Appendix A

Mathematical background

In this appendix, we provide some definitions, equations, and theorems (without proofs), which are used in this thesis. The material was mainly compiled from [Chu92a, Koo93, Dau92, KS91].

A.1 Convolution, delta-function and filtering

The continuous convolution of two functions x and y defined on \mathbb{R} is given by:

$$ (x * y)(t) := \int_{-\infty}^{\infty} x(\tau) y(t - \tau) \, d\tau, \quad (A.1) $$

whenever this formula has a meaning. In particular, the convolution product exists for $x, y \in L^2(\mathbb{R})$, giving

$$ \|x * y\|_\infty \leq \|x\|_2 \|y\|_2, $$

and also if $x \in L^1(\mathbb{R})$, $y \in L^p(\mathbb{R})$. Then

$$ \|x * y\|_p \leq \|x\|_1 \|y\|_p. $$

Convolution is commutative, i.e., $x * y = y * x$, and associative, i.e., $x * (y * z) = (x * y) * z$. Using the theory of distributions, convolution can be defined in another way. These theoretical concepts are also required to prove that the Dirac δ-distribution is the unit-element of the convolution operation. We will only state this result:

$$ (\delta * x)(t) = (x * \delta)(t) = x(t). $$

The Dirac distribution is not an ordinary function. Often, the Dirac δ-distribution is treated as an ordinary function, which is zero everywhere except at $t = 0$, and has integral 1.

The discrete convolution between two sequences $\{a_n\}_{n \in \mathbb{Z}}$ and $\{b_n\}_{n \in \mathbb{Z}}$ is given by:

$$ (a * x)_n := \sum_{k=-\infty}^{\infty} a_k b_{n-k}. \quad (A.2) $$
It is commutative and associative as well. The unit-element is the Kronecker δ-sequence:

$$\delta_k = \begin{cases}
1 & k = 0 \\
0 & k \neq 0
\end{cases}$$

Finally, we define the mixed convolution between a sequence $\{a_k\}_{k \in \mathbb{Z}}$ and function x on \mathbb{R} by:

$$(a \ast x)(t) := \sum_{k=-\infty}^{\infty} a_k x(t - k). \quad (A.3)$$

The mixed-convolution is neither commutative nor associative.

Filtering

The convolution integral (A.1) is used to calculate the response of a linear continuous-time IOM system with impulse response h to an input signal x. The output signal is given by

$$y(t) = (x \ast h)(t).$$

A similar relation holds for discrete-time systems with a discrete-time impulse response $\{h_k\}_{k \in \mathbb{Z}}$:

$$y_k = (x \ast h)_k.$$

Convolution and Fourier transform

The Fourier transform (see next section) turns convolution products into algebraic products in the Fourier domain:

$$(\mathcal{F}(x \ast y))(\omega) = X(\omega) Y(\omega).$$

This property is often used to facilitate the calculation of convolution integrals.

A.2 Fourier analysis

Fourier transform

For functions in $L^1(\mathbb{R})$, the Fourier transform is defined as:

$$X(\omega) = \int_{-\infty}^{\infty} x(t) e^{-i\omega t} \, dt. \quad (A.4)$$

The Fourier transform of x is denoted as $(\mathcal{F}x)$ or X. It has the following properties [Chu92a]:

1. $X \in L^\infty(\mathbb{R})$, with $\|X\|_{\infty} \leq \|x\|_1$,

2. X is uniformly continuous on \mathbb{R},

3. if the derivative x' of x exists and $x' \in L^1(\mathbb{R})$, then $(\mathcal{F}x')(\omega) = i\omega X(\omega)$.

If \(X \in L^1(\mathbb{R}) \), then the inverse transform is defined as:

\[
(F^{-1}X)(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{i\omega t} \, d\omega,
\]

(A.5)

with \(x(t) = (F^{-1}X)(t) \) at every point \(t \) where \(x \) is continuous. If \(x \in L^1(\mathbb{R}) \cap L^2(\mathbb{R}) \), then \(X \in L^2(\mathbb{R}) \). The inverse transform exists and lies in \(L^2(\mathbb{R}) \).

Two functions \(x \) and \(X \) such that \(X = Fx \) and \(x = F^{-1}X \) are called a Fourier transform pair, denoted as

\[
x(t) \leftrightarrow F \rightarrow X(\omega).
\]

(A.6)

Assume \(f(t) \leftrightarrow F \rightarrow F(\omega) \) and \(g(t) \leftrightarrow F \rightarrow G(\omega) \) are two Fourier transform pairs. Then the following relation holds:

\[
\langle f, g \rangle = \frac{1}{2\pi} \langle F, G \rangle \quad \text{Parseval relation.}
\]

(A.7)

The Parseval relation is sometimes (weaker) formulated as:

\[
\|x\|_2^2 = \frac{1}{2\pi} \|X\|_2^2,
\]

(A.8)

which is a special case of the Parseval relation (3.5) given on p. 32.

