Stochastic programming with integer recourse
van der Vlerk, Maarten Hendrikus

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1995

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Bibliography

BIBLIOGRAPHY

Index

α-approximation
 of a cdf, 144
 of a pdf, 144
 of a random variable, 144
approximation, see convex approximation

Berge upper semicontinuous, 40
biconjugate function, 117
bounded variation, 63
cdf (cumulative distribution function), 14
 left continuous, 76
chance constraint, 10
 integer, 10
complete
 (mixed) integer recourse, 35
 recourse, 13
 recourse matrix, 13
complete local minimizing (CLM) set, 40
compound approximations, 161
computational complexity, 126
conjugate function, 117
convex approximation, 5, 113, 116, 143
convex hull
 of a function, 116
 of a set, 116
cumulative distribution function (cdf), 14
decision rule, 10
degree of non-convexity, 158
deterministic constraints, 12
distribution problem, 10
dynamic programming, 44
empirical distribution, 41
epigraph, 116
error bound, 147
expected recourse cost, 11
expected shortage function, 20, 24
 integer, 48
α-approximation, 154
expected surplus function, 20, 23
 integer, 48
α-approximation, 146
expected value function, 12
 integer
 α-approximation, 162
 convex hull, 134
one-dimensional, 20, 26
 integer, 48, 86
 integer, α-approximation, 155
 integer, convex approximation, 113
 integer, convex hull, 119
feasibility cut, 42
feasible region, 12
first-stage
 decision, 11
 variables, 11
fixed recourse, 12
fixed technology matrix, 20
Graham scan, 121
heuristics, 44
hierarchical decision problem, 44
indicator function, 90, 137
induced constraints, 12
integer L-shaped method, 41
integer programming, 1, 2
integer recourse, 2, 11, 45
integer-valued random variable, 54
knot, 22
L-shaped method, 41
linear programming, 1, 7
Lipschitz continuous, 16, 24–26, 38, 61, 89
lower semicontinuous, 37, 60, 82, 88
hull, 117
mathematical programming, 7
mixed integer recourse, 35
modeling, 7, 9
non-linear optimization, 13
NP-hard, 2
null space, 136
objective function, 1, 11
optimality cut, 42, 43
pdf (probability density function), 38
penalty function, 1
probability density function (pdf), 38
left continuous version, 66
right continuous version, 66
proper function, 135
r-convex distribution, 38
random recourse, 12
random technology matrix, 27, 95
range, 136
reasonable convex approximation, 113
recourse, 2, 11
actions, 2
cost, 10
matrix, 13
relatively complete recourse, 13
reliability coefficient, 10
rounding with respect to $\alpha + Z$, 144
second-stage problem, 2
semi-periodic, 59
sensitivity analysis, 8
separable, 18, 136
simple
continuous recourse, 20
integer recourse, 45
recourse, 13, 18
recourse matrix, 18
SLP-IOR, 140
stability, 39
stochastic linear programming, 1
support, 14
tender variable, 20
total
decrease, 63
increase, 63
variation, 63
two-stage model, 11
uniform error bound, 149
valid set of cuts, 43
value function, 11
mixed integer, 36
simple recourse, 19
integer, 47
wait-and-see model, 10
weak convergence, 39
weak covariance condition, 15