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Abstract
In this paper we investigate the relationship between the
different Riccati equations that appear in the H∞ control
problem for linear discrete time-varying systems. Once
we obtain this relation we can reformulate the conditions
under which the H∞ output feedback problem is solvable.
In contrary to the conditions in terms of two coupled
Riccati equations found in [15], the new conditions are
stated in terms of two uncoupled Riccati equations and
a coupling condition.

1 Introduction
In the past decade a burst of research activity has taken
place in the field of H∞ control. In the wake of the pio-
neering paper [4] on the "Riccati state space approach"
for linear continuous time-invariant systems, a number
of extensions have been published treating linear discrete
time-invariant systems, and Linear Time-Varying (LTV)
systems.

In [10] a solution to the discrete time-invariant H∞
control problem with measurement feedback is given.
The conditions are stated in terms of two coupled Ric-
cati equations, i.e., one of these equations is not stated in
terms of the original system matrices. In [16] the relation
with another Riccati equation in terms of the original sys-
tem matrices is given. With this relation the conditions
to solve the H∞ control problem with measurement feed-
'back can be given via two uncoupled Riccati equations an
additional coupling condition.

In [15] sufficient conditions in terms of two Riccati
equations have been given to solve the infinite horizon
H∞ output feedback problem for linear discrete time-
varying systems. Similar to the time-invariant case, the
drawback of these Riccati equations is that they are cou-
pled. Therefore, we develop a relationship with another

discrete time-varying Riccati equation, which is uncou-
pled.

The paper is organized as follows. In Section 2 we give
a brief overview of the notation and the representation of
a state space model of LTV systems used throughout the
paper. The set up is based on [3], and [11]. In Section
3 we give an extension of a result of [8] to LTV systems.
A summary of the result of [15] is given in Section 4.
The conditions to solve the H∞ output feedback problem
for LTV systems are stated. Then, we use Section 3 to
develop the relationship with another Riccati equation in
Section 5, and reformulate the result of Section 4 in terms
of two uncoupled Riccati equations with an additional
coupling condition. Finally, in Section 6 we give some
conclusions.

2 Preliminaries
In this section, we introduce the notation used in repre-
senting Linear Time-Varying (LTV) systems.

A state space realization of the LTV system P to be
controlled, is denoted on a local time scale as:

xk+l = AkXk + BkUk

yk = CkXk + DkUk (1)

where Xk, Uk and Yk are (finite dimensional) column vec-
tors in respectively ([.IV., CMk and CLk and the matrices
{Ak' Bk, Ck, Dk} are bounded matrices of appropriate di-
menSions.

To denote the state space representation more com-
pactly, we introduce as done [3] and [11], the dimension
space sequences B,

where Bk = CNk and the square box identifies the space
of the O-th entry. In a similar way, we introduce the
dimension space sequence M and N from the integer se-
quences {Mk} and {Lk}. It is allowed that some integers
in these sequences are zero. The space of sequences in B
with finite 2-norm will be denoted by l2B. Next we stack
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the sequence of state vectors Xl:, input vectors Uk and
output vectors yk into oo-dimensional column vectors x,
u and Y; denoted explicitly for the state vector sequence
as,

where the square identifies the position of the 0-th entry.
Let B( -1) denote the shifted dimension space sequence of
B, i.e.

and let D(M, N) denote the Hilbert space of bounded di-
agonal operators l21.1. → l2N, then we can stack the system
operators Ak, Bk, Ck and Dk into the diagonal operators
A,B,C and D, as (denoted only explicitly for A):

C ∈ D(B,N), B ∈ D(M,B(-1», D ∈ D(M,N).

Let the causal bilateral shift operator on sequences be
denoted by Z, such that,

then Z x ∈ B(1). Furthermore, the k-th diagonal shift
of an operator X is X(k) = Zk AZ*k. Then a compact
notation on a global time scale of the state space repre-
sentation (1) is:

Z-1X = Ax + Bu
y = Cx + Du

(2)

also denoted as

With this notation it is possible to represent a LTV sys-
tem as an operator. Let the transition operator Φ(j, k) of
t he system wi th state space representation (2) be defined
as,

Φ(j, k) = {
Ak-1 ... Aj+1Aj j < k
I j = k
undefined j > k

and let limk→oo Φ(j, k) = 0 Vj < 00, then the inverse
of the operator (I - ZA) exists. Then the operator rep-
resentation of the (asymptotically stable) LTV system P
becomes:

