The F- or V-Type Na+-ATPase of the Thermophilic Bacterium Clostridium fervidus
SPEELMANS, G; POOLMAN, B; ABEE, T; KONINGS, WN

Published in:
Journal of Bacteriology

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1994

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
The F- or V-Type Na\(^+\)-ATPase of the Thermophilic Bacterium *Clostridium fervidus*

GEA SPEELMANS,† BERT POOLMAN,*,† TIAKKO ABBEE,‡ AND WIL N. KONINGS

Department of Microbiology, University of Groningen, 9751 NN Haren, The Netherlands

Received 23 August 1993/accepted 2 June 1994

Clostridium fervidus is a thermophilic, anaerobic bacterium which uses solely Na\(^+\) as a coupling ion for energy transduction. Important features of the primary Na\(^+\) pump (ATPase) that generates the sodium motive force are presented. The advantage of using a sodium rather than a proton motive force at high temperatures becomes apparent from the effect of temperature on H\(^+\) and Na\(^+\) permeation in liposomes.

Clostridium fervidus is a thermophilic anaerobe that ferments peptides and amino acids (10). Metabolic energy is obtained from processes that lead to ATP synthesis by substrate-level phosphorylation, i.e., glycolysis and degradation of amino acids, and by decarboxylation of substrates by membrane-bound ion-pumping decarboxylases (unpublished results; 3). Amino acid transport in *C. fervidus* is coupled exclusively to sodium ions, indicating that the electrochemical gradient of sodium ions plays a pivotal role in the energy transduction of the organism (12, 14). Recent studies have indicated that energy transduction at the membrane of *C. fervidus* is exclusively dependent on Na\(^+\) cycling (13). Strikingly, Na\(^+\)/H\(^+\) exchange activity could not be detected in cells or membrane vesicles of this bacterium (14). The present paper elaborates further on the bioenergetics of *C. fervidus* (1) by characterizing the Na\(^+\)-translocating ATPase and (ii) by comparing the ion permeabilities of artificial phospholipid membranes.

ATPase activity in inside-out membrane vesicles. ATPase activity in inside-out membrane vesicles was assayed as described previously (12). ATP, dATP, and GTP were hydrolyzed equally rapidly, whereas the rate of UTP hydrolysis was about 30% of the rate of ATP hydrolysis. Mg\(^2+\) ions were required for ATP hydrolysis, with an optimum concentration of Mg\(^2+\) of 1 mM (100% activity). In the presence of 5 mM EDTA, only 10% residual activity was observed. Mg\(^2+\) could be replaced by Mn\(^2+\) (90% activity), could be substituted for only partially by Ca\(^2+\) (50% activity), but could not be substituted for by Co\(^2+\), Ni\(^2+\), or Zn\(^2+\). The simultaneous presence of Mg\(^2+\) and Ca\(^2+\) enhanced ATP hydrolysis to intermediate values (75% activity).

In the absence of Triton X-100, NaCl and LiCl stimulated ATP hydrolysis approximately fourfold, compared with KCl, RbCl, or choline chloride. In the presence of Triton X-100, the stimulating effect of NaCl and LiCl was lower but was still significantly higher than the effect of KCl (Table 1). The lower activation by NaCl and LiCl in the presence of Triton X-100 is an indication that the interaction between the F\(_o\) and F\(_i\) parts is affected by the detergent. Stringent precautions were not taken to exclude Na\(^+\) from the assay buffer, and as a result, the zero concentrations in Table 1 reflect 50 μM (contaminating) Na\(^+\). Altogether, the activation of ATPase activity by Na\(^+\) and Li\(^+\) is a further indication of the existence of a Na\(^+\)-translocating ATPase.