Sinc-function and its Fourier transform

The sinc-function is defined as:

\[
sinc(t) := \begin{cases}
\frac{\sin(\pi t)}{\pi t} & x \neq 0 \\
1 & x = 0
\end{cases}
\]

(A.9)

Its Fourier transform is the rect-function:

\[
\text{rect}(\omega) := \begin{cases}
1 & |\omega| < \pi \\
0 & \text{elsewhere}
\end{cases}
\]

(A.10)

Hence, sinc-function and rect-function form a Fourier transform pair:

\[
sinc(t) \leftrightarrow F \rightarrow \text{rect}(\omega).
\]

Fourier series

A \(2\pi \)-periodic function \(x \in L^2(0, 2\pi) \) can be written in the form of a Fourier series:

\[
x(t) = \sum_{k \in \mathbb{Z}} c_k e^{ikt},
\]

(A.11)

with \(c_k \) being the \(k \)th Fourier coefficient, given by:

\[
c_k = \frac{1}{2\pi} \int_0^{2\pi} x(t) e^{-ikt} \, dt.
\]

(A.12)
The corresponding Parseval relation is given by
\[
\sum_{k=-\infty}^{\infty} |c_k|^2 = \frac{1}{2\pi} \int_{0}^{2\pi} |x(t)|^2 \, dt.
\] (A.13)

The mapping \(L^2(0, 2\pi) \to l^2 \) : \(x(t) \to c_k \) is also referred to as continuous-to-discrete Fourier transform (CDFT). The CDFT transforms a periodical signal into an infinite-length sequence.

Infinite-length discrete-time signals

For sequences in \(l^2(\mathbb{R}) \), the discrete-to-continuous Fourier transform (DCFT) is defined as:
\[
X(\omega) = \sum_{k=-\infty}^{\infty} x_k e^{-ik\omega},
\] (A.14)

with the inverse:
\[
x_k = \frac{1}{2\pi} \int_{0}^{2\pi} X(\omega) e^{ik\omega} \, d\omega.
\] (A.15)

The DCFT maps the sequence \(x_k \) onto a \(2\pi \)-periodic function \(X(\omega) \). If the sequence represents a uniformly sampled, discrete-time signal with sampling interval \(\Delta \), the interval \([-\pi, \pi]\) corresponds to \([-\omega_s/2, \omega_s/2]\) where \(\omega_s = 2\pi/\Delta \).

Note the similarity between DCFT and CDFT. From the mathematical point of view there is no distinction between the two transforms.

Finite-length discrete-time signals

The discrete-to-discrete Fourier transform (DDFT) is defined as
\[
X_n = \sum_{k=0}^{N} x_k e^{-ikn},
\] (A.16)

with the inverse:
\[
x_k = \frac{1}{2\pi} \sum_{n=0}^{N} X_n e^{ikn}.
\] (A.17)

The DDFT is commonly known as discrete Fourier transform. It can be calculated very efficiently using the Fast Fourier Transform (FFT-algorithm).

Poisson summation formula

An important result in Fourier analysis is the Poisson summation formula, which is given here in the most general form:
\[
\sum_{k=-\infty}^{\infty} x(t + kb) e^{-ika} = \frac{1}{|b|} \sum_{n=-\infty}^{\infty} X \left(\frac{2\pi n + a}{b} \right) e^{i\pi (2\pi n + a)/b}.
\] (A.18)
The Poisson formula is also used in the following form \((a = 0, \ b = 2\pi)\):
\[
\sum_{k=-\infty}^{\infty} x(t + 2\pi k) = \frac{1}{2\pi} \sum_{n=-\infty}^{\infty} X(n) e^{in\omega t}. \quad (A.19)
\]

A similar formula holds in the frequency domain \((a = \omega \Delta, \ b = \Delta, \ t = 0)\):
\[
\sum_{n=-\infty}^{\infty} X(\omega + n\frac{2\pi}{\Delta}) = \Delta \sum_{k=-\infty}^{\infty} x(k\Delta) e^{-i\omega k}\Delta. \quad (A.20)
\]

Another useful form of the Poisson formula is
\[
\sum_{k=-\infty}^{\infty} \langle f(t), g(t - k) \rangle e^{i\omega k} = \sum_{n=-\infty}^{\infty} F(\omega + n2\pi) G(\omega + n2\pi). \quad (A.21)
\]

Translation, modulation and dilation

The principal operations in wavelet theory are *translation* and *dilation*. We define the following operators [Koo93, p. 19]:

- **Translation:** \(T_a x(t) = x(t - a)\)
- **Modulation:** \(E_a x(t) = e^{iat} x(t)\)
- **Dilation:** \(D_a x(t) = \left|a^{-1/2} x(t/a) \right| (a \neq 0)\)

