Early life exposure to toxic environments: effects on lung and immune cell development in mice and men
Cao, Jun Jun

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2016

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Cao, J. J. (2016). Early life exposure to toxic environments: effects on lung and immune cell development in mice and men. [Groningen]: University of Groningen.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Chapter 2

Early-life exposure to widespread environmental toxicants and health risk: a focus on the immune and respiratory system

Junjun Cao1,2,3, Xijin Xu1, Machteld N. Hylkema2,3, Eddy Y. Zeng4, Peter D. Sly5, William A. Suk6, Åke Bergman7, Xia Huo1*

1 Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041, China
2 University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands.
3 University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands.
4 School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
5 Queensland Children’s Medical Research Institute, The University of Queensland, Australia
6 Hazardous Substances Research Branch, Superfund Research Program, National Institute for Environmental Health Sciences, National Institutes of Health, USA.
7 Swedish Toxicology Sciences Research Center (Swetox), Forskargatan 20, SE-151 57 Södertälje, Sweden

\textit{Annals of Global Health, 2016, In Press}
Abstract: Evidence has accumulated that exposure to widespread environmental toxicants, such as heavy metals, persistent organic pollutants (POPs) and tobacco smoke adversely affect fetal development and organ maturation, even after birth. The developing immune and respiratory systems are more sensitive to environmental toxicants due to their long-term physical development, starting from the early embryonic stage and persisting into early postnatal life, which requires complex signaling pathways that control proliferation and differentiation of highly heterogeneous cell types. In this review, we summarize the effect of early-life exposure to several widespread environmental toxicants on immune and lung development before and after birth, including the effects on immune cell counts, baseline characteristics of cell-mediated and humoral immunity, alteration of lung structure and function in offspring. We also review evidence supporting the association between early-life exposure to environmental toxicants and risk of immune-related diseases and lung dysfunction in offspring in later life.

Key words: early-life exposure; heavy metals; tobacco smoke; persistent organic pollutants; immune development; lung;

Introduction

The “developmental origin of health and disease” theory hypothesizes that disease in adulthood has a fetal origin [1]. In support of this, it has been shown that environmental signals influence the structure and function of fetal organs, and subsequently affect susceptibility to disease later in life [2]. A series of insightful epidemiological studies have demonstrated that maternal malnutrition during pregnancy was associated with high susceptibility to cardiovascular disease and obesity in offspring [3, 4]. In these studies, maternal malnutrition facilitated fetal adaptation to a nutrition-restricted environment after birth. However, the mismatch between prenatal malnutrition and a rich postnatal food supply caused suboptimal function of organs and cells, which predisposed offspring to obesity and related diseases later in life. Currently, massive amounts
of environmental pollutants are rapidly accumulating in industrializing countries. The widespread environmental pollutants, such as heavy metals, persistent organic pollutants (POPs) and tobacco smoke, can be detected in both maternal and cord blood in various areas in the world. Prenatal exposure to these environmental toxicants has been demonstrated to affect immune and lung function in offspring [5-10]. These toxicants may firstly affect the maternal side, which then provides indirect signals to the fetus, or directly affect the fetus to program cell- or tissue-specific functional alterations in offspring. Because development of the immune and respiratory system is still proceeding after birth [11-13], environmental toxicants could continue to be a threat to maturation of immune and lung function after birth. Developmental exposure to environmental toxicants, which may induce maladaptive alteration in organs or cells, would become an early origin of immune- and lung-based diseases in children or adults in the modern world. It is urgent to better understand how exposure to environmental toxicants in early life affects immune and lung function, and how toxicants alter the risk for diseases later in life.

1. Early-life exposure to environmental toxicants, immune status in offspring and immune-based diseases later in life

1.1 Effect of prenatal/early-postnatal exposure to environmental toxicants on immune cell counts in offspring

Heavy metals

Arsenic (As) and lead (Pb) are common environmental contaminants of which people are primarily exposed to from drinking water and diets. In a prospective birth cohort recruited in Bangladesh, maternal exposure to As in drinking water had an exposure-dependent effect on specific T-cell subpopulations in cord blood. Higher As concentrations were associated with an increased percentage of CD8+ T cells and decreased percentage of CD4+ T cells in cord blood [14]. In a study from the US, maternal urinary As concentrations were inversely related to the absolute count of total cord blood activated T cell (CD45RA+CD69+CD4+) and positively associated with absolute count of Th2 (CD45RA–CD69–CD294+) cells [14]. Additionally, school children who were exposed to higher levels of As
Chapter 2

had a decreased percentage of CD4+ T cells and reduced ratio of CD4 to CD8 [15]. High levels of Pb exposure (mean Pb level: 140.6 µg/L) in children also correlated with a reduced percentage of CD4+ cells [16], showing that early life exposure to As or Pb is associated with increased risk for adverse health outcomes later in life.