P = D + C(I - ZA)-1ZB (3)

Let fA denote the spectral radius of the operator ZA, i.e.,
fA = Iimn→oo ||(ZA)n||1/n. If lA < 1 then the realization
is asymptotically stable (which is, in the case of LTV
systems, equivalent to being exponentially stable). The
transfer operator P is lower triangular. In general the
Hilbert space of bounded lower operators acting from l21.1.
to l2N is denoted by L(M, N) or denoted in short by
L. When the dimension Nk of the state vector is finite
for all k then the operator represented as in Eq. (3)
is locally finite. In the same way as L, we denote the
space of bounded operators by X (M, N) and the space
of bounded upper triangular operators by U (M , N).

Finally, operators representing input-output maps are
sometimes indexed. In this way, the input-output map
Twz relates the input sequence w to the output sequence
z.

3 An equivalent representation of
the Riccati Equation

We will generalize the results of [8] for the discrete time-
invariant Riccati equation to a certain extend to the dis-
crete time-varying Riccati equation. It is not possible
to generalize all of the results, since they are based on
an eigenvalue decomposition. The representation we get
here is useful for getting a relation between different Ric-
cati equations that appear in the solution of the LTV H00
problem, as will be seen in the next section. Weare con-
cerned with the discrete time-varying (forward) algebraic
Riccati equation of the form (we adopt the notation of
[8])
X = -F* X(-1)G1(G2 + G1*X(-1)G1)-1G1*X(-1)F

+F*X(-1)F+H.
(4)

Here H, X ∈ D(B,B), F ∈ D(B,B(-1», G1 ∈
D(M,B(-1», G2 ∈ D(M,M), and G2 = G2*, H = H*.
We assume that (F, Gd is a stabilizable pair, and that
(C, F) is a detectable pair, where C*C = H. Finally, we
define G:= G1G2-"G1*·

From the discrete maximum principle (see e.g. Whittle
[17]) we obtain (similar to the time-invariant case) the
Hamiltonian difference equations

(5)

for every time-step, where Xk denotes the state at time
tk and zk denotes the corresponding adjoint vector. We
can rewrite this as

(6)
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Now we can state the following theorem

Theorem 1 Assume that there exists a stabilizing solu-
tion X of the algebraic Riccati equation (4), i.e., such
that

F× = F - G1(G2 + G1*X(-1)G1)-1G1*X(-1)F (7)

fulfills lF× < 1. Then X can be written as X = PQ-1
for any Q non-singular, and Q and P that fulfill

(8)

where S = Q-(-l)F×Q.

PROOF We can rewrite (4) as

X - H = F* X(-l)F× (9)

Take an arbitrary non-singular Q ∈ D(B, B), define
S:= Q-(-l)F×Q, and set P:= XQ (thus X = PQ-1).
Substitute this in (9), then

P - HQ = F* p(-1)Q-(-1)F×Q = F* p(-l)S. (10)

Furthermore, (7) yields

G1*X(-1)Q(-1)SQ-1 =
G2(G2 + G1*X(-1)G1)-1G1*X(-1)F

Multiplication from the right by G1G2-1, using (7), and
using X = PQ-1 yields (see also [8])

GP(-l)S = FQ - Q(-l)S

Now we obtain (8) from (10) and (11).

(11)

The reverse implication of the previous theorem also
holds, but is not stated here. For the backward algebraic
Riccati equation we can easily obtain a similar result. We
state this result without proof.

Theorem 2 Assume there exists a solution to the alge-
braic Riccati equation

X(-l) = -FXG1*(G2 + G1XG1*)-lG1XF*
+FXF* +H

(12)

where H, X ∈ D(B, B), F ∈ D(B, B(-l)), G1 ∈ D(B,N),
G2 ∈ D(N,N) and G2 = G2*, H = H*, and G :=
G1*G2-1G1, such that

is asymptotically stable (i.e., lF× < 1). Then such solu-
tion X to equation (12) can be written as X = PQ-l for
any Q non-singular, and Q and P that fulfill

(13)

where S = Q-1(F×)*Q(-1).

