td>
<td>8 (16.0)</td>
<td></td>
</tr>
<tr>
<td>DILV</td>
<td>46 (20.4)</td>
<td>30 (21.9)</td>
<td>6 (15.8)</td>
<td>10 (20.0)</td>
<td></td>
</tr>
<tr>
<td>Unbalanced (A)VSD</td>
<td>21 (9.3)</td>
<td>5 (3.6)</td>
<td>10 (26.3)</td>
<td>6 (12.0)</td>
<td></td>
</tr>
<tr>
<td>HLHS</td>
<td>17 (7.6)</td>
<td>2 (1.5)</td>
<td>4 (10.5)</td>
<td>11 (22.0)</td>
<td></td>
</tr>
<tr>
<td>PA/IVS</td>
<td>17 (7.6)</td>
<td>11 (8.0)</td>
<td>2 (5.3)</td>
<td>4 (8.0)</td>
<td></td>
</tr>
<tr>
<td>other</td>
<td>39 (17.3)</td>
<td>18 (13.1)</td>
<td>10 (26.3)</td>
<td>11 (22.0)</td>
<td></td>
</tr>
<tr>
<td>Heterotaxy,N(%)</td>
<td>38 (16.9)</td>
<td>15 (10.9)</td>
<td>13 (34.2)</td>
<td>10 (20.0)</td>
<td>0.003</td>
</tr>
<tr>
<td>Surgical history, N(%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulmonary artery banding</td>
<td>47 (20.9)</td>
<td>25 (18.2)</td>
<td>11 (28.9)</td>
<td>11 (22.0)</td>
<td>0.35</td>
</tr>
<tr>
<td>Blalock-Taussig shunt</td>
<td>131 (58.2)</td>
<td>78 (56.9)</td>
<td>23 (60.5)</td>
<td>30 (60.0)</td>
<td>0.89</td>
</tr>
<tr>
<td>Bidirectional Glenn</td>
<td>72 (32.0)</td>
<td>13 (9.5)</td>
<td>26 (68.4)</td>
<td>33 (66.0)</td>
<td><0.001</td>
</tr>
<tr>
<td>Age at initial Fontan, yrs±SD</td>
<td>5.9 (4.9)</td>
<td>6.2 (4.8)</td>
<td>4.6 (2.9)</td>
<td>6.2 (6.1)</td>
<td>0.18</td>
</tr>
<tr>
<td>Type of initial Fontan surgery, N(%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>Björk modification</td>
<td>19 (8.4)</td>
<td>18 (13.1)</td>
<td>0 (0.0)</td>
<td>1 (2.0)</td>
<td></td>
</tr>
<tr>
<td>APC without valve</td>
<td>94 (41.8)</td>
<td>81 (59.1)</td>
<td>5 (13.2)</td>
<td>8 (16.0)</td>
<td></td>
</tr>
<tr>
<td>APC with valve</td>
<td>23 (10.2)</td>
<td>20 (14.6)</td>
<td>1 (2.6)</td>
<td>2 (4.0)</td>
<td></td>
</tr>
<tr>
<td>TCPC LT</td>
<td>45 (20.0)</td>
<td>18 (13.1)</td>
<td>12 (31.6)</td>
<td>15 (30.0)</td>
<td></td>
</tr>
<tr>
<td>TCPC EC</td>
<td>44 (19.6)</td>
<td>0 (0.0)</td>
<td>20 (52.6)</td>
<td>24 (48.0)</td>
<td></td>
</tr>
</tbody>
</table>

