Flavin adenine dinucleotide binding is the crucial step in alcohol oxidase assembly in the yeast Hansenula polymorpha
Evers, Melchior E.; Titorenko, Vladimir; Harder, Wim; van der Klei, Ida; Veenhuis, Marten

Published in:
Yeast

DOI:
10.1002/(SICI)1097-0061(199608)12:10<917::AID-YEA984>3.0.CO;2-4

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1996

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Evers, M. E., Titorenko, V., Harder, W., Klei, I. V. D., & Veenhuis, M. (1996). Flavin adenine dinucleotide binding is the crucial step in alcohol oxidase assembly in the yeast Hansenula polymorpha. Yeast, 12(10), 917-923. DOI: 3.0.CO;2-4

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Download date: 09-01-2019
Flavin Adenine Dinucleotide Binding is the Crucial Step in Alcohol Oxidase Assembly in the Yeast Hansenula polymorpha

MELCHIOR E. EVERS, VLADIMIR TITORENKO, WIM HARDER, IDA VAN DER KLEI AND MARTEN VEENHUIS*

Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands

Received 5 December 1995; accepted 18 March 1996

We have studied the role of flavin adenine dinucleotide (FAD) in the in vivo assembly of peroxisomal alcohol oxidase (AO) in the yeast Hansenula polymorpha. In previous studies, using a riboflavin (Rf) autotrophic mutant, an unequivocal judgement could not be made, since Rf-limitation led to a partial block of AO import in this mutant. This resulted in the accumulation of AO precursors in the cytosol where they remained separated from the putative peroxisomal AO assembly factors. In order to circumvent the peroxisomal membrane barrier, we have now studied AO assembly in a peroxisome-deficient/Rf-autotrophic double mutant (Δperl riff) of H. polymorpha. By sucrose density centrifugation and native gel electrophoresis, three conformations of AO were detected in crude extracts of Δperl riff cells grown under Rf-limitation, namely active octameric AO and two inactive, monomeric forms. One of the latter forms lacked FAD; this form was barely detectable in extracts wild-type and Δperl cells, but had accumulated in the cytosol of riff cells. The second form of monomeric AO contained FAD; this form was also present in Δperl cells but absent/very low in wild-type and riff cells. In vivo only these FAD-containing monomers associate into the active, octameric protein. We conclude that in H. polymorpha FAD binding to the AO monomer is mediated by a yet unknown peroxisomal factor and represents the crucial and essential step to enable AO oligomerization; the actual octamerization and the eventual crystallization in peroxisomes most probably occurs spontaneously.

KEY WORDS — alcohol oxidase; flavin adenine dinucleotide; peroxisomes; Hansenula polymorpha; protein translocation; protein assembly

INTRODUCTION

Microbodies (peroxisomes) play an essential role in methanol metabolism in yeasts, because they contain the key enzymes (alcohol oxidase (AO) and dihydroxyacetone synthase) of both the methanol dissimilatory and assimilatory pathways (Veenhuis et al., 1976; Douma et al., 1985). Alcohol oxidase is an octameric protein of 600 kDa, consisting of eight identical subunits, each of which contains one flavin adenine dinucleotide (FAD) binding site (Kato et al., 1976). Precursors of AO are synthesized in the cytosol and post-translationally imported into the target organelle where assembly and activation is supposed to take place (Bellion and Goodman, 1987; van der Klei et al., 1991a). Previously, using a riboflavin (Rf) autotrophic mutant of Hansenula polymorpha (riff), we showed that AO activation inside peroxisomes was dependent on the availability of FAD (Evers et al., 1994). However, whether the previous binding of FAD to AO monomers indeed was a prerequisite to enable AO oligomerization/activation could not be decided since FAD-limitation not only caused a defect in AO oligomerization but also led to a partial block of AO import into peroxisomes. Hence, in the riff mutant a portion of the monomeric AO was in a different compartment (the cytosol) from the putative assembly factors, which resided inside peroxisomes (Evers et al., 1994). Hence, the only way to analyse properly the role of FAD in the in vivo AO assembly pathway was to circumvent
the peroxisomal membrane barrier. In order to achieve this, we took advantage of the fact that many peroxisome-deficient (per) mutants of *H. polymorpha* are available (Cregg et al., 1990). In *per* mutants AO is normally synthesized and active, indicating that the putative assembly factors also function efficiently in the cytosol (van der Klei et al., 1991b). Therefore, we constructed a *per.rif* double mutant and studied in depth the AO assembly in this mutant at Rf-limiting conditions. The results of these studies are presented in this paper.