The dose- and gender-dependent effects of heavy metals on immune cell count in offspring were further shown in animal models. In 13-week-old female F344 rat offspring, whose mothers were exposed to low levels of Pb (250 ppm in drinking water) during pregnancy, the relative neutrophil numbers were higher while the relative and absolute monocyte numbers and relative basophil numbers were lower in spleen compared to offspring in the control group. Interestingly, the male offspring with same age did not show any changes in these cell counts [17]. However, in 5-week-old male offspring with maternal exposure to 100 ppm of Pb in drinking water during pregnancy, there was a relative higher neutrophil number, while the relative number of lymphocyte was lower [17]. Prenatal exposure to cadmium (Cd) caused a higher percentage of CD4-CD8-CD44+CD25- (double-negative stage 1) thymocytes, spleenic B cells and CD4+ T cells in 20-week-old male and female C57BL/6 mouse offspring. Meanwhile, the percentage of spleenic neutrophils, granulocytes, NK cells and myeloid-derived-suppressor cells were both lower in these offspring [18]. In addition, the percentage of spleenic CD8+ T cells was higher in female offspring, but lower in male offspring when compared to the controls [18]. Prenatal Cd exposure also had an increased percentage of CD4+Foxp3+CD25+ regulatory T cells in thymus in both male and female mice offspring at 7 weeks of age, while a decreased percentage of CD4+Foxp3+CD25+ regulatory T cells in spleen of female offspring [5]. In contrast, the percentage of CD4+Foxp3+CD25+ regulatory T cells in spleen was all decreased in male and female mice offspring at 20 weeks of age in Cd-exposed group [18].

It is worthy to note that only one group evaluated percentage of spleenic natural regulatory T cell at multiple time points (7- and 20-week-old) in offspring [5, 19]. The percentage of spleenic natural regulatory T cell in male offspring with prenatal Cd exposure was not consistent in the two time points. The fluctuation
in offspring may reflect inter-individual variety or differed impact of prenatal exposure to Cd on development and homeostasis of spleenic natural regulatory T cell at different stage. Considering that most studies mentioned above only evaluated cell constituents at one time point, the interpretation of long-term effect of prenatal exposure to heavy metals on the immune system based on cell count data was not accurate in these studies.

Persistent organic pollutants

Polychlorinated biphenyls (PCBs), a class of typical organochlorine compounds, modulate peripheral immune cell differentiation and maintenance with dose-dependent manner. In children who prenatally exposed to PCBs, CD3^+^ T lymphocytes, B cells and activated B cells were significantly higher in the high-exposure group than in low-exposure group when they were 6 months old or 16 months old [19]. Moreover, percentage of memory T cells (at birth, 6-month-old-children, 16-month-old children), terminally differentiated memory T cells (at birth, 6-month-old children), and lymphoid dendritic cells (6-month-old children) in the high exposure group were also significantly higher than that in low exposure group at corresponding ages [19]. Prenatal exposure to environmental-relevant level of PCBs was also associated with an increased number of lymphocytes, T cells, CD4^+^ memory T cells, TCRαβ^+^ T cells, CD8^+^ T cells and CD3^+^HLA DR^+^ activated T cells in children at 42 months of age [20].

Prenatal PCB exposure also directly disturbed thymocyte maturation. It caused thymic atrophy in chicken embryos and in neonatal child [21-24]. In chicken embryos, the increasing doses of PCB-126, a PCB congener was associated with the decreased total number of thymocytes, TCRαβ^+^ thymocytes, CD4^+^CD8^-^ and CD4^-^CD8^+^ lymphocytes, lymphoid cells [23]. Further, for full-term exposure, the dose of the dioxin-like PCB-126 required to cause reduction of lived lymphoid numbers in the thymus and bursa was much lower than for exposure during late stage of incubation in chicken embryos (since day 13 of incubation) [24].

Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) at an early stage of life also may interfere with T cell maturation process in thymus and subsequently
alter cell distribution in human. In one study, prenatal exposure to higher levels of PCB/dioxin was associated with increase in numbers of TCRγδ+ T cells at birth, and with increased count of total T cells, CD8+ T cells, TCRγδ+ T cells and TCRαβ+ T cells at 18 months of age [25]. Similarly, in 10-month-old infants who were exposed to dioxins, PCBs and organochlorine pesticides, higher levels of dioxins, chlordane and heptachlor epoxide (HCE) in breast milk were associated with increased percentages of CD8+ T cells and CD3+ T cells, and the CD4+-to-CD8+ ratio, respectively [26]. In addition, neonates exposed to environmental-relevant levels of dioxin not only had an increased percentage of CD4+ T cells, but also increased CD45RA+ naïve T cells at 8 years of age [27]. Perinatal exposure to dioxins was also positively associated with percentages of CD4+ T cells, but negatively associated with percentages of CD8+ T cells in the blood of breast-fed infants [28]. Because the T cell maintenance is supported by thymus emigrant and peripheral homeostasis proliferation in early stage of life, it is not impossible that prenatal exposure to TCDD may affect peripheral T-cell maintenance mechanism to alter T cell distribution in offspring. Except for effect on T-cell distribution, early postnatal exposure to high levels of PCB/dioxin was associated with lower monocyte and granulocyte counts in infants at 3 months of age [25].