APC=atriopulmonary connection; HTX=heart transplantation; DILV=double inlet left ventricle; (A)VSD=(atrio) ventricular septum defect; HLHS=hypoplastic left heart syndrome; PA/IVS=Pulmonary atresia with intact ventricular septum; TCPC=total cavopulmonary connection; LT=lateral tunnel; EC=extracardiac conduit; SD=standard deviation.
Table 2. Pre-operative and surgical variables (failing Fontan surgery)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>All (n=225)</th>
<th>Conversion (n=137)</th>
<th>Takedown (n=38)</th>
<th>HTX (n=50)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at failing Fontan surgery, yrs (±SD)</td>
<td>17.1 (10.3)</td>
<td>21.4 (8.9)</td>
<td>5.2 (3.2)</td>
<td>14.7 (9.4)</td>
<td><0.001</td>
</tr>
<tr>
<td>Time between Fontan completion and failing Fontan surgery, yrs (±SD)</td>
<td>11.2 (8.3)</td>
<td>15.2 (7.0)</td>
<td>0.6 (1.9)</td>
<td>8.5 (6.1)</td>
<td><0.001</td>
</tr>
<tr>
<td>NYHA class III/IV*, N(%)</td>
<td>112 (55.2)</td>
<td>45 (36.3)</td>
<td>22 (73.3)</td>
<td>45 (91.8)</td>
<td><0.001</td>
</tr>
<tr>
<td>≥moderate AVV regurgitation, N(%)</td>
<td>55 (24.4)</td>
<td>29 (21.2)</td>
<td>10 (26.3)</td>
<td>16 (32.0)</td>
<td>ns</td>
</tr>
<tr>
<td>moderate/poor LV function, N(%)</td>
<td>115 (51.1)</td>
<td>58 (42.3)</td>
<td>14 (36.8)</td>
<td>43 (86.0)</td>
<td><0.001</td>
</tr>
<tr>
<td>Atrial rhythm disturbances, N(%)</td>
<td>112 (49.8)</td>
<td>91 (66.4)</td>
<td>4 (10.5)</td>
<td>17 (34.0)</td>
<td><0.001</td>
</tr>
<tr>
<td>RA pressure, mmHg(±SD)</td>
<td>14.8 (4.3)</td>
<td>14.0 (4.2)</td>
<td>15.0 (4.2)</td>
<td>16.7 (4.0)</td>
<td>0.002</td>
</tr>
<tr>
<td>Medication use, N(%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspirin</td>
<td>67 (29.8)</td>
<td>39 (28.5)</td>
<td>11 (28.9)</td>
<td>17 (34.0)</td>
<td><0.001</td>
</tr>
<tr>
<td>Coumadin</td>
<td>117 (52.0)</td>
<td>79 (57.7)</td>
<td>7 (18.4)</td>
<td>31 (62.0)</td>
<td><0.001</td>
</tr>
<tr>
<td>ACE-inhibitor</td>
<td>90 (40.0)</td>
<td>47 (34.3)</td>
<td>7 (18.4)</td>
<td>36 (72.0)</td>
<td><0.001</td>
</tr>
<tr>
<td>Betablocker</td>
<td>43 (19.1)</td>
<td>35 (25.5)</td>
<td>0 (0.0)</td>
<td>8 (16.0)</td>
<td><0.001</td>
</tr>
<tr>
<td>Digoxin</td>
<td>56 (24.9)</td>
<td>32 (23.4)</td>
<td>8 (21.1)</td>
<td>16 (32.0)</td>
<td>0.004</td>
</tr>
<tr>
<td>Sotalol</td>
<td>29 (12.9)</td>
<td>25 (18.2)</td>
<td>1 (2.6)</td>
<td>3 (6.0)</td>
<td><0.001</td>
</tr>
<tr>
<td>Amiodarone</td>
<td>47 (20.9)</td>
<td>42 (30.7)</td>
<td>2 (5.3)</td>
<td>3 (6.0)</td>
<td><0.001</td>
</tr>
<tr>
<td>ECC time, minutes (±SD)</td>
<td>197 (119)</td>
<td>173 (89)</td>
<td>175 (86)</td>
<td>289 (169)</td>
<td><0.001</td>
</tr>
<tr>
<td>Ventilation time, days (±SD)</td>
<td>5.4 (11.7)</td>
<td>3.1 (4.7)</td>
<td>11.8 (22.9)</td>
<td>7.5 (12.3)</td>
<td>0.001</td>
</tr>
<tr>
<td>ICU stay, days (±SD)</td>
<td>12.9 (23.8)</td>
<td>8.0 (12.8)</td>
<td>23.8 (38.4)</td>
<td>18.6 (30.0)</td>
<td><0.001</td>
</tr>
<tr>
<td>Hospital stay, days (±SD)</td>
<td>28.9 (32.7)</td>
<td>21.8 (19.7)</td>
<td>37.6 (41.7)</td>
<td>43.0 (46.7)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

HTX = heart transplantation; NYHA = New York Heart Association; AVV = atrioventricular valve; LV = left ventricle; RA = right atrial; ACE = angiotension converting enzyme; ECC = extra corporeal circulation; ICU = intensive care unit; SD = standard deviation; * available for 203 patients.
Figure 2. Indications for failing Fontan surgery

More than one indication is possible within the same patient. RA=right atrial; AVV=atrioventricular valve; PV=pulmonary vein; PLE=protein losing enteropathy; FC=functional class.