MATERIALS AND METHODS

Organisms and growth conditions

The following *H. polymorpha* strains were used: the NCYC 495 (leu-') wild-type strain, a *perl* deletion strain (*Aperl* (ura-'); Waterham et al., 1994), a *rif* (leu') (Evers et al., 1994) and the double mutant *Aperl.rif*. This double mutant was obtained by crossing the *Aperl* and *rif* mutants and selecting amongst the progeny for mutants containing both the *rif* mutation and the *perl* deletion. Cells were grown in batch cultures at 37°C in YPD or mineral medium containing 0.5% (w/v) glucose or 0.5% (v/v) methanol as carbon sources (van Dijken et al., 1976). Prior to the shift to methanol-containing media, cells were extensively pre-cultured on YPD in the presence of 0.6 mM-Rf. Wild-type *H. polymorpha* was grown for 16 h in methanol-containing media, supplemented with 0.2 mM-Rf. *rif* cells were grown for 24 h. The *Aperl* and *Aperl.rif* mutants were incubated for 48 h in methanol-containing media, supplemented with 0.2 mM-Rf. Growth was monitored by measuring the optical density at 663 nm in a Vitatron colorimeter.

Electron microscopy and immunocytochemistry

Protoplasts were prepared by treatment of whole cells with Zymolyase 20-T (ICN Biomedicals Inc., Costa Mesa, California, U.S.A.; Douma et al., 1985). Immunocytochemistry was performed on ultrathin sections of Uniconyl-embedded cells using polyclonal antibodies raised against alcohol oxidase and goat anti-rabbit antibodies conjugated to gold (Amersham, U.K.), according to the method of Slot and Geuze (1984).

Biochemical methods

Crude extracts were prepared as described (van der Klei et al., 1991a). Protein concentrations were determined according to Bradford (1976). Alcohol oxidase activity was measured according to Verduyn et al. (1984).

Octameric AO protein was separated from monomeric protein by sucrose density centrifugation (Bellion and Goodman, 1987). Sucrose gradients were harvested by taking 0.5 ml samples from the top. To determine the amount of monomeric AO as a percentage of the total amount of AO protein, equal volumes of all fractions were subjected to sodium dodecyl sulphate-polyacrylamide gel electrophoresis (Laemmli, 1970) followed by Western blotting (Kyhse-Andersen, 1984); the blots were decorated with specific antibodies against AO. AO protein levels were determined in all fractions by laser-densitometric scanning of the blots. The percentage of monomeric AO was calculated from the amount of AO protein present in the fractions containing monomeric AO protein (fractions 1–3) and the total amount of AO protein present in all fractions (1–7). Non-denaturing gel electrophoresis using 4–10% linear gradient gels was performed according to Musgrove et al. (1987). Native AO was dissociated into monomers by incubation in 80% (v/v) glycerol for 10 min at room temperature (Evers et al., 1995). FAD was removed from octameric AO by incubation of whole cells or crude extracts with 6 mM-KCN for 2 h at 37°C (van der Klei et al., 1989b). The presence of FAD was visualized by illumination of the non-denaturing gels with UV light (Bystrykh et al., 1989). ATP levels in whole cells were determined by 32P NMR (Nicolay et al., 1987).