The following inner-product relations hold:
\[
\langle x, T_a y \rangle = \langle T_{-a} x, y \rangle; \quad \langle x, E_a y \rangle = \langle E_{-a} x, y \rangle; \quad \langle x, D_a y \rangle = \langle D_{1/a} x, y \rangle.
\]

Moreover, there are some useful relations with the Fourier transform \(\mathcal{F}\):
\[
\mathcal{F} T_a x = E_{-a} \mathcal{F} x; \quad \mathcal{F} E_a x = T_a \mathcal{F} x; \quad \mathcal{F} D_a x = D_{1/a} \mathcal{F} x.
\]

A.3 Laplace and Z-transforms

A convenient tool for control system analysis is the Laplace transform. It is used in favor of the Fourier transform, since it is capable of handling one-sided initial value problems (transients) and signals with exponential growth. The Laplace transform of a signal \(x\) is given by
\[
X(s) = \int_{-\infty}^{\infty} x(t) e^{-st} \, dt,
\]
where \(s\) is the complex Laplace variable, \(s = \sigma + i\omega\). Note that for \(\sigma = 0\) the Laplace transform reduces to the Fourier transform.

The Laplace transform, in general, will not converge for all \(s\). The set \(E \subset \mathbb{C}\) where the integral converges is called the existence region of \(X\). The existence region has the form
\[
E = \{ s \in \mathbb{C} | \sigma_1 < \text{Re}(s) < \sigma_2 \},
\]

where \(\sigma_1 \) may become minus infinity and/or \(\sigma_2 \) plus infinity. In addition, we can define a one-sided Laplace transform for signals that are zero, or not defined, for \(t < 0 \). This transform is given by

\[
X(s) = \int_0^\infty x(t) e^{-st} dt,
\]

and its convergence region is \(E = \{ s \in \mathbb{C} \mid \text{Re}(s) > \sigma_1 \} \). For signals that are zero for \(t < 0 \) both transforms are identical.

The inverse Laplace transform is:

\[
x(t) = \frac{1}{2\pi i} \int_{\sigma-i\infty}^{\sigma+i\infty} X(s) e^{st} ds,
\]

where \(\sigma \) is chosen inside the existence region. Evaluation of this integral requires complex function theory. It can be often avoided: the inverse Laplace transform can also be obtained by writing \(X(s) \) as a sum of simple terms whose inverse transforms are known. This procedure is called \textit{partial fraction expansion}. An example of this expansion is

\[
X(s) = \frac{s - 1}{(s + 1)^2(s - 2)} = \frac{-1/9}{s + 1} + \frac{2/3}{(s + 1)^2} + \frac{1/9}{s - 2}.
\]

Assuming one-sided signals defined for \(t \geq 0 \), the inverses of the three terms at the right-hand side can be found in a table of Laplace transforms, giving the inverse:

\[
x(t) = -\frac{1}{9} e^{-t} + \frac{2}{3} t e^{-t} + \frac{1}{9} e^{2t}.
\]

The discrete-time equivalent of the Laplace transform is the \(Z \)-transform

\[
X(z) = \sum_{k=-\infty}^{\infty} x_k z^{-k}.
\]

Here \(z \) is a complex variable: \(z = \rho e^{j\omega \Delta} \), and \(\Delta \) is the sampling interval. The existence region is

\[
E = \{ z \in \mathbb{C} : \rho_1 < |z| < \rho_2 \},
\]

where \(\rho_1 \) may become zero and \(\rho_2 \) infinity. For \(\rho = 1 \), the \(Z \)-transform reduces to the DCFT. The one-sided variant is given by

\[
X(z) = \sum_{k=0}^{\infty} x_k z^{-k},
\]

with existence region \(E = \{ z \in \mathbb{C} : |z| > \rho_1 \} \). The inverse transform is

\[
x_k = \frac{1}{2\pi i} \oint_{\Gamma} X(z) z^k \frac{dz}{z},
\]

where \(\Gamma \) is a contour within the existence region. In most situations, the inverse can be found by partial fraction expansion or by expanding \(X(z) \) in a power series.

