Topology of LcnD, a protein implicated in the transport of bacteriocins from Lactococcus lactis

Franke, Christian M.; Leenhouts, Kees J.; Haandrikman, Alfred J.; Kok, Jan; Venema, Gerard; Venema, Koen

Published in:
Journal of Bacteriology

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1996

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Lactococcins are bacteriocins produced by *Lactococcus lactis* (15, 17, 18). They belong to the small heat-stable, non-lanthionine-containing membrane-active peptides characterized by a Gly-Gly-[X]-X (X is any amino acid) processing site in the precursor. The proteins LcnC and LcnD are essential for extracellular activity of these bacteriocins, and a role in transport and/or maturation has been suggested (15). LcnC, a member of the ABC transporter family, is a putative transmembrane protein with several transmembrane sequences (TMS). LcnD does not show significant amino acid sequence similarity with other proteins. Computer predictions indicate that LcnD contains not show significant amino acid sequences similarity with other proteins.

LcnD contains a putative TMS (X is any amino acid) processing site in the precursor (Fig. 1). The amino acids shown as black circles correspond to residues to which either β-galactosidase or alkaline phosphatase was fused. The activities of β-galactosidase and alkaline phosphatase fusions were measured (1, 10) in triplicate in cell-free extracts (CFE) and plate assays (Table 1).

LacZ fusions. In both *E. coli* and *L. lactis*, activities were highest when LacZ was fused to the N-terminal moiety of LcnD, whereas they were negligible when LacZ was fused to the C terminus (Table 1). Fusion of LacZ to LcnD at position 30 in the putative TMS led to a chimeric protein with an activity 50× higher than that of a protein in which LacZ was fused upstream of the putative TMS (at position 21). This is the case in both organisms and supports the presence of a transmembrane segment at this position. All fusions of LcnD with LacZ show comparable relative activities in *E. coli* and *L. lactis*, which suggests similar topologies in both organisms.

PhoA fusions. Because of instability problems with the lcnD-phoA constructs, we placed these behind the inducible *E. coli lac* promoter (23). Plasmids expressing the LcnD-PhoA chimeras were unstable in *L. lactis*. Even integration of the constructs into the lactococcal chromosome to ensure a low copy number led to deletion formation, as judged by Southern hybridization, and no fusion products were identifiable in Western immunoblots (data not shown). When PhoA was fused in or upstream of the putative TMS, it showed no significant activity in *E. coli*, whereas the C-terminal fusion activities were clearly higher than background activity (Table 1). In all cases, the PhoA fusion proteins showed properties complementary to the LacZ chimeras. The fact that *E. coli* CC118 colonies expressing the LcnD-PhoA fusion in the putative TMS are slightly blue in the plate assay might indicate the presence of the TMS at this position.

Western blot analysis. Synthesis of fusion proteins was verified by Western hybridizations with Western-Light (Tropix, Bedford, Mass.) and nitroblue tetrazolium–5-bromo-4-chloro-3-indolylphosphate toluidinium (NBT/BCIP; Promega, Madison, Wis.) and anti-LacZ and anti-PhoA antibodies. Products of the expected sizes could indeed be detected, but breakdown products were also present (Fig. 2). A positive band in the CFE of *E. coli* WK6 corresponded to the size of β-galactosidase ΔM15 produced by this strain (Fig. 2A and B, lanes 1). *E. coli* WK6 containing pMG57, a plasmid carrying the entire *E. coli lacZ* gene without its ribosome-binding site (RBS) (19), showed an additional band similar in size to that of partially purified β-galactosidase. All strains carrying lcnD-phoA fusions were induced with IPTG (isopropylthiogalactosynoside), and similar amounts of protein were produced (Fig. 2C).

Electron microscopy. Cells from overnight cultures of *E. coli* expressing the LcnD-LacZ fusions were fixed at 0°C in 2.5% formaldehyde–0.5% glutaraldehyde in 0.1 M sodium cacodylate buffer (pH 7.2) and dehydrated in a graded ethanol series. Fixed cells were then embedded in Unicryl resin. Ultrathin sections were labeled with rabbit anti-LacZ antibodies, which were subsequently detected with immunogold-labeled goat anti-rabbit polyclonal antibodies. Electron microscopic images were obtained on a Philips CM10 transmission electron microscope (Philips, Eindhoven, The Netherlands). In *E. coli* WK6, hardly any label was detected (Fig. 3). In cells containing pMG57, little label is found, whereas cells expressing LcnD fused to LacZ at residue 21 or at position 30 show a considerable quantity of label in the cytoplasm, indicative of the presence of LacZ antigen in this cell compartment. In cells expressing LcnD fused to LacZ at position 80 or 474, label was found almost exclusively near the cytoplasmic membrane.
parently, the LacZ moiety in these fusion proteins is associated with this membrane.