RESULTS

Alcohol oxidase assembly

As described previously, Rf-limitation resulted in reduced levels of AO protein in methanol-induced cells of the *H. polymorpha* *rif* mutant (Evers et al., 1994). Similar results were now obtained with the *Aperl.rif* double mutant; however, in *Aperl* cells the AO protein levels were similar to those of wild-type controls (Figure 1). Also, the specific AO activities in crude extracts of both strains containing the *rif* mutation were strongly reduced (Figure 1), indicating that in both strains AO activation was partially prohibited. Sucrose density centrifugation revealed the presence of monomeric AO protein in crude extracts of methanol-induced cells of all three mutant strains.
(Δper1; rif1 and Δper1.rif1). In wild-type control cells, monomeric AO was hardly detectable (Figure 2). In Δper1 cells, the fraction of monomeric AO was low and amounted to approximately 4% of the total AO protein, but in rif1 and Δper1.rif1, up to 40% of the total AO protein was present in the monomeric form (Figures 1 and 2). The rates of AO assembly were therefore largely identical in both rif1 and Δper1.rif1 cells.

In methanol-induced cells of Δper1 and of the double mutant Δper1.rif1, active AO octamers and inactive AO monomers accumulated in the same compartment, namely the cytosol. Since peroxisomes are absent in these cells, the peroxisomal factors involved in the assembly of AO also reside in the cytosol. In Δper1 the rate of AO assembly is only slightly affected, which suggests that the cytosolic location of the putative peroxisomal assembly factor has only a minor effect on the efficiency of peroxisomal protein assembly. Therefore, the accumulation of monomeric AO in Δper1.rif1 most probably is largely due to the limitation of its co-factor, FAD. This was also indicated by the fact that in Δper1.rif1 the assembly of catalase, a peroxisomal haem-containing protein, was not affected. In all three mutants (Δper1, Δper1.rif1 and rif1), catalase was invariably present in the assembled, haem-containing tetrameric form (Figure 2). Hence, we conclude that the limiting amount of FAD in strains containing rif1 mutations affects AO assembly.

31P NMR studies on intact cells showed that the ATP levels were not significantly reduced, compared to wild-type cells, in the mutants grown under FAD-limitation (data not shown). Therefore, it is very unlikely that the accumulation of monomeric AO is due to lowered energy levels.

Monomeric AO is present in two different conformations in Δper1.rif1

To characterize further the conformational states of AO protein present in both mutants containing the rif1 mutation, we performed non-denaturing gel electrophoresis followed by
We have studied the role of FAD in the assembly of the peroxisomal flavoprotein AO in intact cells of *H. polymorpha*. In previous studies, using a flavin-auxotropic (rif) mutant, an unequivocal judgement on the role of FAD could not be made. This was mainly due to the fact that, under electron microscopy

In cells of the *Δperl.rifl* double mutant, incubated in methanol-containing media at RF-limiting conditions, small proteinaceous aggregates were observed in the cytosol, which were specifically labelled with antibodies against AO in immuno-cytochemical experiments and therefore most probably represent aggregates of monomeric AO (Figure 5A). In wild-type control cells, these aggregates were never observed, instead all AO protein invariably was present inside peroxisomes (Figure 5B). In *rifl* cells, comparable aggregates were only observed in peroxisomes (Evers et al., 1994); this suggests that an aggregation event, which is peroxisome-bound in the *rifl* mutant cells, takes place in the cytosol of cells of the double mutant.

DISCUSSION

We have studied the role of FAD in the assembly of the peroxisomal flavoprotein AO in intact cells of *H. polymorpha*. In previous studies, using a flavin-auxotropic (rif) mutant, an unequivocal judgement on the role of FAD could not be made. This was mainly due to the fact that, under electron microscopy

In cells of the *Δperl.rifl* double mutant, incubated in methanol-containing media at RF-limiting conditions, small proteinaceous aggregates were observed in the cytosol, which were specifically labelled with antibodies against AO in immuno-cytochemical experiments and therefore most probably represent aggregates of monomeric AO (Figure 5A). In wild-type control cells, these aggregates were never observed, instead all AO protein invariably was present inside peroxisomes (Figure 5B). In *rifl* cells, comparable aggregates were only observed in peroxisomes (Evers et al., 1994); this suggests that an aggregation event, which is peroxisome-bound in the *rifl* mutant cells, takes place in the cytosol of cells of the double mutant.