Animal studies clearly demonstrated that prenatal TCDD is able to directly affect thymocyte maturation. Prenatal TCDD exposure impaired seeding of lymphocyte stem cells in murine fetuses and neonates [29, 30]. Gestational exposure of mice to TCDD increased number of the less mature CD4−CD8+J11d+ thymocytes at embryonic day 18 (E18), while the more mature CD4−CD8−J11d− was not significantly changed, indicating suppression of thymocyte maturation at the transition phase [31]. The decrease in percentages of CD4+CD8+ fetal thymocytes, as well as the increase in percentages of CD4 CD8− and CD4 CD8+ fetal thymocytes further suggested inhibition of normal thymocyte maturation by prenatal exposure to TCDD [32]. This impairment of thymocyte maturation persisted into adulthood in both rats and mice that were prenataly exposed to TCDD [33, 34]. However, animal studies did not provide further evidence of how prenatal TCDD exposure affects T-cell maintenance in periphery and can not fully explain the results in human studies.
Tobacco smoke

Increased number of circulating white blood cells and lymphocyte were observed in neonates from mothers who smoked during pregnancy [35, 36]. Additionally, the reduced number of neutrophils in infants from mothers who smoked was associated with maternal smoking during pregnancy [37]. B6C3F1 mice offspring who was exposed in utero to cigarette smoke also had increased number of circulating white blood cells and lymphocytes at 2.5 months of age [38]. However, no significant difference was observed in subpopulations of immune cells in lymphoid organ in these offspring when compared to the sex- and age-matched control offspring [39]. These limited data indicate that maternal smoking may affect the early stage differentiation of immune cells in offspring.

Taken together, exposure to environmental toxicants in early life usually altered profiles of myeloid and lymphoid lineage cell counts through perturbation of thymocyte maturation, or interference with maintenance of immune cells in periphery. The effect was dose and gender dependent. Because most of studies evaluated profiles of immune cell counts in a relatively short period of time since exposure to environmental toxicants occurred, more studies are needed to determine long term effect of early-life exposure to environmental toxicants on immune cell counts in adulthood.

1.2 Effect of prenatal/early-postnatal exposure to environmental toxicants on status of cell-mediated immunity in offspring

Heavy metals

Prenatal and early postnatal exposure to heavy metals may alter baseline characteristics of cell-mediated immunity. Rats (35 d to 45 d of age) prenatally exposed to low levels of Pb (0-50 ppm in drinking water) had a suppressed lymphocyte response to mitogen stimulation and a reduced delayed hypersensitivity response [40]. The suppression of delayed type hypersensitivity (DTH) response was also found in 5-week-old or 13-week-old female F344 rat offspring who were prenatally exposed to moderate levels of Pb (250 ppm in
drinking water) [17, 41]. In contrast, a similar suppression was not observed in male rat offspring [17, 42]. Additionally, there was no significant alteration in DTH to bovine serum albumin (BSA) in chicken offspring exposed to Pb at embryonic day 5 [43-45]. However, the DTH response to BSA was markedly decreased in chicken offspring exposed to Pb at embryonic day 12 [44]. Except for the decrease in DTH, female rat offspring exposed to 500 ppm Pb during pregnancy had a decrease in interferon (IFN)-γ levels [41]. Similar results were also found in 5- to 6-week-old rat offspring [17]. In adult male Sprague-Dawley rat offspring who were exposed to Pb during embryonic day 15 to 21, interleukine (IL)-12 production increased whereas IL-10 production decreased, in contrast to the increase of IL-10 production in matched female offspring [42]. These data indicate that prenatal Pb exposure generally suppresses cell-mediated immune responses in offspring, even under low levels of exposure. The exposure window and gender are 2 crucial factors to determine the immunotoxicity of Pb exposure in early life.

Prenatal exposure to Cd also resulted in decreased splenocyte production of IL-2 and IL-4 from 2-week-old female C57BL/6 mice offspring [5]. At 7 weeks of age, production of IL-2 decreased in male mice offspring while IFN-γ production decreased in both male and female mice offspring [5]. In addition, in male and female Sprague-Dawley rats that were exposed to Cd through breast feeding, thymocyte proliferation was inhibited when stimulated by concanavalin A (ConA) [46]. In contrast, NK cytotoxic activity was suppressed only in female rats at higher levels of Cd exposure [46]. These data again suggest a gender- and dose-dependent effect for Cd exposure on cell-mediated immunity in offspring.