A number of classical ATPase inhibitors/activators were

TABLE 1. Effect of monovalent cations on ATP hydrolysis

<table>
<thead>
<tr>
<th>Addition</th>
<th>Rate of ATP hydrolysis (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>− Triton X-100</td>
</tr>
<tr>
<td>0</td>
<td>100a</td>
</tr>
<tr>
<td>10 mM NaCl</td>
<td>226</td>
</tr>
<tr>
<td>10 mM KCl</td>
<td>120</td>
</tr>
<tr>
<td>50 mM KCl</td>
<td>417</td>
</tr>
<tr>
<td>50 mM LiCl</td>
<td>144</td>
</tr>
<tr>
<td>50 mM RbCl</td>
<td>387</td>
</tr>
<tr>
<td>50 mM choline chloride</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td>135</td>
</tr>
</tbody>
</table>

a Corresponds with 52 nmol of P/min/mg of protein.

b Corresponds with 107 nmol of P/min/mg of protein.

f ND, not determined.

‡ Present address: Department of Biochemistry of Membranes, University of Utrecht, Padualaan 9, 3584 CH Utrecht, The Netherlands.

† Present address: Department of Food Science, Agricultural University of Wageningen, Bomenweg 2, 6703 HD Wageningen, The Netherlands.

* Present author. Phone: (31)50-632150. Fax: (31)50-632154. Electronic mail address: poolmanb@biol.rug.nl.

© Copyright 1994, American Society for Microbiology.

TABLE 2. Activators and inhibitors of ATP hydrolysis in inside-out membrane vesicles of *C. fervidus*

<table>
<thead>
<tr>
<th>Compound</th>
<th>Rate of ATP hydrolysis (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+ Triton X-100</td>
</tr>
<tr>
<td>Control</td>
<td>100b</td>
</tr>
<tr>
<td>200 μM ortho-vanadate</td>
<td>95</td>
</tr>
<tr>
<td>200 μM DCCD†</td>
<td>90</td>
</tr>
<tr>
<td>2 mM EDAC*</td>
<td>ND</td>
</tr>
<tr>
<td>200 μM DES§</td>
<td>98</td>
</tr>
<tr>
<td>5 mM NaN(_2)</td>
<td>97</td>
</tr>
<tr>
<td>100 μM pCMBS</td>
<td>0.5</td>
</tr>
<tr>
<td>100 μM triphenyltin</td>
<td>20</td>
</tr>
<tr>
<td>25 mM K(_2)NO(_3)</td>
<td>40</td>
</tr>
<tr>
<td>25 mM Na(_2)SO(_4)</td>
<td>ND</td>
</tr>
<tr>
<td>25 mM Na(_2)SO(_4)</td>
<td>ND</td>
</tr>
<tr>
<td>100 μM bafilomycin A(_1)</td>
<td>ND</td>
</tr>
<tr>
<td>1 mM ADP</td>
<td>35</td>
</tr>
</tbody>
</table>

b Corresponds with 167 nmol of P/min/mg of protein.

c Corresponds with 117 nmol of P/min/mg of protein.

d N\(_2\)O-Dicyclohexylcarbodiimide.

* Corresponding author. Phone: (31)50-632150. Fax: (31)50-632154. Electronic mail address: poolmanb@biol.rug.nl.

† Present address: Department of Biochemistry of Membranes, University of Utrecht, Padualaan 9, 3584 CH Utrecht, The Netherlands.

‡ Present address: Department of Food Science, Agricultural University of Wageningen, Bomenweg 2, 6703 HD Wageningen, The Netherlands.

§ Ethyl-3-(3-dimethylaminopropyl)-carbodiimide.

f ND, not determined.

g Dicyclohexylstilbestrol.
tested for their effect on ATPase activity in the presence and absence of Triton X-100 (Table 2). ATPase activity was not inhibited by the P-type ATPase inhibitor ortho-vanadate, while bafilomycin A₁ had a small effect. F-type ATPase inhibitors, such as N,N'-dicyclohexylcarbodiimide and N₃⁻, had a small inhibitory effect, whereas diethylstilbestrol inhibited ATPase activity moderately. Strikingly, the ATPase was inhibited most strongly by the V-type ATPase inhibitor NO₃⁻ and was strongly activated by SO₄²⁻. SH reagents, such as triphenyltin and pCMBS, inhibited P₁ release, as did the product of the reaction, ADP.