Supplementary figure 1. Surgical interventions for failing Fontan in the past decades, depicted as absolute counts
Supplementary figure 2. Surgical interventions for failing Fontan in the past decades, depicted as percentage of total

Supplementary figure 3. Event free survival after Fontan takedown (n=38)

Endpoints are mortality or HTX.
In absolute counts, the most prevalent indication was arrhythmia (98/225 patients=43.6%, table 3). For 78 patients (34.7%) the decision for surgery was based on only one indication. However, for the whole population, the combination of 2.0 ± 0.97 indications led to failing Fontan surgery. Arrhythmia and right atrial dilatation were the main indications for Fontan conversion while deteriorating functional class and PLE were the main indications for HTX (p < 0.001, figure 2).

Failing Fontan surgery

Fontan takedown was performed in 38 patients (17%), Fontan conversion in 137 patients (61%, i.e. 13% conversion to a TCPC LT and 48% to a TCPC EC) and HTX in 50 patients (22%). Two patients were successfully bridged to HTX by a paracorporeal ventricular assist device. Of all patients treated with Fontan conversion, 51.6% had concomitant rhythm surgery (MAZE surgery). The cumulative occurrence of surgical interventions for failing Fontan increased over time (p=0.01, supplementary figure 1). Yet, the distribution across the surgical groups did not change during the decades (p=0.19, supplementary figure 2). The time interval between the initial Fontan procedure and the failing Fontan surgery was significantly shorter in the group referred for a Fontan takedown procedure (0.6 ± 1.9 years) compared to patients who underwent HTX or Fontan conversion (8.5 ± 6.1 years and 15.2 ± 7.0 years respectively; p < 0.001). Comparison of the three groups also revealed statistical differences for the following variables: primary diagnosis, the presence of heterotaxy, previous BDG, type of initial Fontan surgery, preoperative NYHA class, ventricular dysfunction, atrial rhythm disturbances, RA pressure, age at failing Fontan surgery, extracorporeal circulation time, ventilation time, ICU stay, hospital stay and medication use (table 1 and 2).

Follow up after Fontan takedown

During a mean FU of 6.7 ± 6.7 years (range: 0 to 23.7 years), 15 patients (39.5%) died, of whom two thirds (10/15 patients) in the first 30 postoperative days (i.e. early mortality was 26.3%). After a mean period of 12.9 ± 21.1 months, 4 patients (10.5%) underwent HTX after Fontan takedown with 2 patients alive at end of follow up. Two takedown patients (5.3%) underwent subsequent TCPC LT operation after a mean period of 34.1 ± 14.1 months. A total of 17 patients (44.7%) had reached the primary endpoint mortality/HTX at end of follow up (Supplementary file, figure 3).

Follow up after Fontan conversion

During a mean FU of 7.7 ± 5.7 years (range: 0 to 24.7 years), a total of 30 patients died (21.9%). Thirty six patients (26.3%) reached the combined endpoint mortality/HTX. Early mortality was 15/137 (10.9%). In 7 patients (5.2%), the Fontan conversion was followed by
HTX after a mean period 3.3 ± 2.8 years. One of these 7 patients died 19.1 years after HTX. The primary endpoint mortality/HTX (n=36) occurred during 1000 patient-years follow-up (event rate 3.6/100 patient years). Among the patients that survived Fontan conversion, 89% were in NYHA class I or II.

Within the 130 patients with an atriopulmonary connection, patients with valveless atriopulmonary connections (n=89) had better outcomes after Fontan conversion than those with a valve-containing atriopulmonary connection (n=41; p=0.04, figure 3).

However, patients in the latter group were on average 3.7 ± 1.8 years older (p=0.04). Event-free survival after Fontan conversion combined with MAZE rhythm surgery (n=64; 51.6%) did not significantly differ from Fontan conversion without rhythm surgery (n=60; 48.4%, p=0.57).

Figure 3. Survival curve after failing Fontan surgery in patients with an atriopulmonary connection (n=130): influence of valve in Fontan circulation

Endpoints are mortality or HTX.
Follow up after heart transplantation

During a mean FU of 5.7 ± 5.4 years (range: 0 to 22.2 years), 17 patients (34%) died. No patients underwent re-transplantation. The mortality endpoint occurred during 287 patient-years follow-up (event rate 5.9/100 patient years). Early mortality was 14% and in-hospital mortality was 20%. Of all patients who underwent failing Fontan surgery, HTX patients had the longest extra-corporeal circulation time (289 ± 169 minutes) and hospital stay (43.0 ± 46.7 days). Among the patients that were discharged from the hospital (n=43), 85% were in NYHA class I or II at the end of follow up.