As exposure at an early stage of life also affected cell-mediated immune response in offspring with a dose-dependent manner. For prenatal exposure to As in human, maternal urinary As concentrations were positively associated with placental expression of IL-1β [14, 47]. Moreover, maternal urinary As at gestational week 30 had a U-shaped association with levels of cord blood cytokines IL-1β, IL-8, IFN-γ, and tumor necrosis factor (TNF)-α [47]. Decreased lymphocyte proliferation and DTH response were found in children exposed to As from an early age [48, 49]. Moreover, higher urinary As
Exposure to environmental toxicants and immune and lung development

concentrations in children associated with lower serum levels of IL-2 and TNF-α [49], and lower levels of IL-2 production by peripheral blood mononuclear cells (PBMCs) under phytohemagglutinin (PHA) stimulation [15]. Additionally, urinary As concentrations were negatively associated with nitric oxide (NO) and superoxide production from activated monocytes in children exposed to local environmental Pb and As [50]. Urinary inorganic As levels and its metabolites were also positively associated with superoxide anion levels in activated monocytes in children [51]. Moreover, urinary levels of inorganic As in children who were exposed to As in drinking water positively associated with basal levels of NO and superoxide anion in PBMCs and monocytes. Animal studies evidenced similar suppression of cell-mediated immunity by prenatal As exposure. Peripheral blood and spleen lymphocytes from broiler chickens who exposed to As from 1 day old to 60 days old, had decreased proliferation following stimulation by Ranikhet disease virus antigen and ConA [15, 52]. The DTH response to 2,4-dinitro-1-chlorobenzene or PHA stimulation was also suppressed in these chickens [15, 52].

Persistent organic pollutants
There is limited information about effect of organochlorine compound exposure in early life on cell-mediated immunity in offspring. Proliferation of cord blood-isolated T cells stimulated by mitogenic was negatively associated with levels of PCBs and 4,4'-dichlorodiphenyl-dichloroethene (4,4’-DDE) in newborns prenatally exposed to organochlorine compounds and mercury [53]. TNF-α secretion by cord blood mononuclear cells under mitogen stimulation was also negatively associated with prenatal exposure to organochlorine [54]. Additionally, T-cell mitogenic responses were significantly lower in free-ranging seal pups from the more PCB-contaminated Baltic than in reference pups from the Atlantic [55]. However, a positive correlation between PCB concentration and mitogen-induced lymphocyte proliferation existed in seal pups from the Atlantic [55]. There may be a non-linear dose-response relationship between PCB concentration and T cell proliferation. Although it is difficult to find direct dose-response relationships in free-ranging animals, this study still suggested an immunomodulatory effect of PCBs on free ranging pups. In new Zealand rabbit offspring whose mothers were exposed to 250 ppm PCBs
during pregnancy, the contact sensitivity response to 2,4-dinitro-1-fluorobenzene (DNFB) was significantly lowered, but no marked difference in lymphocyte proliferation was observed [56]. In general, prenatal or early-postnatal exposure to PCBs may inhibit or promote T cell proliferation in offspring based on the dose of PCBs.

TCDD was found to suppress the DTH response in male and female F344 rat offspring (14-17 weeks of age) who were perinatally exposed [33]. In addition, perinatal exposure to TCDD did not influence lymphocyte proliferation under mitogen stimulation in both genders of offspring, except for suppression of lymphocyte proliferation in female offspring under poke weed mitogen (PWM) stimulation was observed [33]. Exposure to TCDD during gestational days 6 to 14 led to altered thymocyte antigen expression and subsequently decreased cytotoxic T lymphocytes in 8-week-old mouse offspring [32]. Additionally, ConA-stimulated splenocytes produced decreased IL-17 in female SNF1 mice offspring prenatally exposed to TCDD, whereas the male offspring showed increased expression of IL-2 and IFN-γ [34]. However, exposure of human infants to TCDD in breast milk since birth did not cause any changes in various immunological parameters when they were 12 months old, possibly because the concentration of TCDD in breast milk was too low [57]. In summary, perinatal exposure to TCDD suppresses T-cell-mediated immunity through reduction of antigen-specific T-cell numbers and decrease of inflammatory cytokine secretion in offspring.

Tobacco smoke

Whole cord blood cells from smoking mothers during pregnancy had greater incorporation of thymidine after PHA stimulation than from non-smoking mothers [35]. However, lymphocytes isolated from these cord blood cells did not have such difference, suggesting that the suppressor cell function in cord blood was suppressed by maternal smoking during pregnancy [35]. Cord blood mononuclear cells from mothers who smoked during pregnancy produced higher levels of IL-13 following stimulation by house dust mites and ovalbumin, and the higher IL-13 levels were associated with maternal smoking during pregnancy [58]. The expressions of IL-9 mRNA, IL-5 mRNA, IL-6 mRNA and
IL-6 protein tended to be higher in these cord blood mononuclear cells, but the differences were not significant [58]. Cord blood immune response to Toll-like receptor stimulation in infants with smoking mothers was decreased when compared with infants from non-smoking mothers [59]. Additionally, T-lymphocyte proliferation under mitogen stimulation was decreased in 3-week-old B6C3F1 mouse offspring of smoking mothers, whereas the mixed lymphocyte response to mitogen stimulation was increased in 5-week-old pups [38]. These data suggested that prenatal exposure to smoke may suppress innate immune cell-mediated inflammatory response and T cell proliferation. However, more works are needed to explore the long-term effects of prenatal smoke exposure on lymphocyte proliferation and cytokine responses.

In summary, prenatal or early postnatal exposure to environmental toxicants were able to affect cell-mediated immune function through modulating DTH, lymphocyte proliferation and cytokine responses in later life. The modulatory effect depended on time windows of exposure, dose of environmental toxicants and sex of participants.