The reader is referred to [KS91] for a more detailed discussions of Laplace and \(Z \)-transforms.
Appendix B

Mathematica program for MSDS analysis

The following piece of MATHEMATICA code has been used to calculate the transfer function $K(z)$ (6.15) on p. 124. Though $K[z]$ is the final result, little overhead is required to split the numerator and denominator and to write them in MATLAB format on a file.

```mathematica
rules={(x_^m_)*(n_)->x^(m*n)}
$Post = (# /. rules) &;

W = Exp[-I * 2 * Pi/M];
DD[H_,z_,M_] := 1/M * Sum[H /. {z -> z^(1/M)*W^k},{k,0,M-1}];
UU[H_,z_,M_] := H /. {z -> z^M};
zoh[z_] := Sum[z^i,{i,-M+1,0}]/M;

(*---------------------------------------------------------------*)
(* input section *)

M = 2
Pname = "z"; (* Use lower case letters: n,z,f,b *)
Qname = "b";
G[z_] := (a*z + b)/(z^2 + c*z + d);
H[z_] := 1;

(*---------------------------------------------------------------*)
Switch[Pname,
"n", P[z_] := 1,
"z", P[z_] := zoh[z],
"f", P[z_] := zoh[z]^2,
"b", P[z_] := zoh[z]^3 *(1 + z)/(2*z)];

Switch[Qname,
"n", Q[z_] := M
"z", Q[z_] := zoh[z]^M
"f", Q[z_] := zoh[z]^2 *M,
"b", Q[z_] := zoh[z]^3 *(1 + z)/(2*z) * M];

K[z_] := (H[z^M]*Q[z]*G[z])/(1+H[z^M]*UU[DD[P[z]*Q[z]*G[z],z,M],z,M]);

(*---------------------------------------------------------------*)
```
(* output *)

s = "==="
ss = "---

s >>> outfile
G[z] >>> outfile
H[z] >>> outfile
M >>> outfile
StringJoin["Filter type: ", Pname, Qname] >>> outfile

ss >>> outfile

n[z_] := Expand[Numerator[Factor[K[z]]]];
InputForm[Reverse[CoefficientList[n[z], z]]] >>> outfile
n[z_] := Expand[Denominator[Factor[K[z]]]];
InputForm[Reverse[CoefficientList[n[z], z]]] >>> outfile
r >>> outfile
Appendix C

The sampling toolbox

The SAMPLING TOOLBOX is a group of MATLAB functions for calculating the filters and simulating the general sub-sampling scheme of Chapter 5.

The toolbox can be distributed freely under the GNU-publishing licence. It can be obtained by anonymous ftp at the following URL:

The toolbox consists of the following functions

% splines and spline-wavelets
[x,t] = BSPLINE(m,sf) sampled b-spline of degree m
[x,p] = BSPLWAV(n,m) b-spline wavelet
[x,p] = CSPLINE(n,m) cardinal spline to b-spline
[x,q] = CSPLWAV(n,m,prec) cardinal b-spline wavelet
[x,p] = DCSPLINE(n,m) dual spline to cardinal spline
[x,p] = DSPLINE(n,m) dual spline to b-spline
[x,q] = DSPLWAV(n,m) dual to b-spline wavelet
[x,q] = OSPLINE(n,m) orthogonal spline to b-spline
[x,q] = OSPLWAV(n,m) orthogonal b-spline wavelet

% sinc-functions and filters
x = DSINC(t,fc) discrete sinc function
 (= ideal low-pass in periodic domain)
x = DSINCF(t,dsf) discrete sinc filter
 (= ideal low-pass in periodic domain)
x = SINC(t,fc) sinc function (= ideal low-pass)
x = SINCF(t,dsf) sinc filter with relative cut-off frequency

% Daubechies filters
h = DAUBFILT(order,dsf) direct wavelet FIR filters

% up/down sampling
y = DSAMP(x,dsf) down-sampling of array x by factor dsf
y = MDSAMP(x,dsf) down-sampling from maximum value
\begin{verbatim}
y = SDSAMP(x,dsf) symmetry preserving down-sampling
y = SUSAMP(x,usf) symmetry preserving up-sampling
y = USAMP(x,usf) up-sampling

% special convolution
z = CCONV(x,y) cyclic convolution via FFT and IFFT
y = CONVINV(x,prec,pad) convolution inverse
y = CONVROOT(x) convolution inverse square root
y = CONVROOT(x,prec,pad) convolution square root
z = FCONV(x,y) convolution and truncation (symmetrical filter y)
y = TRUNCFILT(x,frac) truncation of a long filter
y = ZEROPAD(x,n) symmetrical zero padding

% misc
k = ISSYM(x,prec) symmetry detection of an (odd) sequence
x = ITFILT(h,M) iterates a filter from sequence h using
 the two-scale relation

% general subsampling scheme
y = GENSCHEM(x,p,q,M) general subsampling scheme
\end{verbatim}

For example, the output of the general sub-sampling scheme of Figure 5.1 on p. 87 is calculated by the following MATLAB statements (assuming input signal \(x \)):

\begin{verbatim}
M = 2;
n = 2;
p = bspline(n,M);
q = dspline(n,M);
y = fconv(x,M);
ystar = usamp(dsamp(y,M),M);
z = fconv(ystar,fliplr(q))
\end{verbatim}

The function \texttt{genschem} implements the general subsampling scheme with filters \(p \) and \(q \) and down-sampling factor \(M \).