Risk analyses for mortality/HTX after failing Fontan surgery

Mean follow up after HTX or Fontan conversion was 6.9 ± 5.4 years. In only 15 patients, the follow up duration exceeded 15 years and for that reason the unadjusted survival curve was truncated at 15 years after failing Fontan surgery. Although the survival curves diverge in favour of FC-patients, event free survival was not statistically different (p=0.13, figure 4).

Figure 4. Survival curves after failing Fontan surgery (n=187): HTX versus Fontan conversion

<table>
<thead>
<tr>
<th>Event-free survival (%)</th>
<th>FC</th>
<th>HTX</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Log rank p=0.13

Time of follow up is truncated at 15 years. Endpoints are mortality or (re-)HTX.
Table 3. Indications for failing Fontan surgery

<table>
<thead>
<tr>
<th>Indication</th>
<th>Number (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arrhythmia</td>
<td>98 (43.6)</td>
</tr>
<tr>
<td>Deteriorating functional class</td>
<td>97 (43.1)</td>
</tr>
<tr>
<td>Extreme RA dilatation</td>
<td>87 (38.7)</td>
</tr>
<tr>
<td>Obstruction</td>
<td>47 (20.9)</td>
</tr>
<tr>
<td>Protein losing enteropathy</td>
<td>31 (13.8)</td>
</tr>
<tr>
<td>Thrombus</td>
<td>26 (11.6)</td>
</tr>
<tr>
<td>AVV regurgitation</td>
<td>18 (8.0)</td>
</tr>
<tr>
<td>Pulmonary vein stenosis</td>
<td>11 (4.9)</td>
</tr>
<tr>
<td>Cyanosis</td>
<td>12 (5.3)</td>
</tr>
<tr>
<td>Systemic obstruction</td>
<td>4 (1.8)</td>
</tr>
<tr>
<td>Baffle leak</td>
<td>4 (1.8)</td>
</tr>
</tbody>
</table>

AVV=atrioventricular valve, RA=right atrial.

Table 4. Univariate and multivariate analysis in failing Fontan patients (n=187)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Mortality/HTX</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N (%)</td>
<td>HR (95%CI)</td>
<td>p-value</td>
</tr>
<tr>
<td>Interval Fontan completion-failing Fontan surgery (<10 yrs)</td>
<td>26 (26.6)</td>
<td>0.049</td>
<td>Ns</td>
</tr>
<tr>
<td>NYHA class III/IV</td>
<td>32 (35.6)</td>
<td>0.028</td>
<td>Ns</td>
</tr>
<tr>
<td>Moderate/poor ventricular function</td>
<td>37 (36.6)</td>
<td>0.004</td>
<td>2.52 (1.26-5.03)</td>
</tr>
</tbody>
</table>

HTX=heart transplantation; NYHA=New York heart association.
Among the 187 patients with either a Fontan conversion or HTX, the following characteristics were significantly associated with the primary endpoint: time interval between initial Fontan surgery and failing Fontan surgery (i.e. more events in patients whose circulation start to fail within 10 years after initial Fontan), NYHA class III/IV, and ventricular dysfunction (table 4). Multivariate analyses showed that patients with ventricular dysfunction have an increased risk of mortality/HTX (p=0.009). Within the group Fontan patients with an APC, no specific treatment benefit could be determined after 15 years follow up between FC and HTX (p-value=0.80).

Discussion

This multicenter, European observational study of failing Fontan patients is, to our knowledge, the largest in the world permitting analysis to compare different surgical strategies for a failing Fontan. We have shown that Fontan takedown has been used as a surgical strategy in the early postoperative phase after Fontan completion, whereas Fontan conversion or HTX were the most important surgical options on the long run. In comparison between the two latter strategies, no survival benefit could be identified, yet we have to realize that these groups are selected for severity of ventricular dysfunction. Generally the ventricular function was much poorer in the HTX group as compared to the conversion group. Furthermore, a valve-containing conduit is a risk factor for Fontan conversion in APC patients with a failing Fontan circulation, the reason of which is currently subject to speculation.

Although survival has improved markedly in the past decades, Fontan patients are still at substantially increased risk of late morbidity and death as compared to the normal population. Presumably, the adult numbers of Fontan patients will increase by over 60% in the next decade and the proportion in NYHA functional class III is expected to double. Unfortunately, a failing Fontan circulation represents a particularly complicated scenario for both patients and physicians. They are confronted with an insidiously deteriorating clinical situation, while there are no studies available that describe and compare treatment options. Given the overall young age of this population with impaired life expectancy, it is to be expected that a huge proportion of these patients will be candidates for failing Fontan surgery. In the current study, the complex nature of failing Fontan was confirmed since 65% of the failing Fontan patients had at least 2 indications that led to the decision to operate.