Topology of LcnD and homologs. Computer programs that predict protein topology, namely, those of Rao and Argos (11), Helixmem (2), Soap (5, 6), and Toppred 2.0 (14, 22), all arrive at the same model (Fig. 1). It is highly unlikely that an even number of TMS are missed by these computer programs, and we propose that our model of LcnD is correct.

The fact that *E. coli* colonies expressing the C-terminal LacZ fusion were slightly blue on 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-Gal) plates after overnight incubation at 37°C seems in conflict with this model. Western hybridization (Fig. 2) shows that, in addition to full-size fusion protein, several breakdown products were present, one of which could explain residual LacZ activity. CFE with this fusion protein had to be concentrated 100-fold more than CFE of cells producing an intracellular LacZ chimera in order to obtain comparable signals in Western hybridization. This indicates that products of LacZ fused to parts of LcnD that are normally on

<table>
<thead>
<tr>
<th>Plasmid or fusion<sup>a</sup></th>
<th>Colony color<sup>b</sup></th>
<th>Activity<sup>d</sup> (U/mg of protein)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E. coli</td>
<td>E. coli</td>
</tr>
<tr>
<td></td>
<td>X-Gal</td>
<td>CC118, X-P</td>
</tr>
<tr>
<td>None</td>
<td>White</td>
<td>White</td>
</tr>
<tr>
<td>pMG57</td>
<td>White</td>
<td>ND<sup>c</sup></td>
</tr>
<tr>
<td>Position 21</td>
<td>Blue</td>
<td>White</td>
</tr>
<tr>
<td>Position 44</td>
<td>Blue</td>
<td>Slightly blue</td>
</tr>
<tr>
<td>Position 80</td>
<td>White</td>
<td>Blue</td>
</tr>
<tr>
<td>Position 474</td>
<td>Slightly blue</td>
<td>Blue</td>
</tr>
</tbody>
</table>

^a Activities were measured in CFE from overnight (ON) and exponentially growing (EXP) cultures.
^b pMG57 is a pVV01 derivative containing a lacZ gene lacking an RBS and is the basic vector used for the lcnD-lacZ fusions. The fusion points are indicated in Fig. 1.
^c X-Gal, 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside; X-P, 5-bromo-4-chloro-3-indolylphosphate. TY (12) agar plates were used for *E. coli*; glucose M17 (16) plates were used for *L. lactis*.
^d One unit is defined as 1 ng of substrate converted per min.
^e ND, not determined.
the outside of the cytoplasmic membrane are susceptible to protease activity, conceivably because of incorrect folding. In *L. lactis*, such products were hardly detectable. The relative activities of all LcnD-LacZ fusion proteins in exponentially growing cells and overnight cultures were comparable except for the C-terminal fusion protein, the activity of which was significantly higher in the overnight culture. This result suggests more pronounced proteolytic degradation in overnight cultures, as was indeed shown by Western hybridization (Fig. 2B). It supports our notion of proteolytic breakdown leading to background LacZ activity.

From computer predictions, topological models have been developed for proteins forming dedicated transport systems for lactococcins (LcnC and LcnD) (15, 17), pediocin (PedC and PedD) (9), and hemolysin (HlyB and HlyD) (3). Each transport system has one member of the family of ABC transporters (LcnC, PedD, and HlyB, respectively). The accessory proteins HlyD (13) and PedC (2a) have a membrane topology similar to

FIG. 3. Electron microscopy images of immunogold-labeled ultrathin sections of fixed overnight cultures of *E. coli* WK6 carrying (A) no plasmid, (B) pMG57, and (C to F) plasmids encoding β-galactosidase fused to LcnD at positions 21, 44, 80, and 474 (Fig. 1), respectively. The first antibody was rabbit anti-β-galactosidase. The second was goat anti-rabbit antibody labeled with 15-nm gold particles. Bars, 0.5 μm.
that of LcnD, and although they do not have amino acid sequence similarities, they seem to belong to a group of proteins with similar functions. All three are important for the production of active extracellular bacteriocin (LcnD and PedC) and hemolysin (HlyD). Their conserved genetic organization and topological structures suggest an important function in secretion of their respective allocrites.

We thank Klaas Sjollema for electron microscopy and Henk Mulder for photography.

K. Venema was supported by the EC BRIDGE T-project on LAB. J. Kok holds a fellowship from the Royal Netherlands Academy of Arts and Sciences (KNAW).

REFERENCES
3. Emond, E. Personal communication.