1.3 Effect of prenatal/early-postnatal exposure to environmental toxicants on status of humoral immunity in offspring

Heavy metals

Pb exposure modulates antibody response in early life. Gestational Pb exposure was associated with increased levels of immunoglobulin (Ig)-E in cord blood [60]. Postnatal Pb exposure also increased IgE levels among non-Hispanic white children, but not in other child groups [61]. Additionally, postnatal Pb exposure was associated with increased blood levels of IgA, IgG, and IgM in children under the age of 3, but not in older children [62]. Animal studies showed that a single exposure of 5-day-old avian embryos to 10 µg lead acetate caused an increase in anti-BSA IgG levels in male chickens at 6 weeks or 8 weeks of age, whereas no alterations were observed in female chickens at the same age [43]. Similar results were also found in F344 rat offspring [41]. Moreover, serum IgE levels were increased in female F344 rat offspring prenatally exposed to 100 ppm of Pb in drinking water [41]. These data indicate that sex, genetic background and age of offspring modify long-term effects of prenatal or
early-postnatal Pb exposure on humoral function.

There is limited information about effect on offspring humoral immunity followed by early-life Cd exposure. In children aged 5 to 14 years, urinary Cd levels were associated with dose-dependent suppression of serum IgG, but not IgM, IgA or IgE [48]. One animal study showed that 20-week-old C57BL/6 mice that were prenatally exposed to low levels of Cd and were immunized with heat-killed Streptococcus pneumoniae had decreased phosphorylcholine (PC)-specific serum antibody titers (T cell-independent) in female, but increased titers in male mice. Moreover, pneumococcal surface protein A (PspA)-specific serum IgG antibody titers (T cell-dependent) were increased in male and female mice, and PspA-specific serum IgM antibody titers were decreased in female mice [18]. The serum IgM antibody response to sheep red blood cells was increased in female ICR mice offspring of mothers who were exposed to low level of Cd on day 16 of pregnancy [63]. These limited data suggest again that effect of Cd exposure on specific antibody response is dose and sex dependent. The exposure window is also essential for antibody response in offspring.

One human study showed that maternal urinary As adjusted with specific gravity of urine was not significantly associated with cord blood IgG level [64]. However, for 1-day-old chickens who were administered metalloid As for up to 60 days in drinking water, the response to Ranikhet disease virus vaccination (administered on days 1 and 60) was suppressed when compared to control group [52]. Considering the ability of As exposure to suppress cell-mediated immune function, it is possible that early-life exposure to As would also adversely affect humoral function in offspring.

Persistent organic pollutants

Increased perinatal exposure to PCBs usually adversely affects immune responses to vaccines in children [20, 65, 66]. The sum of the PCBs was positively associated with serum IgM, whereas hexachlorobenzene (HCB) was negatively associated with serum IgM in children who were exposed to low levels of organochlorine compounds and Pb [67]. Moreover, levels of 4,4’-DDE was associated with IgE, IgG and IgA levels in these children [67]. In contrast,
very high PCB levels in maternal, cord and 6-month infant serum were not associated with total serum IgG, IgA, IgM or IgE [68]. Association between very high levels of PCBs exposure and specific antibody response was also not significant in 6-month-old infants [7]. It is possible that a non-linear relationship existed between PCB concentration and antibody response in these studies. In general, these data indicate that concentration of PCB is the most important factor when determining the effect of early-life exposure to organochlorine on humoral response in offspring. Additionally, the interaction between organochlorine compounds may determine the net effect on an offspring’s humoral response.

Prenatal exposure to TCDD did not alter the antibody response to sheep red blood cells in F344 rat offspring at 14 to 17 weeks of age [69]. Similar results were found in murine offspring exposed to TCDD during pregnancy [32]. Additionally, there was no significant association between neonatal exposure to dioxin through breast milk and levels of antibody in human infants at 12 months of age [57]. Also, there was no relationship between prenatal or postnatal dioxin exposure and antibody levels to mumps, measles, and rubella in 18-month-old infants [25]. Current data indicate that dioxins do not affect antibody response in offspring.

Tobacco smoke

The IgG, IgM and IgA levels were higher in cord blood serum of children from mothers who smoked during pregnancy [70]. Maternal smoking during pregnancy also caused a significant elevation of IgE and IgD levels in cord blood of new borns [71]. Maternal smoking after birth caused an increase in total salivary IgA levels, rather than levels of specific IgA to common colonizing bacteria (pneumococcal PS serotype 14 and NTHI OMP6) in infants at 12 months of age [72]. These data suggest that maternal smoking stimulates B-cell maturation and antibody production/secretion in fetuses and newborns. However, maternal smoking during pregnancy is associated with decreased immunity and increased risk of airway infections in offspring, indicating that maternal smoking may impair specific antibody responses later in life.
In summary, many environmental toxicants, such as heavy metals, PCBs and cigarette smoke were able to affect antibody production in a general or antibody-specific manner. Dose of toxicants, sex, age and genetic background would modify effect of early life exposure to environmental toxicants on antibody response in later life.