The current study demonstrated that Fontan takedown has primary been used as a bailout option in early Fontan failure, considering the short interval between Fontan completion and takedown surgery (i.e. 7.2 months). This is in line with previous small case series (n≤6) where Fontan takedown was accomplished in the early aftermath of Fontan completion. The different characteristics of the Fontan takedown population (“early failing Fontan”) precludes a fair comparison with Fontan conversion or HTX (“late failing Fontan”) and therefore we reported the outcome of this strategy separately. Our data showed that mortality rates are
very high (40% after a mean follow up of 6.7 years), especially in the first 30 days after Fontan takedown. Yet, the relative percentage of Fontan takedowns steadily decreased over time. This probably points to improved patient selection on the road towards Fontan completion. Whether Fontan takedown is a reasonable alternative for HTX or Fontan conversion in late failing Fontan remains to be elucidated.

Since the pioneering work of Mavroudis and co-workers, Fontan conversion to the more energy-efficient extracardiac connection with concomitant arrhythmia surgery is the standard for APC patients, especially those with atrial tachyarrhythmias. In their own single-centre series including 111 Fontan conversions, an early mortality rate of 0.9% was reported, but percentages up to 13% are described. In our study, early mortality was 11%. Recently, a study in 39 patients following Fontan conversion reported 8 deaths (21%) after a mean follow up of 6 years. With a slightly longer mean follow up (of 7.7 years), the current study demonstrated a similar mortality rate of 21%.

We previously described the outcome after HTX in Fontan patients (n=61), also including patients who initially were treated with Fontan conversion or Fontan takedown. In the current study, using an intention-to-treat analysis, we showed that, during a mean FU of 5.7 years 34% died. Early mortality was high (20%), but this is in accordance with an actuarial survival after HTX of 80% at 6 months in a large cohort derived from the Pediatric Heart Transplant Study (PHTS) database in the United States.

Perhaps the most compelling contribution of the current study is the possibility to compare outcomes of Fontan conversion and HTX. We now could provide evidence that survival between HTX and Fontan conversion does not significantly differ. Furthermore, we found that poor systemic ventricular function was a risk factor for death/HTX after failing Fontan surgery. Possibly, ventricular dysfunction is associated with poor general health status and high patient frailty in Fontan patients, which may affect survival after surgery. Finally, it appeared that valve-containing APCs are at increased risk for Fontan conversion. For APC patients, there was no specific treatment benefit for Fontan conversion or HTX but this finding needs to be interpreted cautiously due to the fact that within the 130 patients with an APC, 119 patients were treated with a Fontan conversion, while only 11 patients were treated with HTX. Nevertheless, these results may be of importance for future treatment algorithms in patients with failing Fontan.

Our findings should be evaluated in the context of several limitations. First of all, our study is limited by its observational cohort design, which may complicate the interpretation of the results, derived from four decades of data acquisition. Related to this point: decision making for the different procedures was based on the discretion of the treating physician(s) and not on certain treatment algorithms. The best way to control for treatment-selection bias is to conduct a randomized trial, but given the relatively rare syndrome of failing Fontan the set up of such a trial is, unfortunately, an utopia. Hence, the three pathways are not mutually exclusive and we have to realize that the Fontan background is not identical for every patient.
(for example, conversion is not an option for patients following TCPC EC). Nevertheless, our dataset provides unique information on long-term outcomes. Secondly, in our study we evaluated the 3 most performed surgical treatments for failing Fontan. Despite encouraging results of other surgical interventions in the last years, for example with ventricular assist devices29, we analyzed these alternatives not systematically. Finally, some variables that are known in clinical practice to have a profound effect on the choice of failing Fontan surgery (e.g., the presence of systemic-to-pulmonary arterial or venovenous collateral flow, anthropomorphic characteristics of the patient, patient frailty, etcetera) were not available for this analysis.

In conclusion, the syndrome of failing Fontan is the result of an inevitable and insidious attrition of the Fontan circulation. Fontan takedown has been used as a surgical strategy for a failing Fontan circulation in the early postoperative phase with high risk for mortality. There is no difference in survival after Fontan conversion or HTX. Hence, these groups are selected for ventricular dysfunction. In general a late failing Fontan patient with a poor ventricular function is better off with an HTX, while a patient with preserved ventricular function can well be treated with conversion.
References