4 H∞ Output Feedback
In this section we summarize the results of [15].

Let the time-varying system T be given with state
space realization:

Z-lx = Ax + B1w + B2u
z = C1X + + D21 U

y = C2x + D12W + D22U

(14)

where A ∈ D(B,B(-l)), B1 ∈ D(M1,B(-1)), B2 ∈
D(M2,B(-1)), C1 ∈ D(B,N1), C2 ∈ D(B,N2), D12 ∈
D(M1,N2), D21 ∈ D(M2,N1), D22 ∈ D(M2,N2), and
x is the state sequence, w the exogenous input sequence
(disturbances), u the control input sequence, y the mea-
sured output sequence, and z the to-be-controlled out-
put sequence. Note that we do not assume that the A-
operator of (14) has lA < 1, or in other words, that we
allow the system to be unstable (i.e., the state sequence x
may be unbounded). In that case the operator (I-AZ)-l
is not bounded, which implies that T does not exists, i.e.,
T ∉ U(M1 + M2,N1 + B).

Consider the time-varying controller K with state
space realization:

Z-lξ = Φξ+\[I1y

U = \[I2ξ+\[I3Y (15)

where Φ, \[11, \[12 and \[13 are bounded diagonal operators
and where the state dimensions still has to be determined.
Both systems are connected as displayed in Figure 1.

Figure 1: Block-schematic representation of the H00 out-
put feedback problem.

Now, let re ∈ D(M 1 , M 1) be a prescribed level of distur-
bance attenuation, such that r e » 0, and assume that
there exists a solution \IMe∈ D(B, B) of,

M _ 4.'" M(-1), + E W,-1E* 1 C*C1'Mc-~ Mc A cWc c+ 11 (16)

with Ee = C1*De + A* Mc(-l)Be, Dc = [0 D21], Be =
[B1 B2], and

such that

reI - B1*\IMc(-1)B1>> 0
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Ale ≥ 0 and the operator Ac×, defined as:

AX = A ' B W-1 E*c lee c

is asymptotically stable. Now define

U .- Γ I B*M(-l)B1 .- c - 1 c 1

B~ A* ,M(-l)B1:= lM1c 1

~B2 := CiD21+A*MIc(-1)B2
B~ . +B*M(-1)B3:= 2Mc 1

U B*(-1)B B~U-1B~* D*D
2 := 2· c 2 + 3 1 3 + 21 21

U3 := ~B2+ ~B1U11 ~B3*

(17)

Then under the following assumptions:

Assumptions 3
1. The pair (A , B2) is uniformly stabilizable, the op-

erator D*21D21 » 0 and Γ c = ,γ21M , is chosen such
that a solution to (16) as above exists.

2. The pair (C2 , A) := (C2 + D12U1
1 Hi , A +

B1U1-1~Bi), with the quantities ~B1 and U1 defined
in (17), is uniformly detectable, and the operator
D12Di2 » 0,

we can state the H∞ output feedback problem as follows
(Figure 1): For a given level of disturbance attenuation
Γc = γ2 IM1 with γ > 0, find a state space realization
{Φ, W1, W2, W3} of the controller K in Eq. (15), such
that:

1. The A-operator of the closed-loop system in Figure
1, which has the following form:

is asymptotically stable. When this is the case, the
closed-loop system depicted in Figure 1 is internally
stable.

2. The operator Twz between wand:: in Figure 1 sat-
isfies ΓcI - T*wzTwz »O.

Now define
- 1 ~
A := A + B1U1- Bi
- _1. 1/
B1 := B1U1 2Γc2
-- -1 ~*
B2 := B2 + B1U1 B3

1

C1 := U2-/2U3*
C D U-1

C2 := C2+ 121
1

D 1 := U2/2
- 1/ 1
D12 := D12U12Γc2

D22 := D22 + D12U11 ~B3*

(18)

Let fo ∈ D(M2, M2), be a prescribed disturbance atten-
uation level such that fo »O. Now assume there exists
a solution M 0 ∈ D(B, B) of

such that

- -×Mo ≥ 0 and the operator Ao , defined as:

is asymptotically stable. Now we state a theorem by [15].

Theorem 4 Let T be a locally finite operator with state
space realization in Eqs. (14) and satisfying the Assump-
tions 3. Furthermore, let Γ c = γ2 1M, be a prescribed
disturbance attenuation level with γ > O. For this Γ c 1

let Me be a solution to the Riccati equation (16) satisfy-
ing the corresponding conditions. Let this Mle define the
state space representation of the LTV system ¯T with sys-
tem matrices as in Eq. (18). Let ¯Γ'0 = γ21M2 and let M 0
be a solution to the Riccati equation (19) satisfying the
corresponding conditions, then there exists an controller
that solves the H∞ output feedback problem.