1.4 Association of prenatal/early-postnatal exposure to environmental toxicants and susceptibility to immune-related diseases

Cord blood Cd levels were found to be associated with the onset of atopic dermatitis in infants at 6 months of age [73]. Maternal urinary As concentration during pregnancy is associated with the total numbers of infections that required a physician visit or prescription medicine, as well as numbers of lower respiratory infections requiring medication in infants at 4 months of age [74]. Moreover, maternal urine As concentration during pregnancy was positively associated with acute respiratory infections in infants and in male children [75]. Additionally, in utero or early childhood environmental exposure to As was associated with increased death from various cancers in adults (<50 years old) [76, 77].

Regarding PCB and dioxin exposure, no relationship existed between pre- or postnatal PCB/dioxin exposure at environmental background levels and upper or lower respiratory tract symptoms in 18-month-old Dutch infants [25]. The increase in cord blood levels of PCBs were not associated with risk of wheezing in 18-month-old infants [78]. In contrast, levels of 4,4’-DDE in cord blood serum positively associated with the risk for wheezing or bronchitis in 18-month-old infants [78], although no association was found between cord blood levels of 4,4’-DDE or PCB and bronchitis or wheezing in infants older than 18 months [78]. However, one study showed that maternal exposure to PCBs during pregnancy was associated with an increased risk for wheezing and more frequent upper respiratory infections in 3-year-old children [8]. Additionally, the postnatal exposure to PCBs associated with higher recurrent middle ear infections in Dutch school children [79]. The discrepancy in these data may stem from different levels of PCBs and the endpoint of the effect that
Exposure to environmental toxicants and immune and lung development

was explored in the studies. Low levels of PCBs might not cause significant dysfunction or persistent effects on the immune system in offspring. Moreover, respiratory symptoms may not be obvious at early age without challenge, but latent effects could appear at older years with challenge. For dioxin-like compounds, relatively high levels of polychlorinated dibenzofuran in maternal blood during pregnancy associated with increased occurrence of otitis media in 18-month-old infants, especially in male infants [80]. High levels of 2,3,4,7,8-pentachlorodibenzofuran in the blood of pregnant mothers were also associated with increased risk of otitis media in these infants [80]. In general, these data indicate that prenatal/early-postnatal exposure to environmental POPs associates with susceptibility to infectious diseases in offspring. However, multiple-endpoint studies are needed to determine the stable long-term effect of early-life exposure to POPs on susceptibility to immune-related diseases in offspring. The dose-response relationship is another question to be explored in developmental immunotoxicity of early-life exposure to POPs.

Maternal smoking during pregnancy has been demonstrated to associate with a lower risk of childhood acute lymphocytic leukemia and a higher risk of acute myelogenous leukemia in offspring [81]. Additionally, maternal smoking was associated with infections [82-84], sensitization [72], wheezing [85], asthma [86] and allergic diseases [71, 87, 88] in early childhood, all of which are associated with immune dysfunction in child. In animal models, prenatal exposure to cigarette smoke caused suppression of cytotoxic T lymphocyte activity, faster tumor cell growth and greater tumor incidence in murine offspring [39].

In summary, prenatal or early postnatal exposure to environmental toxicants were associated with infection and immune dysfunction-related diseases in later life. The levels of environmental toxicants might have a nonlinear relationship with susceptibility to immune-related diseases. Further studies are needed to explore how long the effect of early life exposure to environmental toxicants would persist on susceptibility to immune-related diseases.
Chapter 2

2. Early-life exposure to environmental toxicants: lung development in offspring and susceptibility to lung diseases later in life

2.1 Prenatal/early-postnatal exposure to environmental toxicants and lung development

Lung budding starts at about 22 days after fertilization. The lung growth continues through infancy and early childhood, ending with alveoli maturation [89]. Lung development can be generally divided into several different stages: embryonic phase, pseudoglandular phase, canalicular phase, saccular phase and alveolar phase [90], with lung growth continuing until the end of the adolescent stage [90]. The prenatal and early-postnatal periods are the most vulnerable times for lung development because of rapid airway epithelial cell proliferation, differentiation, alveolar formation and functional maturation. Environmental toxicants, such as As, Cd, dioxins, and tobacco smoke, may disturb progenitor cell differentiation and alter lung structure, resulting in both reduced lung function after birth and high susceptibility to lung disease in adulthood.

Heavy metals

In utero exposure to As has been shown to induce aberrant gene expression, which was relevant to lung adenocarcinoma development in fetal C3H mice [91]. Prenatal and early-postnatal exposure to As (≤100 ppm in drinking water) also increased lung mRNA expression of smooth muscle actin in a dose-dependent manner in 28-day-old mouse pups, and increased smooth muscle mass around the small airways [92]. Additionally, the increased smooth muscle was associated with increased expression of extracellular elastin and collagen in the pup offspring [92]. In utero As exposure additionally resulted in smaller lungs and impaired lung mechanics in 2-week-old C57BL/6 mice offspring. It induced mucous cell metaplasia as well as more expression of CLCA3 protein in the large airways [93]. Additionally, in utero As exposure led to upregulated expression of genes relevant to mucus production (Clca3, Muc5b, Sgcβ3a1), innate immunity (Reg3gamma, Tff2, Dynlrb2, Lplunc1), and lung morphogenesis (Sox2) in C57BL/6 mice [93]. These data indicate that prenatal exposure to As disturbs airway epithelial differentiation and normal
Exposure to environmental toxicants and immune and lung development

Parenchymal tissue maturation in a manner that may alter lung resilience to stimuli after birth and predispose offspring to lung diseases, such as asthma and COPD.