Polyclonal antibodies directed against the β subunit of the Escherichia coli F₅F₁ ATP synthase showed weak cross-reactivity with membranes of C. fervidus. A single faint band with an apparent molecular mass of 55 kDa was observed (in agreement with the mass of the β subunit of an F- or V-type ATPase).

The pH optimum of the ATPase activity was 6.0, in both the presence and the absence of Na⁺ (Fig. 1). The ATPase activity was not inhibited by ortho-vanadate, in either the absence or the presence of Na⁺ and over the entire pH range tested (data not shown), which is consistent with the suggestion that a single ion-translocating ATPase is present in the membrane of C. fervidus.

ATPase hydrolysis showed a high optimum temperature and temperature stability (Fig. 2), as would be expected of an enzyme from a thermophile. The optimum temperature of ATPase activity was 68°C, whereas the activation energy was 64 kJ/mol. ATPase hydrolysis activity was enhanced in the presence of Triton X-100, but the enzyme was less temperature stable. The inactivation temperature Tₜ (defined as the temperature at which 50% of activity is lost within 10 min) was 67°C and 72°C in the presence and absence of Triton X-100, respectively. At 45°C the ATPase was fully stable for at least 1 h.

The ATPase activities described in this study correspond with the enzyme that has been shown to translocate Na⁺ upon the addition of ATP (13). No indications were obtained for the presence of a (additional) H⁺-pumping ATPase. Other bacteria also possess Na⁺-ATPases or Na-translocating ATP synthases but maintain H⁺ cycling at the same time (for examples, see references 3–5, 7, 11, 16). The best characterized Na⁺-ATPase is that of Propionigenium modestum (7, 8). The Na⁺-ATPase from C. fervidus differs from the P. modestum ATPase in several respects. (i) The C. fervidus enzyme functions as a Na⁺-extruding ATPase, rather than as an ATP synthase consuming the electrochemical gradient of sodium ions. (ii) The ATPase of C. fervidus is stimulated to the same extent by LiCl as by NaCl. (iii) The pH dependence of the enzyme is not influenced by the presence of Na⁺. The pH optima of the Na⁺-ATPase of P. modestum are 6.0 and 7.0 in the absence and presence of Na⁺, respectively, which is

![Graph A](image1.png)

FIG. 1. Effect of pH on the rate of ATP hydrolysis in inside-out membrane vesicles. P₁ released was measured upon the addition of 2 mM Tris-ATP at 45°C in the absence of Triton X-100, in the presence (●) and absence of 50 mM NaCl (○). One hundred percent activity corresponds with 115 nmol of P₁/min/mg of protein.

![Graph B](image2.png)

FIG. 2. (A) Effect of temperature on the rate of ATP hydrolysis. ATPase activity was measured in inside-out membrane vesicles at pH 6.0 in the presence of 50 mM NaCl upon the addition of 2 mM Na₂ATP and in the absence (□) or presence (●) of 0.1% Triton X-100. One hundred percent activities represent 1.37 and 0.65 μmol of P₁/min/mg of protein with and without Triton X-100, respectively. (B) Arrhenius plots of the temperature dependency of ATP hydrolysis with (●) or without (□) Triton X-100.
indicative of the ability of the enzyme to pump H⁺ at low Na⁺ concentrations. (iv) The ATPase of *C. fervidus* is inhibited by NO₃⁻ and activated by SO₄²⁻. The latter characteristics have also been described for the V-type ATPases found in *Archaea* (9, 15), *Thermus thermophilus* (17), and *Enterochorcoccus hirae* (5).

FIG. 3. Effect of temperature on the passive influx of Na⁺ (○) and H⁺ (●) into liposomes composed of *E. coli* phospholipids plus egg phosphatidylcholine (3/1 [wt/wt]). H⁺ and Na⁺ influxes were measured as described in the text; 12 μg of liposomal phospholipid was used per assay.

REFERENCES

We thank K. H. Altendorf from the University of Osnabrück, Germany, for the gift of bafilomycin A₁ and of polyclonal antibodies directed against the β subunit of the *E. coli* ATPase and J. Knol for performing the sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western immunoblotting experiments.