REFERENCES

A

B

E

F

G

I

J

K

L

M

acrA and acrB encode a stress-induced efflux system of Escherichia coli. Mol.
Microbiol., 16, 45-55.
facilitators that catalyse uniport, symport and antiport. Trends Biochem. Sci., 18,
13-20.
multidrug responding transcriptional regulator BmrR resides in its C-terminal
repressor protein (MarR) to mar operator sequences. Proc. Natl. Acad. Sci. USA,
92, 5456-5460.
Photobiol., 12, 323-337.
homologue of the mammalian multidrug resistance P-glycoprotein. Nature, 340,
400-404.
by four genetically different tetracycline resistance determinants in Escherichia coli.
164. Midgley,M. (1986) The phosphonium ion efflux system of Escherichia coli:
relationship to the ethidium efflux system and energetic studies. J. Gen. Microbiol.,
132, 3187-3193.
Acad. Sci. USA, 88, 84-88.
doxorubicin efflux pump similar to mammalian P-glycoprotein. Biochim. Biophys.
Acta, 1110, 144-150.
cytoplasmic pH in Lactococcus lactis with a fluorescent pH indicator. Biochim.
a fluorescent probe is catalyzed by an ATP-driven extrusion system in Lactococcus lactis. J. Bacteriol., 174, 3118-3124.
membrane 'vacuum cleaner' for daunorubicin in non-P-glycoprotein multidrug

Streptomyces antibioticus contains at least three oleandomycin-resistance determinants, one of which shows similarity with proteins of the ABC-transporter superfamily. Mol. Microbiol., 8, 571-582.

S

227. Sharom, F.J. (1995) Characterization and functional reconstitution of the multidrug...

T

U

V

254. van Schie, B.J., Hellwingwerf, K.J., van Dijken, J.P., Elferink, M.G.L., van Dijl, J.M.,

W

Y

resemblance and functional difference in the role of the duplicated sequence motif between hydrophobic segments 2 and 3 and segments 8 and 9. J. Biol. Chem., 268, 6496-6504.

LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δψ</td>
<td>Membrane potential</td>
</tr>
<tr>
<td>ΔpH</td>
<td>Proton gradient</td>
</tr>
<tr>
<td>Δp, pmf</td>
<td>Proton motive force</td>
</tr>
<tr>
<td>BCECF</td>
<td>2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein</td>
</tr>
<tr>
<td>BCECF-AM</td>
<td>BCECF-acetoxymethyl ester</td>
</tr>
<tr>
<td>TMA-DPH</td>
<td>1-[4-(trimethylamino) phenyl]-6-phenylhexa-1,3,5-triene</td>
</tr>
<tr>
<td>TMAP-DPH</td>
<td>N-(6-phenyl-(1,3,5 hexatrienyl(phenyl-(propyl))))trimethyl-ammonium</td>
</tr>
<tr>
<td>DMA-DPH</td>
<td>1-[4-(dimethylamino)phenyl]-6-phenylhexa-1,3,5-triene or the anionic</td>
</tr>
<tr>
<td>DPH-CA</td>
<td>1,6-diphenylhexa-1,3,5-triene carboxylic acid</td>
</tr>
<tr>
<td>NBD-PE</td>
<td>N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine</td>
</tr>
<tr>
<td>DPX</td>
<td>P-xylene-bis-pyridinium bromide</td>
</tr>
<tr>
<td>IPTG</td>
<td>Isopropyl-β-D-thiogalactopyranoside</td>
</tr>
<tr>
<td>DiSC(5)</td>
<td>3,3'-dipropylthiadicarbocyanine iodide</td>
</tr>
<tr>
<td>TPP+</td>
<td>Tetraphenyl phosphonium ion</td>
</tr>
<tr>
<td>PQQ</td>
<td>Pyrrolo-quinoline quinone</td>
</tr>
<tr>
<td>Ni-NTA</td>
<td>Ni²-nitriolo-tri-acetic acid</td>
</tr>
<tr>
<td>HEPES</td>
<td>4-(2-hydroxyethyl)-1-piperazinethane-sulfonate</td>
</tr>
<tr>
<td>MDR</td>
<td>MultiDrug Resistance</td>
</tr>
<tr>
<td>SDR</td>
<td>Specific Drug Resistance</td>
</tr>
<tr>
<td>TMS</td>
<td>TransMembrane spannng Segment</td>
</tr>
<tr>
<td>TEXAN</td>
<td>Toxin EXtruding Antiporters</td>
</tr>
<tr>
<td>SMR</td>
<td>Small Multidrug Resistance</td>
</tr>
<tr>
<td>MFS</td>
<td>Major Facilitator Superfamily</td>
</tr>
<tr>
<td>RND</td>
<td>Resistance Nodulation Devision</td>
</tr>
</tbody>
</table>
LIST OF PUBLICATIONS

