Emissions from cochlear modelling
van Hengel, Pieter Willem Jan

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1996

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Part IV

For the interested reader
References


models of the outer hair cell,” in: Biophysics of Hair Cell Sensory Systems,
edited by H. Duijffuis, J. W. Horst, P. van Dijk and S. M. van Netten (World
pp. 443–478.
Acustica 58, 207–214.
tions,” Hear. Res. 38, 35–46.
70, 426–436.
method for detecting spontaneous otoacoustic emissions in human subjects,”
Hear. Res. 71, 170–182.
lateral line canal fluid,” in preparation.
on properties of isolated outer hair cells from the guinea-pig cochlea,” British
tween the tectorial membrane and the reticular lamina in the isolated temporal
bone preparation.” Paper presented at the 18th Midwinter Research Meeting of
the Association for Research in Otalaryngology, St. Petersburg Beach, Florida,
February 5–9.
Pol oscillator model,” in: The Mechanics and Biophysics of Hearing, edited by
P. Dallos, C. D. Geisler, J. W. Matthews, M. A. Ruggero and C. R. Steele
tions in a one-dimensional time domain cochlea model,” in: Biophysics of Hair
Cell Sensory Systems, edited by H. Duijffuis, J. W. Horst, P. van Dijk and S. M.
vand Netten (World Scientific, Singapore) pp. 103.
click evoked and spontaneous OAE’s; theory meets experiment,” in: Biophysics
of Hair Cell Sensory Systems, edited by H. Duijffuis, J. W. Horst, P. van Dijk
ments on the dynamic behaviour of the cupula in the fish lateral line,” Hearing
Res. 29, 55–61.
van Netten, S. M. (1987). Laser interferometric study of the mechanosensitivity of
gating springs of the transduction channels of hair cells,” in: Biophysics of hair
cell sensory systems, edited by H. Duijnhuis, J. W. Horst, P. van Dijk and S. M.
phase match of cochlear model calculations and basilar membrane vibration
data,” in: Mechanics of Hearing, edited by E. de Boer and M. A. Viergever
Viergever, M. A., and Diependaal, R. J. (1986). “Quantitative validation of
of Technology, Netherlands.
Wit, H. P. (1990). “Spontaneous otoacoustic emission generators behave like cou-
pelled oscillators,” in: The Mechanics and Biophysics of Hearing, edited by P. Da-
los, C. D. Geisler, J. W. Matthews, M. A. Ruggero and C. R. Steele (Springer–
Am. 89, 1229–1254.
Cochlear Mechanisms, edited by J. P. Wilson and D. T. Kemp (Plenum, New
otoacoustic emissions,” Hear. Res. 47, 185–190.
Soc. Am. 22, 778–784.

98
Publications


Master’s theses of students under my supervision:


99