In utero exposure to levels of Cd without affecting fetal viability, body weight and lung weight was associated with a reduction in the amount of lecithin-contained saturated fatty acids when examined at embryonic day 21 (lecithin was a main component of lung surfactant in fetal rats) [94, 95]. Reduced surfactant in airways inhibited elimination of toxic particle matter and microbes on airway epithelial cells and also reduced compliance of airways and plasticity of alveoli, subsequently increasing risk for infection and decreased air flow and gas exchange. In addition, exposure to 100 ppm dietary Cd from day 1 post-birth caused an enlarged tertiary bronchial lumen in 5-week-old White Leghorn cockerels [96]. Current data suggests that early-life exposure to Cd may impair airflow and increase infection in lungs.

Persistent organic pollutants

There is very limited information about the effects of POPs on lung development. One animal model study demonstrated that gestational exposure to TCDD significantly decreased total airspace, wider tissue septa and dry lung weight to body weight ratio in 7-day-old Holtzman rat pups [97]. A study in children showed that dioxin concentration in breast milk was inversely associated with children’s FEV1/FVC ratio [98]. Additionally, perinatal dioxin exposure was associated with chest congestion in the children [98]. The alteration of lung structure induced by dioxins partly explains the reason why prenatal exposure to dioxins caused lower lung function in offspring.

Tobacco smoke

Prenatal or early-postnatal exposure to tobacco smoke has been widely described to affect fetal lung development and functional maturation after birth. In rat fetuses which were prenatally exposed to cigarette smoke, the lung volume at term was reduced and the alveolar number decreased, while the average alveolar volume increased as a result of decreased formation of alveoli partitions. Additionally, the internal surface area of saccules also was reduced,
as was the total length of parenchymal elastic tissues [99]. In infant monkeys prenatally exposed to environmental tobacco or exposed to environmental tobacco for 6 months since born, the alveolar number decreased while the alveolar space markedly increased when compared with controls [100]. Additionally, the respiratory bronchiole volume increased in the 6-month exposure group [100]. Similar structure alteration was observed in other animal studies. In 21-day-old neonatal guinea pigs exposed to cigarette smoke during gestation, the number of alveolar attachment points to airway walls was decreased [101]. Additionally, both inner and outer airway walls and the smooth muscle area showed in a trend to be greater than in the non-exposed neonates, although the difference was not significant [101]. Data from our own lab also indicate an effect of prenatal smoke exposure on lung development. One study demonstrated that maternal smoke during pregnancy resulted in lower expression of forkhead box a2 (FOXA2), frizzled receptor 7 (FZD-7), epidermal growth factor (EGF), β-catenin (CTNNB1), fibronectin (FN1) and platelet derived growth factor receptor alpha (PDGFRα) in neonatal offspring [102]. These genes were involved in the Wnt/β-catenin pathway, which played an important role in lung branching morphogenesis. Additionally, a significantly thickened airway smooth muscle layer was observed in BALB/c mice offspring that had been exposed to smoke in utero [103]. Moreover, collagen III deposition and house dust mite-induced goblet cell number were also increased in these offspring mice [103]. Because nicotine is known as one of main toxicants in smoke, prenatal nicotine exposure also caused significant reduction in proximal airway conductance [104].

In summary, prenatal or early-postnatal exposure to environmental toxicants disturbed airway epithelial differentiation and gene expressions and altered lung structure through interfering with alveolar maturation processes and lung parenchymal tissue development, which resulted in malfunction of airway epithelial cells and increased thickness of airway walls while decreased gas exchange in the lung.

2.2 Prenatal/early-postnatal exposure to environmental toxicants is associated with alteration of lung function and lung disease later in life
Several studies demonstrated the persistent effect of prenatal and early-postnatal exposure to environmental toxicants on lung function and lung diseases in later life. A study with a small sample of Dutch children demonstrated that prenatal or postnatal exposure to environmental-relevant levels of dioxin may inversely associate with child FEV1/FVC ratios [98]. For prenatal exposure to As, As-induced aberrant estrogen receptor signaling in fetal mice was associated with lung adenocarcinoma and adenoma in adulthood [91]. Although prenatal exposure to heavy metals, such as Cd and As, and organochlorines, such as PCBs and dioxins, had been demonstrated to affect lung development and function in animal studies, there is relatively limited epidemiological evidence that supports association of early-life exposure to these environmental toxicants with lung function status in children.