In [15] an explicit expression for the controller that solves
the output feedback problem is given.

5 The relation with other condi-
tions

It is well known that for continuous time-invariant sys-
tems the Riccati equations that occur in the solution of
the H∞ output feedback problem are given as two uncou-
pled equations, together with a coupling condition. For
time-invariant discrete time systems this has been inves-
tigated in [16], and a relationship between three Riccati
equations has been found. Clearly, in the discrete time-
varying case the Riccati equations of Theorem 4 are cou-
pled. Therefore, in this section we generalize the result
of [16] to LTV systems.

Consider the stabilizing solution lvle to the algebraic
Riccati equation (16), the stabilizing solution M o to the
algebraic Riccati equation (19), and additionally, assume
that for a prescribed level of disturbance attenuation Γ 0 ∈
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D(N1, N1), Γ o » 0, there exists a solution lvMo∈ D(B, B)
of

M(-l) - AM A* + E*W-1 E + B B*0-0 00011 (20)

such that

Γ 01 - C1MoC1* » 0,

Mo ≥ 0 and the operator A0×, defined as:

A0× = A + E0*Wo-1Co

is asymptotically stable. Then we can give the following
relation

Theorem 5 If the prescribed disturbance levels are Γc =
γ2 1,MI' Γ0 = γ21,V11 and ¯Γ0 = γ2 1,M2, then

M 0 = Mo(I - γ-2 IvcMo)-l (21 )

PROOF First we define

(22)

By Theorem 2 we know that '1M0' and IvIo can be written
as AMo= PQ-l and Iv[ 0 = P Q -1, respectively, where Q,
and Q are non-singular, and Q, P and Q, P, respectively
fulfill

(23)

where 5 = Q-l(Fo×)*Q(-l), and

(24)

- - -× _(-1)
where 5 = Q -l(Fo)*Q . Now we follow the proof
of Theorem 3 of [16]. First assume that there exists a
similarity transformation W ∈ D(B, B) such that

(25)

Then

Together with (24) this implies that there exists a R ∈
D(B,B) such that

Then

RQ-l = (Q-γ-2M1cP)-1 and

PR-1=P⇒ Mo =PQ-l=p(Q_γ-2McP)-1
= MIo(I - γ-2 McMo)-l

Hence, the only part that is left to prove is the existence
of W. Write W as

(26)

then it follows from (25) that

and

Therefore, W exists and is of the form (26) with W11 =
I, W21 = 0, W12 = -γ-2 FoMc(-l), and W22 =
γ-2HoMc(-l)+1if

Fo = (1+1-2H0Mc(-1))F0 (27)
F* = F* +~-2¯F*lv(-1))H (28)o 0 a C 0

Ho = (I+γ-2Holvc(-1))Ho (29)

G G -2F* M1(-l)F -2 'M (30)o = 0-1 OIC o+γ dc

We can prove (27), (28), (29), and (30) by straightfor-
ward, but huge and technical calculations. We refer to
[16], and [13] for the details. 0

The relation of this theorem means that we can refor-
mulate Theorem 4 as follows
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Corollary 6 Let T be a locally finite operator with state
space realization in Eqs. (14). Let (A, B2) be uniformly
stabilizable, (C2, A) uniformly detectable, D*21 D21 » 0,
D12D*12 » 0, and fe = γ2I/IA , be a prescribed distur-
bance attenuation level with γ > O. For this fe, let Me
be a solution to the Riccati equation (16) satisfying the
corresponding conditions. Let f 0 = γ2IN1 and let Mlo
be a solution to the Riccati equation (20) satisfying the
corresponding conditions. Assume that the coupling con-
dition γ2 I - MeMo » a is fulfilled. Then there exists an
controller that solves the Hoo output feedback problem.

6 Conclusion

We developed a relationship between three Riccati equa-
tions that appear in the Hoo control problem for linear
discrete time-varying systems. Now the conditions for
solvability of the Hoo control problem are stated in terms
of two uncoupled Riccati equations and a coupling con-
dition.

On the solvability of the Riccati equations, more re-
search has to be done. In this view, the generalization
of the time-invariant concept of zeros on the unit circle
has to be investigated. Probably the possibility of divid-
ing the system in a causal and anti-causal part plays an
important role in this case.
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