DISCUSSION

We have studied the role of FAD in the assembly of the peroxisomal flavoprotein AO in intact cells of *H. polymorpha*. In previous studies, using a flavin-auxotropic (rif) mutant, an unequivocal judgement on the role of FAD could not be made. This was mainly due to the fact that, under
conditions of flavin limitation, a partial block of AO protein import occurred, thus leading to the spatial separation of the AO monomers (in the cytosol) and the putative AO assembly factor(s) in peroxisomes. For this reason we have now analysed the AO assembly pathway in a constructed peroxisome-deficient, Rf-auxotrophic double mutant (Δperl.rif1) in which peroxisomes were absent and consequently a peroxisomal membrane barrier was no longer present.

The overall effect of Rf-limitation on AO assembly in the H. polymorpha Δperl.rif1 double mutant was highly comparable to the effects observed before in the single rif1 mutant (Evers et al., 1994): accumulation of monomeric AO which lacks FAD. This form of AO protein is also present at very low levels in extracts of wild-type cells, suggesting that it forms an intermediate in AO assembly. AO monomers, lacking FAD, may easily aggregate in H. polymorpha. In the rif1 mutant such aggregates were found in the peroxisomal matrix (Evers et al., 1994); as evident from this study, in the Δperl.rif1 double mutant cells grown at Rf-limitation, they were occasionally formed in the cytosol. A possible explanation is that AO protein forms aggregates upon release from the putative peroxisomal FAD-binding factor in the absence of FAD (see Figure 6). As a result, AO aggregates are found inside peroxisomes in rif1, whereas Δperl.rif1 these are present in the cytosol.

We propose that the binding of FAD to the AO monomers is the initial and crucial step in the in vivo AO assembly pathway, thus leading to the formation of an oligomerization competent FAD-containing AO subunit. In wild-type cells this step may occur inside peroxisomes, as can be deduced from the findings that FAD-containing monomers are not detectable in the cytosol of Rf-limited rif1 cells, but on the other hand are evident in the cytosol of mutants lacking peroxisomes (Δperl.rif1 and Δperl), thus under conditions where the peroxisomal membrane barrier is no longer present.

We previously demonstrated that FAD-containing monomers are able to assemble spontaneously in vitro into the octameric, active conformation (Evers et al., 1995). The assembly efficiency was shown to be dependent on the concentration of these monomers (Evers et al., 1995). Therefore, the presence of distinct amounts of FAD-containing AO monomers in Δperl cells is most probably due to a concentration effect, since these monomers are now diluted over the cytosol, instead of being accumulated in the peroxisomal lumen.

Our findings now also offer an explanation for the yet unexplained failure of H. polymorpha AO
In conclusion, we propose that only the FAD-containing AO subunit is able to assemble in the active octameric protein. This FAD-binding is most probably mediated by a specific protein factor which is located in the peroxisomal matrix. Whether this factor is specific for AO or also functions for other flavoproteins (e.g. D-amino acid oxidase) is yet unknown. However, a certain species specificity probably exists, since in S. cerevisiae peroxisomes FAD-binding to H. polymorpha AO had not occurred (van der Klei et al., 1989a). Also, the FAD-binding factor is most probably not a typical molecular chaperone (belonging to the hsp protein families), since hsps were not detected in purified peroxisomal fractions of H. polymorpha (Titorenko et al., 1995). Moreover, this factor does not require the specific peroxisomal environment (Nicolay et al., 1987) to function, since after removal of the peroxisomal membrane barrier (i.e. in a per-mutant), AO assembly can also occur effectively in the cytosol (van der Klei et al., 1991a). So far, we have not found evidence for the translocation of oligomeric AO into peroxisomes of H. polymorpha, as is observed for other proteins in peroxisomes of S. cerevisiae and Yarrowia lipolytica (McNew and Goodman, 1994; Glover et al., 1994). Further studies to isolate the FAD-binding factor are in progress. A hypothetical model of the in vivo assembly pathway of AO in H. polymorpha is presented in Figure 6.

ACKNOWLEDGEMENTS

We thank Dr K. Nicolay for 31P NMR studies and Ineke Keizer and Jan Zagers for help in preparing the figures.

REFERENCES