Prenatal or postnatal exposure to tobacco smoke all had adverse effects on lung function in offspring. However, different effects existed between active and passive smoke exposure, and prenatal and postnatal exposure. Newborn (mean, 2.7 days old) from a smoking mother during pregnancy (active or passive), had significant lower tidal flow volume ratios (time to reach peak expiratory flow to total expiratory time) and compliance. Interestingly, the tidal flow volume ratios and compliance only associated with active maternal smoking during pregnancy [105]. Significant reductions in forced expiratory flow (FEF) rates in infants (mean, 4.92±1.9 week) associated with maternal smoking during pregnancy, but were not associated with postnatal environmental tobacco exposure [106]. Similar results were found in infants at different ages after birth, indicating prenatal exposure to smoke plays a greater role on offspring’s lung function than does postnatal exposure [107].

The effect of maternal smoking during pregnancy on lung function can persist into childhood and even longer. One study demonstrated that children from mothers who smoked during pregnancy had lower FEF between 65% and 75% of forced vital capacity (FEF65%-75%), FEF25%-75%, and forced expiratory volume in 3/4 of a second (FEV0.75) at 8 to 12 years of age [108]. Decreased FEV1/FVC, FEF25%-75%, and FEF25%-75%/FVC ratios were found in children from another study who were exposed to smoke in utero [109].
Chapter 2

reduced lung function caused by maternal smoking during pregnancy can also persist into adolescence [10] and adulthood [110].

Prenatal or early-postnatal exposure to smoke is associated with respiratory symptoms or illness in both childhood and adulthood. Maternal smoking during pregnancy is associated with a higher incidence of hospital admission for lower respiratory illness in children [111]. It is interesting to note that mothers who started to smoke after giving birth did not affect the incidence of their children’s illness [111]. In contrast, another study demonstrated that children exposed to environmental tobacco smoke were more susceptible to acute respiratory tract illnesses, and maternal smoking during pregnancy exacerbated the condition [112]. Prenatal or early-postnatal exposure to smoke also was associated with increased airway hyperresponsiveness [113, 114], allergic sensitization [115-117], asthma [10, 117-121] and chronic obstructive pulmonary diseases [122] in later life. In summary, early life exposure to environmental toxicants, especially cigarette smoke, altered lung structure and lowered lung function in long term, which elevated susceptibility to various lung diseases later in life.

3. Remarks and Conclusions

Environmental toxicants act directly or indirectly on development of immune system and lung, inducing adaptive response in the immune and lung cells. Early-life exposure to environmental toxicants altered immune cell counts, DTH and cytokine responses, and levels of specific antibody in offspring. Moreover, it disturbed airway epithelial cell differentiation and gene expression, and perturbed normal process of alveolar maturation and parenchymal tissue development in lung. The alteration in immune and lung structure and gene expression in airway epithelial cells may cause dysfunction in immune and lung system and result in high risk for infection and lung diseases later in life. The dose of toxicants, exposure windows and sex are determinant factors for long-term effects of early-life exposure to environmental toxicants on immune
and lung function. The different endpoints selected in the reviewed studies may confound the interpretation of long-term effect of early-life exposure on disease risk in offspring. Further studies are required to find stable molecular markers that can accurately predict change of cell or tissue function later in life as caused by early-life exposure to environmental toxicants. Additionally, there is relatively limited information about the effect of early-life exposure to POPs on immune and lung development, and their long-term effects in offspring. Considering the accumulation of these pollutants in environment, much more effort is necessary to explore association between early-life exposure to POPs and health risk in later life.

Acknowledgments

This work was supported by the Natural Science Foundation of China, NSFC (21577084, 21377077).
References

Exposure to environmental toxicants and immune and lung development

21. Park HY, Hertz-Picciotto I, Petrik J, Palkovicova L, Kocan A, Trnovec T:

30. Fine JS, Gasiewicz TA, Silverstone AE: Lymphocyte stem cell alterations following perinatal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin.
Exposure to environmental toxicants and immune and lung development

Chapter 2

Exposure to environmental toxicants and immune and lung development

Exposure to environmental toxicants and immune and lung development

78. Gascon M, Sunyer J, Casas M, Martinez D, Ballester F, Basterrechea M,

88. Lee SL, Lam TH, Leung TH, Wong WH, Schooling M, Leung GM, Lau YL: *Foetal exposure to maternal passive smoking is associated with*
Exposure to environmental toxicants and immune and lung development

93. Ramsey KA, Bosco A, McKenna KL, Carter KW, Elliot JG, Berry LJ, Sly PD, Larcombe AN, Zosky GR: *In utero exposure to arsenic alters lung development and genes related to immune and mucociliary function in mice.* *Environ Health Perspect* 2013, 121(2):244-250.

onset asthma and in utero exposure to maternal smoking on childhood lung function. Am J Respir Crit Care Med 2003, 167(6):917-924.

18. Dong GH, Wang D, Yang ZH, Zhang PF, Ren WH, Zhao YD, He QC: Gender-specific differences in effects of prenatal and postnatal environmental tobacco smoke exposure on respiratory symptoms in

120. Leung DY, Szefler SJ: In utero smoke (IUS) exposure has been associated with increased prevalence of asthma and reduced lung function in healthy children. *J Allergy Clin Immunol* 2010, 126(3):481-482.
